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Abstract. In geometric constraints solving, the detection of dependences
and the decomposition of the system into smaller subsystems are two im-
portant steps that characterize any solving process, but nowadays solvers,
which are graph-based in most of the cases, fail to detect dependences due
to geometric theorems and to decompose such systems. In this paper, we
discuss why detecting all dependences between constraints is a hard prob-
lem and propose to use the witness method published recently to detect
both structural and non structural dependences. We study various exam-
ples of constraints systems and show the promising results of the witness
method in subtle dependences detection and systems decomposition.

1 Introduction

Today all CAD CAM geometric modelers provide a geometric solver that enables
designers to define shapes (geometric configurations) as solutions of a set of ge-
ometric constraints [BI24UTTI]]. Geometric constraints specify distances, angles,
incidences, and tangencies between basic geometric elements such as points,
lines, circles, conics or higher degree curves (e.g. Bézier curves) in 2D, and
lines, planes, quadrics or higher degrees algebraic curves and surfaces in 3D. In
practice, designers interactively specify constraints on an approximation of the
wanted configuration (called a ”sketch”) — the solver is often called a sketcher.
The solver operates in various steps: (i) reads the sketch; (ii) translates the sys-
tem of constraints into some internal data structure (typically some graph, and
a system of equations...); (iii) analyses and decomposes the system; (iv) solves
the subsystems obtained from the decomposition either with some formula or
with a numerical method; (v) and finally assembles solutions of subsystems and
displays the corrected sketch.

As the system is typically non linear, there is usually more than one solution,
and the solver is supposed to provide the solution that gives the closest config-
uration to the intention of the designer. It turns out that, in 90% of the cases,
the Newton-Raphson method converges to this solution when it starts from the
initial guess provided by the sketch. When the Newton-Raphson method fails,
the designer can resort to another method, slower but safer, like homotopy: for
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an algebraic system of equations, the attraction basins for homotopy are semi
algebraic sets, the ones of Newton-Raphson method are fractals; this is an em-
pirical argument that the homotopy method should converge to the closest root
more often than the Newton-Raphson method.

Dimensioning a complex mechanical part involves hundreds or thousands of
geometric constraints, that is why qualitative analysis of the system of con-
straints plays an essential role in preparing the resolution [2IT520/24]. Today
this analysis seems to be graph-based for all industrial solvers, as far as it is
possible to know.

Graph-based methods develop some kinds of graph representing the system
of constraints; they compute the so called degrees of freedom in this graph and
its subgraphs. Technically, graph-based methods compute maximum matching
[23UTUT0], or maximum flows [I3I12], or k-connected components [I720/21]. These
methods are polynomial time; they work very well for correct systems of con-
straints, .e. when constraints are independent. Indeed, graph-based methods al-
low to solve systems of constraints which could not be solved otherwise. Graph-
based methods can also detect the simplest dependences between constraints,
called structural dependences which typically occur when a subset of unknowns
is constrained by too much constraints, as in the system f(z,y,2) = g(z) =
h(z) = 0 which over constrains z.

It is essential to detect dependences because numeric solvers typically fail,
or get bogged down, when they are used to solve systems which are ”wrongly”
assumed to be well-constrained (to have a finite number of roots modulo the
group of isometries). Moreover they do not give any useful explanation to help
the users fix the problem. However, when the system of constraints is available
without any further details, no polynomial time method can detect all depen-
dences. Non structural dependences, which are due to geometric theorems, are
not detectable by the previous methods. These dependences can occur in the
seemingly simplest geometric constraints such as point-line incidences in 2D (in
the projective plane, more technically). In CAD CAM, the major part of systems
of geometric constraints involve such incidence constraints, i.e. incidence rela-
tions between points, lines, planes, circles/spheres, conics/quadrics. Of course,
other constraints are also used to specify angles and lengths for dimensioning;
these metric constraints involve parameters (values for lengths and angles) with
generic values. Incidence constraints are especially relevant; Section Blshows that
detecting non structural dependences just amongst point-line incidences in 2D is
as difficult as the ideal or radical membership problem of computer algebra. This
problem is decidable with standard bases (also called Grobner bases) computable
with Buchberger’s method [25/4]. But no method to solve it is practicable, i.e.
none scales to problems with industrial size.

