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ABSTRACT

We present a robust method for automatically constructing an ellipsoidal skeleton (e-skeleton) from a set of 3D points
taken from NMR or TDM images. To ensure steadiness and accuracy, all points of the objects are taken into account,
including the inner ones, which is di�erent from the existing techniques. This skeleton will be essentially useful for
object characterization, for comparisons between various measurements and as a basis for deformable models. It
also provides good initial guess for surface reconstruction algorithms. On output of the entire process, we obtain
an analytical description of the chosen entity, semantically zoomable (local features only or reconstructed surfaces),
with any level of detail (LOD) by discretization step control in voxel or polygon format. This capability allows us to
handle objects at interactive frame rates once the e-skeleton is computed. Each e-skeleton is stored as a multiscale
CSG implicit tree.

Keywords : ellipsoidal skeleton, implicit surface, inertia momentum, semantic zoom, LOD, CSG, characteriza-
tion, multiscale tree.

1. PREVIOUS WORK.

Reconstructing from a set of 3D points is classical in applications ranging from medical imaging to CAD. Several
techniques exists, using triangulation methods, computing a skeleton or positioning and adjusting 3D primitives
inside the contour points.

BoissonatBoi84,Boi88 uses Delaunay triangulation of the set of points. D. Attali et al.ABM94 use a skeleton derived
from the Vorono�� graph. Generalized cylinders can also be used, as in,SAB81,BRLS96 carried by splinesSB84 that de�ne
an axial skeleton of the point cloud. Analytical expressions are present in the snake modelMT95,MT97 that consists
in energy-minimizing curves. MurakiMur91 uses implicit primitives positioned according to a triangulation of each
slice and adjusts them to �t the boundary. A similar method, more focused on accuracy, has been proposed by Lim

et al..LTGS95 Applying global or local deformation to primitives as proposed by Miller et al. inM
+91 is also widely

used at that time. Even recently,LJS97,uKY97 use superquadrics { which is similar from the method we propose in
this paper { deforming them afterward in order to �t the contour.

All those techniques are focused on surface reconstruction, which is only one of the capability of our representation
of solid objects.
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2. THE ELLIPSOIDAL SKELETON (E-SKELETON).

2.1. Principle.

Due to their coarseness, unorganized points sets are often di�cult to analyze in terms of features extraction, especially
in three dimensions.

For instance, axis of inertia are sometimes occulted by dispersion, noise or even errors during the acquisition
process. The main issue consists in creating subsets | visible as single objects | that exhibits remarkable features
of the whole set. Those objects should contain locally helpful informations to ensure any kind of guidance for any
type of exploration. Accurate reconstruction of organs often leads to huge complexity and computation cost. The
great data ow in this situation must be context-adaptive : the entirety of data is not always required. Taking
into account only relevant features is better in terms of performance and understanding, leading to the concept of
semantic zoom.

The e-skeleton is intended to provide synthetic geometric representation of the whole set depending on the study
context while remaining independent from scale and rotation. Direct applications using such a model could be the
following ones :

� quantization of the geometric dispersion in the area of observation ;

� recognition and comparison of points sets representing the same object throughout di�erent acquisition ;

� visualization of global and then more and more local structures by increasing the e-skeleton level of detail
(LOD) ;

� data compression, allowing quick transmission on low-bandwith networks.

For now we have successfully implemented all these features, which will be discussed further in this paper.

2.2. The basic element : the e-bone.

The simplest element | called the e-bone (standing for ellipsoidal bone) | consistuent of the e-skeleton, is a
superquadric, which is de�ned as inSP91 by the following equation :
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where a, b and c respectively de�ne the radii along local x, y and z axis and "1; "2 the squareness of the ellipsoid.

What is important in 1 is the generic aspect of the formula, but for common purpose we will assume that
"1 = "2 = 1, limiting primitives to ellipsoids. As we will see, this choice of shape has a strong physical meaning.

2.3. Positioning the e-bone.

In order for the e-bone to become a good representative element of a given subset of n points S, a Principal Component
Analysis (PCA) is performed.

A weight wi is assigned to each of the points pi(xi; yi; zi; wi) 2 S, including the inner ones. For example, to
obtain a purely geometric representation, all wi can be set to the same magnitude (usually to 1). It could be also
valuable to weight a given pi with its associated gray level (e.g. its density for a CT scan) so that one can easily
visualize the mass distribution of the observed object.

