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Abstract  The method described here relies on interval arithmetic and graph the-
ory to compute guaranteed coverings of strange attractors like Hénon at-
tractor. It copes with infinite intervals, using either a geometric method
or a new directed projective interval arithmetic.

1. INTRODUCTION

This paper shows that inaccuracy of floating-point arithmetic gener-
ates severe mistakes, when one draws sets like Hénon attractors with the
classical ”orbit method”. It presents as well a reliable method, which
computes a safe covering of the strange attractor. This method uses
interval arithmetic and graph theory. Ensuring reliability requires the
subdivision of the entire plane, and thus the computation with infinite
intervals. Two solutions are implemented: the first is a geometric one,
using the classical mapping between the oriented projective plane and a
half-sphere; the second introduces an arithmetic on directed projective
intervals, and seems new.

Previous related works. Interval-based methods are used to com-
pute rigorous enclosures of transversal homoclinic points in discrete dy-
namic systems [NR93], and in Poincaré map of the Thiele-Wilson system
[RNS94]: the existence of such transversal homoclinic points proves the
chaoticity of these systems. Interval-based methods are also used to
compute periodic points of dynamic systems [Gal97], or prove their non-
existence, for the classical Hénon map. Impact of floating-point arith-
metic inaccuracy on simulations is studied by M. Pichat and J. Vignes
[PV95]; they compute pictures of the invariant set of Hénon rotations
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(area preserving Hénon maps [Hén69]) with the classical orbit method:
resulting pictures depend on the used rounding mode for floating-point
arithmetic. They use a stochastic arithmetic in order to eliminate, or at
least reduce, the numerical noise due to floating-point arithmetic. J-F.
Colonna [Col96] runs the same N-body simulation program on several
computers (all respecting the IEEE norm of floating-point arithmetic)
with the same initial state, and obtains different results, because of a
priort immaterial differences between compilers or between processors;
for instance a compiler compiles a X b X ¢ as a X (b x ¢), and another
compiles it as (a x b) x ¢; these two expressions differ slightly with
floating-point arithmetic, and a non-linear behavior can exponentially
expand this initially negligible difference.

Implementation. The language Ocaml from INRIA, and its exact
rational arithmetic library: Num are used to program a straightforward
interval arithmetic with +, —, X, + operations. Bounds of intervals are
rational numbers, so there is no need of outwards rounding, as opposed
to floating-point based interval arithmetics. I initially chose this solution
for its simplicity in programming and its reliability but, ironically, this
work revealed several bugs in first releases of Num ...

Plane. Section 2 defines Hénon maps and strange attractors. Section
3 presents the orbit method, section 4 the interval-based method, section
5 two methods to cope with infinite intervals. Section 6 concludes.

2. HENON MAP AND ATTRACTOR

The Hénon map and the corresponding strange attractor (or invariant
set) are used throughout this paper as a typical example. The Hénon
map transforms point (z,y) € R* to point

H(z,y)= (y+1— az? bx) € R? (1.1)

classically with parameters value: @ = 1.4 and b = 0.3. The Jacobian is

H'(z,y) = ( _216636 8 ) (1.2)

It has determinant |H'(z,y)| = —b : when |b] < 1, H is contracting (i.e.
H contracts areas). In the classical case ¢ = 1.4 and b = 0.3, Hénon
exhibited a trapped quadrilateral R, whose image H (R) is contained in
R; the so-called Hénon attractor can be defined as lim H*)(R) when
k — oo [Hén76] (this paper does not use this definition, but another one
based on recurrent points, see below). This set is today one of the icons
of chaos [Ott93, Rob95], as Lorenz attractor, Rossler attractor, Julia
sets or Mandelbrot set.
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The orbit of a point p is the set of its iterates:
O(p) = {H(p), HA(p),.. } (1.3)

The point p is said to be recurrent iff its orbit contains points which
come back arbitrarily close to p. Non-recurrent points are said to be
transient. Periodic points are obviously recurrent and, as is known, are
dense in the set: Rec(H) of recurrent points. The latter set: Rec(H)
is called the strange attractor of the map, sometimes its invariant set.
Hénon attractor is the set of recurrent points of Hénon map.