This difficulty explains why the GCS (Geometric Constraints Solving) com-
munity usually assumes that constraints are either independent, or structurally
dependent. This inability to detect and treat non structural dependences clearly
restricts the use of GCS. This paper shows that at least for CAD CAM prob-
lems, an alternative method is indeed able to detect all dependences, structural
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or non structural, in polynomial time, assuming that a witness (to be defined
below in Section [2]) is available. Moreover, this method can also be used to de-
compose a well-constrained system into smaller well constrained parts, also in
polynomial time. Here, well-constrained means: has a finite number of solutions
modulo some group; the most relevant group for dimensioning a part in CAD
CAM is the group of isometries: all compositions of translations, rotations and
symmetries. For short, a system or a subsystem which is ”well constrained mod-
ulo the isometry group” is said to be rigid in the GCS community (the meaning
of "rigid” is a bit different in the rigidity theory community which has inspired
several graph-based methods used in GCS).

SectionPldefines the witness configuration, discusses the witness computation,
and presents the probabilistic graph rigidity test of which the witness method
is an offspring. Section [] explains why detecting all dependences between con-
straints is as hard as the ideal or radical membership problem. Section [ explains
the rigidity test of the witness method. Section Bl gives the proof that the witness
method detects all dependences, structural as well as non structural. Section
presents a possible method to decompose a rigid systems into rigid subsystems.
Section [7 concludes.

2 The Witness Method

2.1 The Witness: Definition and Computation

A witness is defined as follows: let F'(U, X) = 0 be the system to be solved; X is
the vector of unknowns, and U is the vector of parameters (lengths, cosines, or
sines, or tangents of angles, etc) or non geometric parameters (Young elasticity
modules, weights, costs, densities, temperatures, forces, etc) [19]. By definition,
the values of parameters are known just before the resolution. The goal is to
find the roots Xp of the target system: F(Ur,Xr) = 0, where Up are the
specified values for the parameters U. Thus the target is a couple (Ur, Xr)
so that F(Ur, Xr) = 0. A witness is just another couple (Uw, Xw ) such that
F(Uw,Xw) = 0 as well. Usually, Uy and Ur are different, so a witness root is
likely not a target root; nevertheless, the witness and the target share essential
combinatorial properties e.g. they share the same jacobian rank and structure.
Actually, the witness method assumes that the target and the witness have the
same combinatorial properties, in other words, only their numeric values are
different. This is a probabilistic assumption in the following sense: among all
possible witnesses, i.e. solutions of the system F(U,X) = 0, the set of wrong
witnesses has measure (or probability) zero. A witness is wrong when its combi-
natorial properties (rank and structure of its jacobian) are different from those
of the target. The principle of the witness method is then straightforward: it
studies the combinatorial properties at the witness and transfers them to the
target.

In CAD CAM, a witness is usually available, or easy to find; often the sketch is
a possible witness. A witness is a configuration which fulfils all ” constraints with-
out parameters”. These constraints are projective constraints of linear incidences
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(collinearities, coplanarities) or non linear incidences (”co-conicity” of 6 points
in 2D), parallelisms or orthogonalities (or other non generic angles). In passing,
parallelisms and orthogonalities (and non generic angles) can all be replaced by
projective constraints, see Fig.[IL 2l andBlfor an intuitive account. The set of pos-
sible witnesses is very large: typically it is a continuum with dimension |U| where
|U| is the number of parameters. This explains why, in the CAD CAM context it is
generally easy to find a witness: the sketch, or the solution to a previously solved
system is usually a good witness. However, the witness computation may also be
arbitrarily difficult, We summarize here some cases where the difficulty is known.
For the molecule problem (given some inter atomic distances, find the configura-
tion of the molecule) [OIT0/6], finding a witness is completely trivial: just generate
random points in 2D or in 3D according to the nature of the problem. For Eule-
rian polyhedra with specified coplanarities constraints (metric constraints such as
angles between planes, distances between points, are dismissed), finding a witness
is cubic time; it results from a constructive proof of Steinitz’s theorem [22], which
states that each Eulerian polyhedron is realizable in Z* with some convex polyhe-
dron, i.e. all vertices coordinates are integers (Steinitz’s property is remarkable,
since it does not hold in 4D [22]). Fewer details are known for non Eulerian poly-
hedra, i.e. with one or several handles.