The spreading of points of S represents the geometry of the measured object. This naturally leads to the use of
the so-called dispersion matrix DS of S, de�ned as follow in three dimensions :

DS =

0
@ var(x) covar(y; x) covar(z; x)

covar(x; y) var(y) covar(z; y)
covar(x; z) covar(y; z) var(z)
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where var and covar mean respectively variance and covariance along global associated axis. For the variance along
the x axis we have :

var(x) =
nX
i=1

(xi � x)2 wi (3)

and for the covariance along x and y axis :

covar(x; y) =
nX
i=1

(xi � x) (yi � y) h(xi; yi) (4)

where hi(xi; yi) is the classical joint distribution function for given xi and yi, and x is the mean along x axis. Note
that since covar(x; y) = covar(y; x), the matrix DS is symetrical. Another interesting feature is that DS can be
computed incrementally, due to the following equation :

var(x) =
nX
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x2i wi �
(
Pn

i=1 xi wi)
2

n
(5)

The calculus of the eigenvectors associated with the decreasing eigenvalues of DS provides three axis of inertia of
decreasing signi�cance (the greatest eigenvalue is attached to the main axis of inertia, the middle-ranged eigenvalue
to the second one and so on...).

A natural idea consists in positioning an e-bone at the center of gravity of the subset, oriented by matching his
axis with the eigenvectors, and with radii equal to their respective lengths. A central inertia ellipsoid is obtained.

2.4. Re�ning the e-skeleton.

Isolating local geometrical structures of S requires to re�ne the e-skeleton in a proper way. We apply the concept of
scale-dependent view : for a desired accuracy, subdivisions are made on S, and each new subset is attached to a new
e-bone.

The purpose is to create k subclasses C1; :::; Ck from the main class S. One method consists in minimizing the
intra-class variance while maximizing the inter-class variance, according to the following property :

Vintra + Vinter = Vinit (6)

where Vinit is the initial euclidian variance of the entire set of points. In other words, we want very homogeneous
subclasses while being very di�erent from one to another.

The sum of the intraclass variances of all existing classes C1; :::; Ck is :

Vintra =
kX

j=1

nj Vj

n
(7)

where nj is the number of points contained in Cj , Vj is the variance of the subclass Cj relatively to its center of
gravity Gj, and n is the number of points contained in S.

The classical formula of the global interclass variance is :

Vinter =
kX

j=1

nj k Gj � G k Vj
n

(8)

where G is the center of gravity of S.

Here is the re�ning algorithm :



While Vintra > Vthreshold
For Each Cj � S

Calculation of main axis of inertia of Cj
Calculation of intra-class variance Vj of Cj
Rough splitting of Cj into Cj1 and Cj2
Calculation of intra-class variance Vj1
Calculation of intra-class variance Vj2

Calculation of rj =
Vj1 + Vj2

Vj

EndForEach

Real splitting of Cj having the smallest rj
Dynamic clustering on all existing classes

Re-calculation of Vintra with new set of classes

EndWhile

The initialization consists in setting k to 1, and calculating Vthreshold with equation 7 on S relatively to G. Let
us explain some of the major steps of the process described here.

2.4.1. Rough splitting along the main axis of inertia

A former subdividing is done on an existing class Cj . Let ~�0j be the main axis of inertia of Cj, and p
j
i 2 Cj with

j 2 f1; 2; :::;mg { note that ~�0j is also the eigenvector attached to the greatest eigenvalue of DS . If we calculate the
mean value of the dot products :
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Then it becomes possible to split Cj into two subclasses Cj1 and Cj2 by selecting on one side the p
j
i verifying

~�0j ~p
j
i > �i and on the other side those for which ~�0j ~p

j
i � �i in 9.

Intuitively, if Pj is the plane containing Gj and the vectors ~�00j and ~�000j | respectively the second and the third
axis of inertia of Cj | we obtain two new classes Cj1 and Cj2 on both sides of Pj.

2.4.2. The use of rj

Using simply the class that best lowers Vthresold as a real-splitting criterion can work �ne but we have chosen a
slightly more accurate method.