3. THE ORBIT METHOD

To display these sets, the classical method selects a random point p in
their basin of attraction, computes in floating-point arithmetic the orbit
O(p) = {H(p), HD(p), ..}, gets rid of the first (e.g. thirty) iterates, and
plots the next thousand points or so. This method is used in Computer
Graphics, but also in the numerical study of dynamic systems to compute
Lyapunov exponents, fractal dimensions or Kolmogorov entropies.

Sometimes, no initial point in the attraction basin is known, for in-
stance when no trapped region is known : then random points are picked,
and their orbit is followed in the same way, while they are close enough
to origin : after, it is assumed they are attracted by infinity.

Due to inaccuracy, the computed orbit O(p)* = {H (p)*, H® (p)*,...}
diverges from the exact one, with an exponential rate (measured by Lya-
punov exponents), until their difference is as large as the strange attrac-
tor size. But it is generally assumed that the global picture is correct,
the main argument being the shadow lemma. The latter claims that,
under some assumptions, there is another point (actually an infinity of
points) ¢ such that the difference between the computed orbit O(p)*
and the exact orbit O(g¢) stays arbitrarily small. Thus, though O(p)*
becomes quickly completely wrong, it follows like its shadow the exact
orbit O(q). For Hénon parameters : ¢ = 1.4,b = 0.3, this is confirmed by
Fig. 1, which shows there is almost no difference between a picture ob-
tained with the classical method, and the one obtained with the reliable
interval-based method; the isolated periodic point w = H (w) is left away
by the orbit method, not by the interval-based one (the corresponding
isolated pixel is likely not visible on the paper; for printing reasons, this
paper does not show the more accurate pictures, the thin features of
which disappear after printing). Also, the most accurate pictures (un-
fortunately not printable) computed with the interval-based method are
of greater sharpness because, with the orbit method, some points may
exit a bit out of the strange attractor which is locally repulsive, before
being attracted again.
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Figure 1 Strange attractors in square windows [—1.5,1.5]%>. From left to right: a =
1.4;6 = 0.3,0.4,0.5. Above: orbit method. Below: interval-based method (with a
huge initial box).

For other values of b, namely b = 0.4 to 0.95 (the corresponding
map H is still contracting, but the strange attractor is less attracting),
pictures obtained by the two methods differ dramatically : see Fig. 1,
2, 3. It is due to the fact that some points, which exit a bit out of the
strange attractor, are not attracted again, but escape.

The sharpness of pictures computed with the interval-based method is
astonishing, when one is aware of the wrapping effect [Neu93] in interval
arithmetics.

4. THE INTERVAL-BASED METHOD

The interval-based method presented in this section provides a safe
covering of the strange attractor. For the sake of simplicity, let us first
assume that a bounding box of the strange attractor is known: the
next section will relieve of this constraint. The interval-based method
subdivides the bounding box into regular square or rectangular grid cells,
and computes with interval arithmetic a range of the image of each grid
cell: it induces a directed graph.

Let ¢ be a grid cell, and H (c) be the range of H (z, y) where (z,y) € ¢:
H(c) is obtained with an interval arithmetic. Generally, i.e. when H (c)
does not fall outside the bounding box, H(c) cuts grid cells ¢1 ...cx. In
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Figure 2 Strange attractors in square windows [—1.5,1.5]%. From left to right: a =

1.4;6 = 0.6,0.7,0.8. Above: orbit method. Below: interval-based method (with a
huge initial box).
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Figure 8 Strange attractors in square windows [—1.5,1.5]%. From left to right: a =