For general geometric constraints (including incidences), we can often use a
dual method for generating a witness, for instance when the unknown config-
uration is a 3D polyhedron described by the length of its edges. The octahe-
dron problem, solved by Durand and Hoffmann [7], also known as the Stewart
platform, and the icosahedron problem are just molecule problems: they have
triangular faces, so generating random vertices is sufficient; the fact that the gen-
erated polyhedron is likely concave and even self intersecting does not matter
as far as the distance and coplanarity conditions are satisfied. The hexahedron
(6 quadrangular planar faces) or the dodecahedron (12 pentagonal planar faces)
are examples of systems of geometric constraints where the dual method for
generating the witness works: generate random planes in 3D, one random plane
per face, before computing the resulting vertices as intersection points of the
supporting planes. This dual method clearly relies on the fact that each vertex
of the hexahedron and of the dodecahedron is degree 3. For vertices with greater
degree, the method will not work because there is a null probability for four (or
more) random planes to meet in a common point.

2.2 A Forerunner of the Witness Method

The witness method extends a probabilistic test used in rigidity theory [9]. Rigid-
ity theory searches a combinatorial characterization for the rigidity of graphs:
for a given dimension, does a non oriented graph with edges labelled with generic
lengths has a rigid realization in d dimensions? For instance two triangles sharing
a common edge are a rigid graph in 2D, but not in 3D where they can fold along
their common edge. The genericity assumption forbids collinearities, coplanari-
ties in 3D, and non linear incidences (points on conics, or quadrics) which are
essential in CAD CAM.
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The characterization of graph rigidity is known in 2D, after Laman’s theorem:
a graph with v > 2 vertices and e edges is minimally rigid (or isostatic: it is
rigid, and removing one edge makes it flexible) iff ¢ = 2v — 3 and if for all
subgraphs induced by v’ vertices and having e’ edges, ¢’ < 20" — 3. There is an
exponential number of subgraphs, but several polynomial time algorithms have
been proposed to test graph rigidity [T8I0].

The intuitive extension to 3D of Laman’s theorem (where 2v — 3 is replaced
by 3v — 6, and 20" — 3 is replaced by 3v’ — 6) is unfortunately wrong; the double
banana is the most famous example. Up to now, the combinatorial characteriza-
tion of graph rigidity in 3D and beyond is unknown. For GCS, it is convenient to
extend Laman’s theorem to other kinds of constraints in 2D, and in 3D. It gives
an approrimate but essential characterization of rigidity on which graph-based
decomposition methods rely.

Though the combinatorial characterization of graph rigidity is unknown in 3D
and beyond, there is a probabilistic and polynomial time algorithm to decide the
rigidity of a given graph for any given dimension. It relies on Gluck’s theorem: a
graph is rigid if a generic realization of it is. So compute the rank of the jacobian
(called the rigidity matrix) for a random realization. The witness method is an
offspring of this rigidity test; in order to account for any kind of constraints
(and not only point-point distances), the realization can no more be random: a
random realization has probability 0 to fulfil ”constraints without parameters”:
parallelism, orthogonalities, incidences (collinearities, coplanarities).

a+b
b
0 a b atb a
0

Fig. 1. Affine and projective construction of a + b. In the affine construction (left), the
two shaded triangles are congruent and have parallel sides.

