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Abstract

Geometric constraints solving often relies on graph-
based methods to decompose systems of geometric con-
straints. These methods have intrinsic and unavoidable
limitations which are overcome by the witness method
presented here.

1 Introduction

Geometric constraints solving tools [1, 3] support geo-
metric modelers and other applications in CAD-CAM,
chemistry, robotics and virtual reality. In a geometric
constraints-based modeling tool, the designer has the
ability to describe shapes by specifying a set of geo-
metric constraints that the tool solves to provide the
intended shape. Constraint specifications describe rela-
tions such as distance, angle, incidence, tangency, par-
allelism, and orthogonality between geometric entities
such as points, lines, planes, conics, quadrics, or even
higher degree algebraic curves and surfaces. Many prob-
lems in robotics (e.g. generalized Stewart platform), in
molecular chemistry (e.g. finding the configurations of a
molecule from inter-atomic distances; also known as the
molecule problem), in geometric modeling (e.g. blend-
ing surfaces) can be formulated as systems of geometric
constraints. Systems met in industry are composed of
increasingly large sets of equations and unknowns. For
example, geometric constraints become more and more
used to define control points of parameterized patches
in 3D; there are 48 unknown coordinates per bicubic
patch, and the simplest shape requires a dozen of such
patches. Thus decomposing such huge systems of geo-
metric constraints into smaller ones is essential for find-
ing a solution to those systems.

Earlier decomposition/solving methods were based on
geometric rules and worked with 2D or 2.5D problems.
Ideally, they produce a construction plan chaining sim-
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ple geometric constructions (e.g. computing lines inter-
sections, circumscribed circle to a triangle, etc). Graph-
based methods are currently used to decompose a sys-
tem of geometric constraints into a set of subsystems,
find a solution for each subsystem, and merge these par-
tial solutions. A large number of graph-based methods
have been proposed [4, 9]. Most of these methods rely
on a combinatorial count of degrees of freedom (DoF).
They use graph flow computations, maximum match-
ings, k-connectedness properties.

One of the major drawbacks of graph-based methods
is the fact that they often fail to detect subtle depen-
dencies resulting from redundant or contradictory con-
straints in the system. The witness method, presented
by Foufou et al. in [2] overcomes these limitations. The
authors studied and extended the classical Numerical
Probabilistic Method (NPM). The classical NPM, well
known in rigidity theory to decide about the rigidity of
graphs in any dimension, studies the structure of the Ja-
cobian at a random (or generic) configuration. It only
works for point-point distances constraints (i.e. the so
called molecule problem) [8]. The extended NPM does
not consider a random configuration, but a configura-
tion similar to the unknown one. Similar means the con-
figuration fulfills the same set of incidence constraints,
such as collinearities and coplanarities. The extended
NPM can be used to decompose more general geomet-
ric constraint systems into rigid subsystems.

This paper simplifies the NPM-based method for de-
composing geometric constraint systems, and broadens
its scope. Section 2 presents the principle of the witness
with basic notions such as free infinitesimal motions and
degrees of displacements. Section 3 shows how the rank
is computed. Section 4 presents a first decomposition
method which relies only on the witness. Section 5 il-
lustrates the witness method on a 2D example, while
section 6 concludes.
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2 Witness principle

Let F (U,X) = 0 be a system of equations represent-
ing a set of geometric constraints. U is the vector of
parameters composed of geometric (e.g. distances, an-
gles) and/or non geometric values (e.g. weights, forces,
costs). A witness (also called prototype, example, real-
ization, structure, framework, etc.) is a couple (V,XV )
such that F (V,XV ) = 0 and V != U . In other words, a
witness is a solution to a variant of the system to solve.
The witness fulfils the incidence constraints of the prob-
lem; thus, it also fulfils the incidences due to geometric
theorems (Pascal, Desargues, Pappus), and can be used
to detect the dependencies between constraints into a
geometric constraints system. The witness and the tar-
get (i.e. the unknown configuration we are looking for)
have the same properties. Typically, the sketch inter-
actively provided by the user is often a witness; the
geometric relations are verified: the points are already
aligned or coplanar as in the solution, the solver only has
to correct angles and distances. Up to now in the CAD-
CAM domain, we were always able to find a witness
with rational coordinates (the counter-example in [2] is
not relevant for CAD-CAM). For the molecule problem,
points can be randomly chosen and the distances eas-
ily deduced; for the dodecahedron or the hexahedron
problem, with planes of the faces randomly chosen the
vertices and distances can be found.