Let us imagine we have a cloud of points that lies into three ellipsoids, a big one and two little ones, very close
(we assume that the dispersion in space is homogeneous and uniform, which is the case in practice). We admit we
have two classes at that iteration : the �rst is the big ellipsoid, the second is composed of the two others. If the
splitting criterion is the best lowering of Vthresold, then it is very likely the algorithm will split the big ellipsoid. This
may result in a signi�cant loss of relevancy for the e-skeleton, as we would like the two small ellipsoids to be re�ned
at �rst.

Calculating the ratio rj =
Vj1 + Vj2

Vj
independent from the scale, is better as it transforms the value rj into a

normalized one metric.

2.4.3. The Dynamic clusters method (DC)

Existing classes must be balanced after a splitting operation in order to optimally lower intraclass variance. This
step is critical since it drastically improves not only the class di�erenciation but also their inner homogeneities. The
DC algorithm is classically the following, as presented by E. Diday inDid71 :



Repeat

For Each existing class Cj
Calculation of the center of gravity Gj of Cj

EndForEach

For Each pi 2 S
Assign pi to the class of which Gj is closer

EndForEach

Until neither of the Gf1; :::g changes

Oscillations may happen in some case but can be easily avoided | simply by setting an upper limit to the number
of iterations or by monitoring the changing points when there are small moves | and occur rarely in practice.

Note that for the dynamic clusters method to be optimal for intra-class variance minimization, the attaching
criterion must be quadratic, which is ful�lled since we use an euclidian metric. Assuming this, we found the method
very robust (actually we didn't encounter any oscillation phenomenon at all), and very relevant in its results.

2.5. Considering and visualizing the e-skeleton.

Once each cluster has been attached to an ellipsoid, it is useful to synthetize these new data. A tree is created,
carrying geometrical and hierarchical informations.

Keeping track of the subdividing steps allows not only to easily compare two distincts exams with multiscale
capabilities, but also to rapidly re�ne or regroup a chosen area for semantic zoom purpose.

The structure of the tree is the following :

� leaves are the primitives created during the clusterization process { the ellipsoids in our case ;

� nodes carry boolean operations { usually unions { between those primitives. Combinations of ellipsoids are
handled using Constructive Solid Geometry (CSG) model with implicit primitives. Information about the class
that produced the two children subclasses is also encoded.

This structure was partly motivated by the function representation in geometric modelling paradigm, presented
in.PASS95 It combines geo-metric construction with multiscale functionality as primitives can be re�ned as desired.
Let us explain further the mathematical tools involved in the representation of the e-skeleton.

2.5.1. Implicit surfaces model.

Equation 1 provides a description of our primitives. It could be anything we want, like a sphere as in.Mur91 Su-
perquadric matches our needs as it combines the genericity { ranging from sphere to cube { with the anisotropy in
three directions { matching the three inertia axis.

For any point p(x; y; z) in 3D space, we obtain a distance d(x; y; z) through 1. We then use a �eld formalism, as
presented by J.F. Blinn in.Bli82 A primitive described by the distance function d(x; y; z) is given by :

f(x; y; z) = � e�� d(x;y;z) (10)

where � adjusts the strength of the �eld and � a�ects its speed decay. By seeking the points in space where f(x; y; z)
equals a constant c, we �nd what is called an isosurface, so the implicit equation of such an object becomes :

f(x; y; z) = c (11)

The solid geometry feature is easily provided, as inner points pint of the objects verify f(pint) � c and outer
points pext verify f(pext) > c.



2.5.2. Primitive positioning.

The four parameters extracted during the partionning process for each subclass are the center of gravity and the
three axis of inertia. Each ellipsoid needs to be translated and oriented to �t the cloud it is attached to. In order
to keep an homogeneous mathematical representation, we have chosen the model of generalized implicit surfaces
presented in.SP91 If M is the rotation matrix carrying the orientation of the three inertia axis and b is the position
of the center of gravity, then the function f(x; y; z) presented in 10 becomes :

g(x) = f(M�1 (x̂� b)) (12)

where x̂ is the position of the point in 3D space we are checking to ensure wether or not he belongs to the isosurface.
g is the representative function of the primitive once it has been properly positioned. We have also integrated the
whole model by including the Barr deformation model described inSP91 and.Bar84 It will allow us to deform each
ellipsoid in order to match the points of each subcloud, as explained further in this paper. Adding this model to
equation 12 leads to :

g(x) = f(Du M
�1 (x̂� b)) (13)

The modal deformation model and the signi�cance of the vector u parameterizing the modal deformation matrix
Du are developed inBar84 and.SP91

2.5.3. Implicit union.

All the primitives constituing the e-skeleton must be unioned in order to represent the whole objet.