1.4;6 = 0.9,0.95,1.0. Above: orbit method. Below: interval-based method (with a
huge initial box).
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Figure 4 a = 1.4,b = 0.3. Square windows are [—1.5,1.5]*. From left to right,
pictures have increasing resolution: 82,162,327 64% cells. Except the first one, each
picture is obtained from the previous one by subdividing its recurrent cells.

the simple but rough implementation, arcs ¢ — ¢y, ...c — ¢ are added
to the graph. To get a tighter result, a more advanced approach adds
each arc ¢ — ¢; to the graph only iff there is some point p € ¢ such that
H(p) € ¢;. An alternate method subdivides each grid cell ¢ into (say)
4 x 4 subcells, computes with interval arithmetic the range of the image
of each subcell, then finds the cut grid cells. Note that, for the Hénon
map, this last method is not interesting: since variables z and y occur
only once in the computation of H(z,y), there is no wrapping effect, and
the resulting box obtained for H(c) is the optimal one —up to outwards
rounding of interval arithmetic, but anyway our implementation, which
uses rational arithmetic, does not round outwards.

Anyway, it defines a directed graph between grid cells. If this graph
contains no loop : ¢ = cor ¢ = ¢;... — ¢, then the grid cell ¢ cannot
contain points of Rec(H). Conversely, if there is at least one loop :
¢...— cin the graph, then the grid cell ¢ may contain some points of
Rec(H).

To speed up the existence test for loops, strongly connected com-
ponents of the graph are computed once and for all with the Tarjan
algorithm [CLR90], which is linear in the graph complexity (number of
vertices and arcs). As a result, each vertex of the graph, i.e. each grid
cell ¢, is numbered with a strongly connected component index scc(c).
Two vertices a,b have equal index scc(a) = scc(b), i.e. belong to the
same strongly connected components, iff the graph contains a directed
path ¢ — ... — b and a directed path b — ... — «a.

A strongly connected component is transient iff it contains only one
vertex (i.e. a grid cell) ¢ and if there is no loop ¢ — ¢ in the graph; in
other words, iff none of the successors s of ¢ in the graph has the same
scc number as c¢. A transient cell contains strictly no recurrent point.

Otherwise, the graph permits, starting from ¢, to come back to ¢: the
cell ¢ is said to be recurrent, since ¢ may contain some recurrent points

of H.
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Figure 5 Unfolded hemicubes, with a = 1.4,6 = 0.95, and increasing resolution.
Resolution (i.e. number of cells) of the central face is: 64%, 1282, 2562, 5122,

The set of recurrent grid cells provides a safe covering of the strange
attractor: indeed a transient grid cell contains no point of the strange
attractor. Conversely, this method gives no guarantee that a recurrent
grid cell really contains points of the strange attractor. A partial and
only asymptotic answer is to subdivide recurrent cells, and restart the
method : see Fig. 4; in practice, these successive zooms give a fast
method to get an arbitrarily accurate picture of the strange attractor,
up to the available memory space of course, and indeed even the most
accurate pictures are computed in less than ten minutes on a standard
personal computer, without any concern for optimization. However this
method never proves a cell really cuts the strange attractor. Another
possible method (not implemented in this work) is to search for periodic
points in recurrent cells: since periodic points are dense in the strange
attractor, their abscence proves that the grid cell contains no recurrent
points. Each loop in the graph gives a candidate for a cycle. Some inter-
val Newton method can then prove the existence, or the non-existence,
of the cycle [Gal97].

Finally, it is worth noting this interval-based method also applies to
non-contracting maps, for instance the inverse of contracting Hénon map

(6] < 1) defined by:
H™ Y (z,y) = (y/b,z = 1 + ay®/b?) (1.4)

and gives the same pictures of the strange attractor, just a bit more
slowly. The orbit method is not relevant as far as expanding maps are
concerned.