In geometric constraints-based modeling, the con-
straints control the shape of the configuration, and then
the only permitted actions are motions that one can ap-
ply to displace the modeled configuration. These mo-
tions are usually classified in two classes: the infinites-
imal displacements, namely translations, rotations and
their compositions, and the infinitesimal flexions, which
deform the configuration. The essential idea of the pro-
posed witness method is to compute the Ẋ vectors of the
witness free infinitesimal motions ε × Ẋ, such that the
disturbed witness XV + εẊ still fulfils the specified con-
straints: F (V, XV + εẊ) = 0. With a Taylor expansion:
F (V, XV + εẊ) = F (V, XV ) + εF ′(V, XV )Ẋt + O(ε2).
Thus F ′(V, XV )Ẋt must vanish: the free motions are
given by the kernel of the witness jacobian matrix
F ′(V, XV ).

It is always possible to compute a base, independent
of the geometric constraints, for the free infinitesimal
displacements in 2D. Table 1 shows an example of such
base in the case of a point (xi, yi), a vector (uk, vk), and
a line (al, bl, cl) of equation alx + bly + cl = 0. This
base contains three components: a translation tx on the
x axis, a translation ty on the y axis, and a rotation rxy

around the origin. Dotted variables represent the val-
ues of the infinitesimal displacements, e.g. the values
of (ẋi, ẏi), the infinitesimal translation tx on the x axis

ẋi ẏi ȧl ḃl ċl u̇k v̇k

ty 1 0 0 0 −al 0 0
tx 0 1 0 0 −bl 0 0
rxy −yi xi −bl al 0 −vk uk

s xi yi −al −bl 0 uk vk

Table 1: Example of base for free infinitesimal displace-
ments in 2D.

of a point (xi, yi) are (1, 0). Other geometric unknowns
(barycentric coordinates, scalar products, areas...) and
non geometric (costs, forces...) are unchanged by in-
finitesimal displacements, therefore the corresponding
value in all vectors of the base is zero. The last line
of table 1 describes an infinitesimal scaling s, which is
not a displacement. If such vector s is orthogonal to
the gradient vectors of all the equations, then the sys-
tem is unchanged by scaling [7]. Sometimes, it may be
interesting to reduce into well-constrained subsystems
modulo the scaling transformations. Similarly, a base
of six infinitesimal displacements can be defined in 3D,
with three translations along x, y and z and three rota-
tions in the planes Oxy, Oxz and Oyz.

For a given configuration (i.e. a figure) identified by a
set of variables X, a subfigure is described by a subset
of variables Y ⊂ X, each member of Y corresponds to
a column in table 1. Let us denote by D[Y ] and M [Y ]
the vectorial spaces of infinitesimal displacements and
infinitesimal motions of Y respectively. For instance, for
a line described in 2D by Y = (aL, bL, cL), the D[Y ] is
given in table 2. The degree of displacements (the rank)
of a figure Y is the number of independent infinitesimal
displacements in D[Y ].

ȧ ḃ ċ
tx 0 0 −aL

ty 0 0 −bL

rxy −bL aL 0

Table 2: The vectorial space of infinitesimal displace-
ments of a line in 2D.

In the previous case, D[Y ] has rank 2, and the two trans-
lations tx and ty are clearly detected as dependent. In-
terrogating witness gives the degree of displacements of
any figure, with no genericity condition required.

The witness also permits to achieve the following tests:

• A geometrically correct equation must be inde-
pendent of the coordinate system. The equation:
(xA − xB)2 + (xA − xB)2 − D2

AB = 0 is correct
whereas the equation xA = 0 is not. An equation
is independent of the coordinate system iff its gra-
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dient vector to the witness is orthogonal to all the
displacement base vectors.

• The equations are independent to each other (nei-
ther redundant nor contradictory) iff their gradient
vectors to the witness are independent.

• A figure, or a subfigure described by a subset Y of
the variables, is well-constrained, or rigid, iff the
vectorial space of its infinitesimal motions M [Y ] is
identical to the vectorial space D[Y ] of its infini-
tesimal displacements, and the full degree of dis-
placements (the full rank) of Y is 3 in 2D, and 6 in
3D.

Graph-based methods can only detect structural depen-
dencies such as in the system f(x, y, z) = g(z) = h(z) =
0 where the unknown z is over-constrained. The in-
terrogation of the witness enables the detection of more
subtle dependencies (actually every dependencies). The
constraints are dependent if the gradient vectors of the
witness equations, i.e. the jacobian matrix of the wit-
ness, are dependent. The witness method can also de-
tect if the witness (V, XV ) is generic or not. The details
of this are left out for the sake of brevity.

3 Rank computations

The only calculations necessary to detect the dependen-
cies between constraints, into a geometric constraints
system, are those needed to obtain the ranks of a set
of vectors for which all coordinates are known num-
bers. The ranks are computed by a Gauss triangula-
tion or a LU decomposition. Due to numerical impre-
cision in computers arithmetic, the rank computation
is rather awkward. For example, with floating-point
arithmetic, vectors (1, 1) and (

√
2/2,

√
2/2) are not com-

pletely collinear. When the witness has rational coordi-
nates, the Gauss triangulation and the LU decomposi-
tion are calculable exactly and quickly, e.g. calculations
are carried out modulo a prime number close to one bil-
lion in a probabilistic way [5, 6].