From a theoretical viewpoint, the witness method brings nothing new: it does
not give a combinatorial characterization for well-constrainedness modulo the
isometries group. It is a rather straightforward extension of the probabilistic
test for graph rigidity which relies on Gluck theorem.

3 Why Detecting All Dependences Is Difficult

This section explains why a polynomial time method can not detect all de-
pendences in seemingly simple systems of constraints containing only point-line
incidences in 2D.

All systems of algebraic equations with coefficients in Z reduce, in polynomial
time, to a system of point-line incidences in the projective plane [5I2]. The idea
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Fig. 2. Affine and projective construction of a x b. In the affine construction, the two
shaded triangles are similar (proportional) and have parallel sides.

is to represent each number (coefficient or root) by a point on an arbitrary line;
this line passes through two arbitrary distinct points, representing the number 0
and the number 1 (later, the projective construction will need a third arbitrary
point on this line, the point at infinity ). Then a first geometric construction in
2D constructs the point representing a + b from the point representing a and
the point representing b , see Fig.[Il A second geometric construction constructs
the point representing a x b from the points representing a and representing b,
see Fig. Bl Actually, a construction in affine geometry is first proposed; it uses
parallelism constraints, which are removed in the projective construction, using
the classical idea of projective geometry: parallel lines are replaced by lines con-
current to a special arbitrary line, the Desargues line at infinity. It is a classical
result that, if the projective plane satisfies Desargues and Pappus properties,
then these two geometric constructions indeed define a field of numbers, i.e. as-
sociativity, commutativity, distributivity, etc hold; for instance the fact that the
point representing a x b is equal to the point b X a relies on Pappus property of
the projective plane [5].

These two constructions permit to translate the algebraic system into a set of
point-line incidences. Remark that the ruler construction of an integer coefficient
n of the system of equations needs O(log, n) incidence constraints, using iterated

0 1 2 4 8 0 1 X 2

Fig. 3. Left: geometric construction of powers of 2. Right: affine constraints equivalent
to the equation z? — 2 = 0.
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squaring and additions (Fig. B]), thus it has the same size as the usual binary
representation of integers. The right part of Fig. Bl shows the set of incidence
and parallelism constraints for the equation z2 — 2 = 0.

Thus solving algebraic systems and solving point-line incidences constraints
are in principle the same problem. So detecting dependences in point-line in-
cidences constraints is as difficult as detecting dependences in algebraic sys-
tems. The latter problem is equivalent to solving the ideal membership problem,
and the radical membership problem (more on this question in section [B]). Both
problems are decidable, for instance with standard bases computable with Buch-
berger’s algorithm. Unfortunately, due to the high algorithmic complexity of the
problem, these methods are practicable only for small instances. Another direct
consequence is that, in principle, finding a witness can be arbitrarily difficult: it
suffices to translate a difficult system of equations (e.g. arising from a system
of geometric constraints with specified numerical values for parameters) into a
system of point-line incidences in 2D.

4 The Study of a Witness

This section details the study of the witness. The main idea is to compute
the structure of the jacobian of the system at the witness. For example, if the
jacobian has full rank, then the witness system contains no dependence, and this
property is transferred to the target system.

The kernel of the jacobian at the witness is a vector space of the so called
infinitesimal motions. Classically, there are two kinds of motions: displacements
(also called rigid motions, or isometries), and flexions. Displacements are com-
positions of translations, symmetries, rotations; they constitute the isometry
group; they do not alter distances and angles. On the contrary, flexions do — at
least in the generic case (degenerate cases are not considered in this paper, for
concision).