Let fe1 and fe2 be the �eld equations (cf. 10) of the two respective primitives e1 and e2. Modelling capabilities of
implicit surfaces allow smooth union (expressed with the ] symbol) by simply adding the equations of each involved
primitive, hence the new equation of e1 ] e2 is :

fe1] e2 = fe1 + fe2 (14)

With this method, a smooth union is provided, providing a good initial solution for any �tting algorithm and
also a relevant simpli�ed visualization of the whole reconstructed object. The resulting surface has the property of
being at least C2 continuous.

Boolean union can also be performed by using the following equation :

fe1[ e2 = max(fe1 ; fe2) (15)

By this way it becomes possible to e�ciently analyze and visualize local matter orientation and dispersion.

2.5.4. Global or local analytical description.

Each node of boolean union is a potential root. It is then possible to work on selected portions of the e-skeleton,
roots providing the equations of each local substructure. We have added the capability for a node to be activated or
not, simplifying the task of region selection. From each tree, a completely new one can be generated by suppressing
the inactive sections. It provides the characterization map of only a small portion of a more complicated set of
structures, while allowing the entire recovery of the whole model at any moment.



2.6. Examples, performance and applications.

2.6.1. Examples of generated e-skeletons and performance

This �rst example shows various e-skeletons created from a carpal bone { the hamate. The left view is the voxel
object reconstructed from scanner slices. Contrast has been enhanced to highlight altitude lines. Note that all voxels
are taken into account, including the inner ones. The other two pictures shows e-skeletons with respectively two
and �ve subclasses. The number of 3D points is 38,000 ; retrieval of extreme right e-skeleton has taken about 8
seconds including slice loading on an Indy SGI with MIPS R4000 running at 100 Mhz. A Bloomenthal non-adaptive
polygonizationBlo87 based on the marching cubes algorithmLC87 has been made to produce the presented meshes.

Second example shows a leg stump containing 396,800 3D points, presented in voxel format to the left. E-skeletons
to the right, composed respectively of two and nine subclasses, were produced in about 2 and 10 minutes on the
previously described SGI workstation, including slice loading.

For su�cient number of points, subsampling revealed to be useful. While not a�ecting the construction of the
e-skeleton, it allows faster computation times. The technique we have developed consists in lowering the spatial
resolution, i.e. grouping centers of adjacent voxels into new ones (carrying for example the mean of their densities).
Prior smoothing �lters can be applied for the subsampling to be valid.

No optimization have been done yet, but we think calculation time can be greatly shortened. We are now
on pro�ling stage in order to accelerate our automated splitting process. We planned to develop a complete 3D
reconstruction and interaction chain.

2.6.2. Applications of e-skeletons

They essentially involve comparisons of organs through di�erent acquisitions and 3D reconstruction.

Comparisons

The combination of steadiness and hierarchy allows object comparison. From one medical exam to another, variations
in the acquisition process are to be expected. Orientation as well as scanner resolution or even scale of the object
may vary in time. The use of an orientation, scale and noise independent technique is required here.

The �rst and classical type of comparison we have implemented is a purely geometric one. We use class-by-class
comparison { thanks to the steadiness of the splitting algorithm. What is important to notice is that only primary
axis of inertia have to be analyzed. Secondary and tertiary ones are too unsteady to be relevant. They remain in
the plane orthogonal to the primary axis, but tend to rotate in an unpredictable way. We have chosen to extract
the orientations of the subclasses relatively to the primary axis of the entire object. Sizes are compared in terms of
ratio : the three axis lengthes of each subclass (i.e. their associated eigenvalues) are divided by those of the whole
cloud. Elongation factors can also be computed, by evaluating the ratio rmax

rmin
where rmax and rmin are respectively

the greatest and the lowest radii.

The second method consists in comparing two trees with the above mentioned technique at equivalent subdividing
steps using the multiscale capability. Starting with the two global ellipsoids and re�ning step by step has two major
advantages :



� the splitting process can be stopped as soon as su�cient di�erence is found or until a maximum number of
subclasses is reached ;

� area of di�erence can be immediately detected.