5. SUBDIVIDING THE ENTIRE PLANE

A bounding box of the strange attractor is not always available, for
instance for non-classical values of parameters a, b of the Hénon map. A
partial solution is to use a huge initial bounding box, like [—2190, 2100],
with a low grid resolution, like 16 x 16, then to iterately zoom, i.e.
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subdivide in 2 X 2 or 4 X 4 recurrent cells; with this approach, the use of
a huge initial bounding box does not penalize. However, there is always
a doubt: is the initial bounding box really big enough? How can we be
sure that the differences between the results of the two methods is not
due to a wrong (for instance too small) initial box? A secure solution
is to subdivide the entire plane R?. Since we will use a finite number of
cells for computational reasons, some of them will be infinite. So we need
some method to handle infinite cells, and underlying infinite intervals.
Two methods are now presented.

5.1. THE ORIENTED PROJECTIVE PLANE

Not surprisingly, a method is to use homogeneous coordinates and
the projective plane. Actually, there are two projective planes: the one-
sided (or non-oriented, or unsigned) projective plane in which direction
(a,b) (i.e. the point at infinity, in the direction (a, b)) and (—a, —b) do
not differ, and the two-sided (or oriented, or signed) projective plane in
which they are opposite [Sto91]. In the non-oriented projective plane
or space, it is impossible to define the line segment between two points,
i.e. to distinguish the two simple arcs they cut the line into: it is im-
possible to define intervals or cells. Thus the method uses the two-sided
projective plane.

In practice, each finite point (X,Y) of the plane R? is represented by
any point (h,z,y) = (h,hX,hY) with h > 0 in the oriented projective
plane — In Computer Graphics, people often use h = 1. A point at
infinity in the direction (a, b) is represented by any point (0, ha, hb) where
h > 0, so both directions (a,b) and (—a,—b) are indeed opposite — In
Computer Graphics, people often use h so that (ha)?+ (hb)? =1 (up to
round-off errors).

With this representation, points (X,Y) of the plane R* can be mapped
to the upper half-sphere: (h > 0, z,y) with h2+224+y* = 1 and 2 = h X
and y = AY: points (0,0,0), (h,z,y) and (1, X,Y) are aligned. This
half-sphere has finite area, and it is subdivided into a finite number of
finite area cells, instead of the plane.

In fact, for a computer scientist, the upper half-cube: h € [0,1],2 €
[-1,1],y € [-1,1] happens to be more convenient than the upper half-
sphere: the square root operation is no more necessary, it is trivial to
subdivide the 5 rectangular faces of the upper half-cube into rectangular
or square cells, and finally these grid cells (h,z,y) have zero volume (it
would be impossible with grid cells on a sphere), achieving a better
accuracy.
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Figure 6 Left: projecting an OPI on the real line can give: a standard finite in-
terval (above), two half infinite intervals (middle), R (below). Right: the partition
of (—o0,4+00) with OPI (above); how the entire plane is mapped to a finite square
(below); the deformation is null inside the gray square and increases outwards.

NS

A%

The Hénon map has to be reformulated in terms of homogeneous co-
ordinates. It maps now the point (h,z,y) into (A%, yh + h* — az?, bah).
A range for the image of a cell is straightforwardly computed with an
interval arithmetic; this box generally lies no more on the hemicube:
some projection is necessary, and easily done. Iterative zooms on recur-
rent cells are still possible, and still speed up the method. Fig. 5 shows
the unfolded hemicube, with increasing resolutions. For all values of
parameters a, b, the projective method has given results similar to the
previous method, which starts with a huge initial bounding box (except
of course for recurrent points at infinity).

This projective variant of the interval-based method is slower than
its affine counterpart, and more space consuming for a given resolution.
But, once the projective interval-based method has provided a bounding
box for the strange attractor, it is of course possible to use the affine
variant, this time in a reliable way.

5.2. ORIENTED PROJECTIVE INTERVALS

The previous solution uses only one homogeneous coordinate h per
point. An alternative solution, also implemented and discussed now,
uses one homogeneous coordinate for each coordinate z and y. Thus,
contrarily to the first solution, the x value can be infinite while the y
value remains finite, or vice versa.