4.1 Computing a Basis of Infinitesimal Displacements

A system of geometric constraints is rigid iff the kernel of its jacobian contains
only displacements. It is possible to compute an a priori basis of the infinitesimal
displacements. Table[Ilshows such a basis, in the 2D case, composed of ¢, a trans-
lation in the x direction, ¢, a translation in the y direction, and 7., a rotation
around the origin. (z;, y;) are coordinates of a point, (a;, b;, ¢;) are coordinates of
a line (i.e. the line has equation: a;x 4+ by +¢; = 0), and (ug, v) are coordinates
of a vector (the difference between 2 points). ¢; represents an unknown which is
independent of the cartesian frame: it is either a geometric unknown such as a
length, a radius, an area, a scalar product, or a non geometric unknown. Dotted
variables ;, %, dy, by, ¢, Uy, Vi, and ¢; are used to denote the values of the cor-
responding coordinates in the basis of infinitesimal displacements, e.g. the couple
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Table 1. A basis for the free displacements in 2D for points, lines, and vectors

i Yi dp b & Uk Uk g
t. 1.0 0 0—a O 0 O
t, 01 0 0-b 0 O O
Tey —Yi Ty —bra; 0 —vgur O

(24, 9;) representing the infinitesimal translation ¢, along the z axis of a point
(4, i) is equal to (1,0). Note that the infinitesimal displacements for a point
(z,y), a normal (a,b) to a line, and a vector (u,v) are different; e.g. translating
a point modify it, but translating a vector or a normal does not.

Table 2] shows a possible basis for the infinitesimal displacements in 3D; it
contains three translations ¢, t,, and ?., and three rotations 74,7, and ry..
Points have coordinates (z,v, z), planes have coordinates (a,b, ¢,d) (their equa-
tion is: ax + by + ¢z + d = 0), vectors have coordinates (u, v, w); ¢ represents an
unknown independent of the cartesian frame.

Table 2. A basis for the free displacements in 3D for points, planes, vectors, and
unknowns independent of the cartesian frame

i Yi Zi an bn cn dn Uk Up Wi gj
t 1 0 0 0 0 0 —ap 1 0 0 O
t, 0 1 0 O 0 0 —=bp, O 1 0 O
t. 0 01 0 0 0 —¢ O 0 1 0
Toy —Yi ©i 0 —bp ap 0 0 —vr ur 0 O
Ter —2; 0 x; —cp 0 ap 0 —wr 0 wugp O
ry= 0 —ziyi 0 —cpbp O 0 —wi ve O

Fig. 4. A 2D under-constrained system of geometric constraints

4.2 A Structurally Under-Constrained Example in 2D

Fig. [ shows a simple under-constrained example in 2D. A possible witness is
(x =y=0,2"=3,9y=4,6=5,a=1,b=0,a’ =12/13,b' =5/13,and A =12/13).
All graph-based methods give correct results when considering this system,
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Table 3. The jacobian and a basis of infinitesimal motions: three displacements and a
flexion for the system given in ()

T Yy T y a b c a b c
el a b 0 0 T Yy 1 0 0 0
eh a b 0 0 0 0 0 x Y 1
es |2z — 22y —y")|2(2" —x)|2(v' —y)| O 0 0 0 0 0
eh 0 0 0 0 2a 2b 0 0 0 0
es 0 0 0 0 0 0 0 2a’ 20’ 0
g 0 0 0 0 a b 0 a b 0
& ¥ ! Y’ a b ¢ a’ v ¢
ta 1 0 1 0 0 0 —a 0 0 —a’
ty 0 1 0 1 0 0 —b 0 0 -
Ty —y T -1/ x’ —b a 0 - a 0
flexion 0 0 y—y |2’ —x | O 0 0 0 0 0

because the under-constrainedness is structural. This system is composed of the
following six equations:

e1:ar+by+c=0

er:adv+by+c =0

ez:(z—2 ) +(y—y) -6 =0 (1)
er:a>+2—-1=0

es:a?4+0b0%-1=0

eg:aa +bb —A=0

The jacobian and a basis of its kernel are given Table [3] where all symbols are
replaced by their values at the witness. This basis contains the 3 displacements
of the plane, plus a flexion vector: indeed point (z’,3’) can rotate around point
(z,y). If columns 2/, y" are removed, the flexion vector clearly becomes, in the
remaining columns: x,y,a,b,c,a’,b’,c, a linear combination of the 3 displace-
ment vectors (the fact that it vanishes is basis dependent; the fact that it is a
linear combination is not). This shows that the part obtained after the removal
of the point (z’,y’) is rigid. This is the test that the witness method uses to
decide the rigidity of a part.