A simple metric is provided by keeping the number of splitting steps done before di�erence occurs.

Third method involves measuring distances between deformation values as inMPSK98 after 3D �tting process of
the various exams, which is directly applicable with e-skeletons.

Those comparison techniques are relevant as long as the number of point-per-class is su�cient. Without any
control { especially on the validity of the dispersion matrix { it is obvious that inertia information extracted from
the cloud of points will become completely aberrant. Our tests have been made on 5 CT-scan exams of carpal bones,
but we plan to validate them on various other exams, under physician supervision.

3D Reconstruction

Smooth e-skeletons can be used as initial solutions for 3D reconstruction algorithms involving gradient search. We
have implemented a classical Levenberg-Marquardt method that converged in an average of 3 iterations per subclass
in the tests we performed. The function to minimize in each point is the following :

g(x; y; z) = c� f2k (x; y; z) a
k
1 a

k
2 a

k
3 (16)

Where fk is the implicit function (cf. equation 11) provided by primitive Ek attached to the �tted cloud, and ak1,
ak2, a

k
3 are the three decreasing radii of Ek. (x; y; z) are the coordinates of the boundary point we try to �t with the

implicit curve, and c is the isopotential value.

Here is an example of a reconstruction with the hamate, one of the carpal bones :

From left to right we show a 9 subclasses e-skeleton (boolean union performed with equation 15), a smoothed
one (with equation 14) in wireframe and Gouraud shading, and �nally the resulting reconstructed surface. Voxel
representation is provided to the right for visual comparison purpose.

We have integrated the modal deformation model ofSP91 to every primitive in order to enhance local control
withing each detect substructure. Our algorithm is the following :

For Each existing class Cj
Extract boundary points of Cj
Find best deformation matrix with Levenberg-Marquardt

EndForEach

Once each primitive has been �tted to each local boundary, the implicit tree naturally combines them into a
whole object. An error distance is computed using distance calculations and goodness-of-�t tests like as described
in.DS98 In our case, boundary points are recovered using 6-neighborhood topology in 3D space with slice images.

It is important to note that the whole initial object in voxel format can be recovered by applying the marching
cubeLC87 algorithm to the implicit CSG tree. Those voxels can be used to quantize the error of reconstruction from
the original organ.



2.6.3. Medical applications.

The e-skeleton is well suited for medical imaging. We are now working on its integration into the CIRAD (Centre
de coop�eration Internationale en Recherche Agronomique pour le D�eveloppement) medical software Corpus 2000 as
part of the Modeling Biological Entities project. The following direct applications are :

� Capture of organs from segmented NMR or TDM images. An e-skeleton is permanently computed with a low
Vthreshold and can be used later for diagnostic or analysis purposes. Each element will then have his own tree.

� Creation of an anatomical atlas through various e-skeletons. This organ library have many useful goals :

{ Organs comparisons, pathologies detections and following of growth behavior.

{ Generation of synthetic organs for educational purpose or recovery of another ones by halometry.

� Implementation of interactive application with deformablemodel. Frame rate will be adjusted with combination
of semantic zoom and discretization step control.

2.7. Conclusion and future work.

We have presented a new automatic procedure to decompose a cloud of points, that produced very encouraging
results. Signi�cant substructures are well detected as we lower the threshold of variance. Problems can be easily
detected and corrected. By taking into account the inner points, the construction of the e-skeleton remains very
steady at reasonable threshold (i.e. not to low to ensure su�cient number of points-per-class), and noise-resistant. A
wide range of representations is provided, from orientation-only to accurate surface representation, with simultaneous
control of discretization step (LOD).

Further tests are due in order to adjust the behavior of the splitting process with highly concave objects and
validate the characterization and comparison stage with physicians. We will also focus on the blending between
primitives to ensure the accuracy of the whole union.

Applications involve medical diagnosis and surface reconstruction assistance. We are now integrating the whole
chain from e-skeleton to realistic visualization into an existing application. It will provide physicians with a useful
tool for pathology detection and pre-visualization of the interior of the body with semantic zoom and LOD-controlled
view. We hope to extend further the concept of e-skeleton during this implantation.
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