We consider that a witness is rational if all its coor-
dinates are rational numbers. Although some systems
of geometric constraints, such as regular polygons in 2D
and Platonician polytopes (icosahedron, dodecahedron)
in 3D, have no rational witness, most of the CAD/CAM
geometric constraint systems have rational witnesses.
The advantage of rational witnesses is that it is possi-
ble to use exact arithmetics to compute ranks of vectors.
CAD practioners prefer the SVD and the epsilon heuris-
tic to deal with floating point arithmetics difficulties.

4 Witness-based decomposition

We introduce in this section a new term: an anchor is a
rigid subset Y of three variables in 2D (respectively six
in 3D) with full degrees of displacements. For instance,
in 2D if the system directly or indirectly sets the dis-
tance between points A and B, then {xA, yA, xB} is an
anchor. A system has a polynomial number of anchors.
Each anchor A is contained in a unique maximal rigid
set Y = A ∪ {x|{x} ∪ A is rigid}. We can then intro-
duce the following decomposition method: if the system
is flexible, the maximal rigid parts are determined from
all the anchors. If the system is rigid, it becomes flexi-
ble by removing each constraint; then find the maximal
rigid parts (cf. Figure 1).

B
A

A

B B

A

Figure 1: A 2D rigid system of constraints. Removing
a constraint creates a flexible system with two maximal
rigid parts. In the three subfigures, the maximal rigid
part containing A and B is in thick lines.

5 Example: a 2D dependent system, and a proba-
bilistic proof

Let us consider three points A, B, and C with the fol-
lowing constraints: the distance OA is specified by a
parameter u. O is the middle of the points A and B,
and distance OC and OA are equal. AC and BC are
orthogonal; this last constraint results from the others.
This result into the system of equations:






(xA − xO)2 + (yA − yO)2 − u2 = 0
2xO − xA − xB = 0
2yO − yA − yB = 0
(xC − xO)2 + (yC − yO)2

−(xA − xO)2 − (yA − yO)2 = 0
(xC − xA)(xC − xB) + (yC − yA)(yC − yB) = 0

A possible witness for this system of constraints is: O =
(0, 0), A = (−10, 0), B = (10, 0), C = (6, 8), u = 10. Ta-
ble 3 shows a possible base for the infinitesimal motions
(the jacobian kernel). This base has rank 4, three dis-
placements and a flexion: C can turn around O. There-
fore the figure is flexible. Consulting the witness also
shows that {O, A, B} is rigid, as for {O, C}, and that
the last equation results from the others. Suppose it
is conjectured that C(X) = 0 is a consequence of the
system F (X) = 0. First check that the conjecture in-
deed holds in the witness, i.e. that C(XV ) = 0. If not,
the conjecture is clearly wrong. If C(XV ) = 0, then
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ẋO ˙yO ẋA ˙yA ˙xB ˙yB ẋC ˙yC

tx 1 0 1 0 1 0 1 0
ty 0 1 0 1 0 1 0 1
rxy −yO xO −yA xA −yB xB −yC xC

fl 0 0 0 0 0 0 yO − yC xC − xO

Table 3: A possible base for the infinitesimal motions

check that C(XV + εẊ) = 0 is still true for all vectors
Ẋ in the base of free motions of the witness XV . Using
Taylor, C(XV + εẊ) = C(XV ) + εC ′(XV )Ẋt + O(ε2),
thus the gradient vector C ′(XV ) must be orthogonal to
Ẋ. In other words, C ′(XV ) must lie in the vectorial
space spanned by the jacobian F ′(XV ). This procedure
detects the false witnesses; for instance, if OC and OA
are orthogonal in the witness of the last example, the or-
thogonality is detected as accidental and does not hold
generically: the gradient vector of equation "OC. "OA = 0
is not orthogonal to the flexion vector.

Other typical and simple examples of 3D configurations,
where the witness method detects dependencies (unlike
graph-based methods), are given in Figure 2. The most
left subfigure is classical and known as the double ba-
nana; the other three subfigures are from Ortuzar: four
vertices are never coplanar.

Figure 2: In 3D, the double banana, and three Ortuzar’s
configurations.

6 Conclusion

Graph-based methods for decomposing systems of equa-
tions or constraints have intrinsic and unavoidable lim-
itations. The witness method successfully overcomes
these limitations. This paper simplifies and generalizes
the witness method; though several questions arise: is
there always a rational witness? In the case of existing
rational witness, is it possible to use only integer arith-
metic to perform rank computations? Another interest-
ing point is the degree of our comprehension of the sys-
tem of equations and the ability to extract its relevant
properties and use them during the decompose/solving
process.

We feel the witness method can still be simplified and
generalized to other kinds of invariance (e.g. modulo
scaling or homography). Several clues (e.g. the duality

between the maximal rigid part and the minimal depen-
dent system) suggest that there is a deeper, simpler and
more powerful theory for decomposition.
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