4.3 A Dependence due to a Theorem

Let us now consider the 2D system of geometric constraints of Fig. This
system is structurally correct, but contains a non structural dependence due to
a (simple) geometric theorem, so it will be difficult (at least) for graph-based
methods to detect this dependence, but the witness method detects it.
Constraints are as follows; point O is the middle of AB; distance OC' equals
distance O A; the angle between AC' and BC' is right. Actually this constraint is
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a consequence of the other constraints. Finally distance OA is specified (just to
have the ”good” number of constraints). The system of equations is:

e1:2x0—xa—2 =20

e2:2yo—ya—yp =20

es: (vo —70)” + (yo —y0)* — (xa — 20)*> = (ya —y0)*> =0 (2)

es: (e —wa)(ze —zB) + (yo —ya)(ye —yp) =0

es: (A —20)* + (ya —yo)? —u> =0
A possible witness is: O = (0,0), A = (-10,0), B = (10,0),C = (6,8),u = 10.
The jacobian and a basis of the free infinitesimal motions (three displacements
and a flexion: point C' can rotate around point O) are given in Table ] where

again, all symbols are replaced by their value at the witness. The rank of
€},...,e5 computed at the witness is 4, thus equations are dependent.

B 0 A

Fig. 5. Example of dependent constraints

Table 4. The jacobian, and a basis of 4 free infinitesimal motions for the dependent
system given in (). The fourth motion is a flexion: point C' can rotate around O.

o Yyo T A YA B YB xc yo

e} 2 0 -1 0 -1 0 0 0

e 0 2 0 -1 0 -1 0 0
ey 2xa —2zc 2ya — 2yc 220 — 2xA 2Yo — 2ya 0 0 2z — 220 2yc — 2yo
e) 0 0 T —TA YB —YC TA—TC YA —YC 2TC — TA— 2YC — YAa—

rB YB

eg 2r0 — 2x A 2yo — 2ya 224 — 220 2yaA — 2y0 0 0 0 0

To Yo TA ya *B YB fizel yo

o 1 0 1 0 1 0 1 0

ty 0 1 0 1 0 1 0 1

Tay —yo zo —ya TaA ] TB —yc ]

flexion 0 0 0 0 0 0 Yo — yc o — TOo

4.4 Computing Degrees of Displacements

In an attempt to make graph-based methods more robust against non structural
dependences, Jermann introduced the notion of DoD, Degrees of Displacements,
in his PhD thesis (actually he called that the Degree of Rigidity) [16/14]. Consider
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a subset of unknowns Y C X; extract the columns of Y in the basis of the
infinitesimal displacements; call it D[Y']; then the DoD of Y is the rank of this
subarray D[Y]. For instance, for a 2D line Y = (a,b, ¢), the subarray D[Y] is:
(a, b, ¢) = (0, 0, —a) for the translation t,, (0, 0, —b) for the translation t,,
and (—b, a, 0) for the rotation r4,. The line has 2 DoD and the 2 translations
are dependent. Similarly, M[Y] will denote the content of the columns Y in any
basis of the free infinitesimal motions (displacements, and flexions) of the system
at the witness.