The main advantage of this second approach is that it suggests the
definition of oriented projective intervals, and the corresponding oriented
projective interval arithmetic. The problem of managing infinity is thus
solved at the arithmetic level, and no more at the geometric and algo-
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Figure 7 a = 1.4,b = 0.3. Projective interval method with increasing resolution:
[0,1] is cut into 8, 16, 32 intervals (idem for [—1,0] and (—oc, —1] and [1, )).

rithmic level as opposed to the previous solution: thus this arithmetic
simplifies the algorithm.

An oriented projective interval (OPI for short) is defined by a couple
(u,v) of two standard intervals, and is equal to their ratio: u/v. When
0 ¢ v, the OPI is equal to some usual finite interval: see Fig. 6. When
0 € vand 0 ¢ u, the OPI is the union of two semi infinite intervals: see
Fig. 6; for instance [1,3]/[-1/2,1/2] is equal to (—oo, —2] U [2, +00).
More precisely, the OPI w/v represents all real numbers U/V such that
Ue€wand V € v—{0} (that is: the interval v except 0). The basic
operations are defined by the following rules:

u  uw w'+uv U U u X u

v v vo! v v v X v

=2 (15

u

< |g| =

Note there is no special case for the division. All computations of
arithmetic expressions are performed with couples (u,v) and it is only
at the end (for computing which cells are cut by the range of the image of
a cell) that it is needed to convert the resulting OPI (u, v) to a (possibly
disconnected) set of real numbers, in fact to project the OPI (u,v) to
the real line: see Fig. 6. It is only during this projection that an error
can occur: if v = [0, 0], the exception: ”Division by an empty interval”
is raised.

This method gives results similar to the two previous ones. Fig. 6
shows how the interval (—oo,400) is subdivided, in @ and y, and how
the corresponding square is deformed and mapped to the plane. Fig. 7
shows this method in action, with increasing resolutions. Fig. 8 shows
the results for various values of parameters.
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Figure 8 Results with the projective interval method. @ = 1,4, and from left to
right, b = 0.4, 0.6.0.8. Resolution is 512: intervals (—oo, —1],[—1,0], [0, 1], [1, +o0) are
regularly subdivided into 512 cells. Note the recurrent points near or at infinity.

6. CONCLUSION

This paper shows that the classical orbit method does not always
give a reliable picture of strange attractors. It is an important fact,
because the orbit method is not used only for drawing pictures, but also
as a basic subroutine for many numerical studies on dynamic systems.
A reliable interval-based method has been described, with two possible
ways to reliably compute with infinite intervals. This method computes
a reliable covering of the strange attractor.

We conclude with some questions raised by this work.

Greater zooms of the classical Hénon attractor, with the classical orbit
method, make apparent its fractal nature. Unfortunately, the interval-
based method is more space consuming than the classical orbit method,
and it is unable to compute such greater zooms. In the more accurate
pictures, each cell has width 1/2048 (sometimes 1/4096, for some pa-
rameters a, b with "small” strange attractors). Is it possible to overcome
these limitations, resorting to some Computer Graphics techniques like
quadtrees? One may also think to bound the Hénon map inside each cell
with an interval affine map, and study the related IF'S (iterated function
system [Bar88]).

In principle, the method can give pictures of attraction basins (stable-
and unstable-manifolds, in the dynamic system terminology): just com-
pute which strongly connected components can be reached from each
vertex (or cell) ¢. But since we can no more zoom only recurrent cells,
we may again face problems due to memory space for big resolutions.

Finally, the method has been tested with conservative maps (|b| = 1)
and various values for a. It works as well, though weaker resolutions are
reached since more memory space is necessary, see Fig. 3 below right. In
the conservative case, plotting only the strange attractor is frustrating;:
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when it is not empty, it has typically a non-zero area and a very complex
internal structure, for instance KAM curves [Ott93, Rob95]. So the
question arises is it possible from the graph to extract and visualize
relevant features of the dynamic system, for instance using symbolic
dynamic?
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