Jermann understood that graph-based methods are fragile because they can
not compute exact DoDs. It turns out that DoD is not only a syntactical or struc-
tural idea when accounting for incidence constraints. For instance, the DoD of
two secant planes in 3D is 5 (more precisely the 3 rotations are independent,
but the 3 translations are dependent; intuitively, and a posteriori, it is under-
standable, since translating the 2 planes along their intersection line leave them
invariant) while the DoD of two parallel planes is 4. Similarly, the DoD of 3
collinear points is 2, while the DoD of 3 non collinear points is 3. A pure graph-
based method has no mean to know if 3 points are collinear or not, or if two planes
are parallel or not. Either it assumes the configuration is generic (and thus has
maximal DoD), or it can try to look if the parallelism/collinearity is an explicit
constraint of the system; but it may happen that the parallelism/collinearity is
a remote consequence of a set of constraints, thanks to Desargues, or Pappus,
or Pascal, or Miquel theorems: the incidence in the conclusion is a non trivial
consequence of the hypothesis.

The witness method avoids this difficulty: it just computes the DoD of the
part, at the witness, with standard method from linear algebra. If a paral-
lelism/collinearity or any other feature holds because of some constraints and
geometric theorems, then it holds in the witness.

A part with full DoD (3 in 2D, 6 in 3D) and with minimal cardinality: 3 in
2D, 6 in 3D, is called an anchor. Section [f] uses anchors for decomposing.

4.5 Interrogating a Witness

Geometric constraints are independent of the cartesian frame. But sometimes,
some constraints such as: 1 = y; = y2 = 0 are used to ”"pin” the configuration in
the plane and to make the system of equations well-constrained, which simplifies
the work of the numerical solver, e.g. Newton-Raphson. The following test checks
that a constraint is independent of the cartesian frame: it is iff its gradient vector
is orthogonal to all basis vectors in the basis of infinitesimal displacements. From
now on, constraints are assumed to be independent of the cartesian frame.

Are constraints independent? They are iff the jacobian at the witness has
full rank. Is a part Y rigid, i.e. well constrained modulo displacements? It is iff
D[Y] = M[Y]: the vector space of its infinitesimal motions is equal to the vector
space of its infinitesimal displacements. In other words, since D[Y] C MY, the
rank of D[Y] is equal to the rank of M[Y].



Detecting All Dependences in Systems of Geometric Constraints 109

4.6 Rank Computations Are All What You Need

All computations of ranks are performed on vectors with numerical entries pro-
vided by the coordinates of the witness and the gradient vectors at the witness.

Inaccuracy issue is detailed elsewhere. We just mention that, if the witness has
rational coordinates, then all computations can be performed exactly, with the
classical Gauss pivoting method; it is also possible to compute exactly modulo a
prime close to 10, which introduces another source of probabilisticity. Finally,
if the witness method is used only to check the independence of vectors, then
an interval arithmetic is sufficient, in the following sense: if a set of vectors is
independent, then interval computations can guarantee it (assuming intervals
are sharp enough); if vectors are dependent, then interval computations can not
prove it. Note that when the interval analysis can not prove the independence of
the gradient vectors at the witness, either vectors are dependent or the system
at the witness is ill-conditioned.

5 The Proof That the Witness Method Detects All
Dependences

An algebraic equation g(z) = 0 is a consequence of the other equations: fi(z) =
fa(z) = ... fu(zn) = 0 in two cases: either ¢ lies in the ideal generated by
the polynomials f1,... f,, or g lies in the radical generated by the polynomials
fi,-.. fn. This section proves that in both cases the witness method detects the
dependence.

Assume first that g lies in the ideal of the polynomials f;,7 = 1,...n. Then
by definition there are polynomials Ai(x),...A,(x) such that g(z) = A (z) x
Ji(x) + Aa(x) x fa(z) + ... An(x) X fo(z). A first consequence is that g van-
ishes at a common root of the polynomials f;;i = 1,...n. A second conse-
quence is obtained by deriving the previous equality: Vg(z) = Vi (z)f1(z) +
M @)V fi(x) + ...V (2) fn(x) + A\ (2)V fr(z). At a common root w of the f;
polynomials, such as the witness, terms f;(w) vanish and it yields Vg(w) =
M(W)V fr(w) + ... A\ (w)V fr(w). In other words the gradient vector of g(w) is
a linear combination of the gradient vectors fi(w),... f,(w). But the witness
method detects such dependences between the gradient vectors when it studies
the jacobian at the witness w.

Assume now that g does not lie in the ideal, but in the radical of f1,... f,. By
definition there is an integer & > 1 and polynomials A;(x),... A, () such that
g(2)F = A (@) x f1(z)+ X2 (2) X fo(z)+. .. A\ (2) X frn (). A first consequence is that
g vanishes at a common root of the polynomials f;,7 = 1,...n. A second conse-
quence is that, by derivation: kg(z)*~'Vg(x) = VA1 (2) f1(z)+ M\ (2)V fi(z)+. ..
Vn (@) fr(x) + A (2)V fr(2). At a common root w of the f; polynomials terms
fi(w) vanish and it yields kg(w)*~'Vg(w) =0= A1 (w)V f1(w)+. .. A\p(0)V fi (w).
It means that the gradient vectors of fi,... f,, at w are dependent (and g does
not matter in this case). But the witness method detects such dependences be-
tween the gradient vectors when it studies the jacobian at the witness w. Thus, in
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both cases, the witness method detects a dependence between the gradient vectors
of the equations at the witness. The previous proof applies to algebraic systems.
Maybe it is possible to extend it to non algebraic equations (involving transcen-
dentals) with some topological argument.

6 The Witness Method Decomposes into Rigid Parts

Every graph-based method for decomposing the system of geometric constraints
and assembling the solutions of the parts, is two-folds: on one hand it proposes
a strategy to decompose the system, and on the other hand it proposes a test to
decide if a given part is well-, over-, or under-constrained modulo the isometries
group. We saw that, contrary to the witness method, the test can be confused
with some configurations and fail to detect some dependences when they are not
structural. But the strategy can still be used. Thus for each graph-based method
proposed so far to plan the resolution process, it is possible to keep its strategy,
and to replace its rigidity test with the one provided by the witness method.

This section explains one of the possible strategies to decompose a rigid system
into rigid subsystems, maybe the simplest strategy. If the system is flexible, its
Maximal Rigid Parts (MRP) are computed. If it is rigid, each constraint is
removed in turn; it provides a flexible system, the MRP of which are computed.

To find the MRP of a flexible system, its anchors are first determined; an
anchor is a subset Y of d(d + 1)/2 unknowns which has full DoD (3 in 2D, 6 in
3D) and which is rigid, i.e. the vector space of its infinitesimal motions M[Y] is
equal to the vector space of its infinitesimal displacements D[Y]. Clearly there is
a polynomial number of potential anchors; just test the rigidity of each potential
anchor. Every anchor Y belongs to exactly one MRP, noted MRP(Y'). MRP(
Y) is computed with the obvious greedy method: initialize MRP(Y) with Y,
consider every variable x € X —Y (in any order) and insert it in MRP(Y") iff
Y U {z} is still rigid, i.e. iff M[Y U{z}] = D[Y U {x}].

Some book-keeping may speed up the method, and avoid to find several times
the same maximal rigid parts. However the method is polynomial even without
such optimizations: indeed there is a polynomial number of potential anchors,
and each anchor is contained in a single MRP.

7 Conclusion

This paper has shown that the witness method detects all dependences: struc-
tural dependences which are already detected by graph-based methods, but also
non structural dependences which are due to known or unknown geometric the-
orems, and may occur with incidence constraints. The witness method can also
decompose a rigid system into rigid subsystems; actually it is possible to reuse
the strategic part of every graph-based method proposed so far to decompose
rigid systems into rigid irreducible parts with the rigidity test provided by the
witness method. In practice, the witness method should widen the scope of ge-
ometric constraints solving.
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