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ABSTRACT

Geometric computations can fail because of inconsistsrdtie to floating-point inaccuracy. For instance, the coetbut
intersection point between two curves does not lie on theesurit is unavoidable when the intersection point coorgisa
are non rational, and thus not representable using floatirigt-arithmetic.

A popular heuristic approach tests equalities and nudlitip to a tolerance. But transitivity of equality is lost: we can
haveA ~ B andB = C, butA % C (whereA ~ B means||A— B|| < € for A, B two floating-point values). Interval arith-
metic is another, self-validated, alternative; the diffigis to limit the swell of the width of intervals with compations.
Unfortunately interval arithmetic cannot decide equatity nullity, even in cases where it is decidable by other reean

A new approach, developed in this paper, consists in matiftlie geometric problems and algorithms, to account for the
undecidability of the equality test and unavoidable inaacy. In particular, all curves come with a non-zero thids)eso

two curves (generically) cut in a region with non-zero asrainner and outer representation of which is computables Th
last approach no more assumes that an equality or nullitystesailable. The question which arises is: which georoetri
problems can still be solved with this last approach, anativbannot?

This paper begins with the description of some cases whergy dinown arithmetic fails in practice. Then, for each
arithmetic, some properties of the problems they can sakwegi@en. We end this work by proposing the bases of a new
approach which aims to fulfill the geometric computatiortgiisements.

Keywords: Geometric computations, robustness issue, numericatimacy, interval analysis, computational geometry,
CAD-CAM, tolerant modeling.

Computers are increasingly used for geometric computaéind not only for numerics. This phenomenon is illustrated
by numerous applications such as Computer Aided Design (Caid Manufacture (CAM), finite elements methods,
computer assisted medicine, video game development adjedfeicts for the movie industry, virtual and augmentedifyga
robotics.

From its beginning, geometric computing has faced diffiesltlue to the approximations of floating-point arithimetic
The uncertainty on numerical results - and data - is geryenall the problem: an accuracy of the order of a micron is
usually sufficient for the industry. The difficulty is moreldle: numerical imprecision of floating-point arithmetas
small as it may be, sometimes leads to incoherences duringpdiacution of programs, or inconsistencies in some of the
results, such as data structures that represent the tgpofageometric objects. These contradictions can be faked: t
program infinitely loops, or crashes, or its results are fisésient (and not just approximate) which causes the &slof

the following treatments. Indeed, the programs and datetstres are usually not developed to withstand contramtisti
and inconsistencies which are, in theory, impossible, butatur because of numerical instabilities. Numerical tuaacy
also prevents the inter-operability of geometric softwaeand the exchange of geometric data.

Section 1 illustrates with simple examples the inconsiggandue to numerical inaccuracy. It also introduces théaps
heuristic, the first ad hoc approach proposed to cope withrifecuracy problem, and shows its limitations. Section 2
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presents classical attempts to handle the inaccuracygmablinaccuracy can be removed, resorting to exact consat

or decisions; the Computational Geometry community is th@mser of this solution. Interval arithmetic uses enclesu

of the objects, to account for the inaccuracy in their regpméstions. Probabilistic approaches, on the other hand, do
not aim to provide guaranteed results but sample the obgect they sample points on a surface) as required by the
current processing applied to this object. Another linehafuight, advocated in this paper, considers that inaccusacy
unavoidable, and proposes to embrace inaccuracy: thidesant modeling presented in section 3. Tolerant modeling
replaces pure mathematical objects (points, curves,@sfavhich have no thickness, by thickened variants whise ha
inner representations, contrarily to pure mathematicgdatb. This section also presents some first geometric rdstho
which apply to toleranced objects, and which are able toigeoresults with guaranteed correctnesg. €xact topology)
using only approximate computations. The appendix lispgcgl geometric representations and related problems and
applications.

1. EXAMPLESOF PROBLEMSWITH FLOATING-POINT ARITHMETIC

First some examples are given, of inaccuracies that occanwilbating-point arithmetic is used for the computatiorise T
possible consequences of these inaccuracies on claskgjoatlans in geometric computing are illustrated. We end up
with an introduction of the so-callegtheuristic, developed to handle such inaccuracies, andlustrate its limits.

Example 1. In 2D, let us compute the smallest convex polygon containifigite set of given isolated points. A straight-
forward method consists in considering in turn each pairaifiys (A, B): the segmenfB is an edge of the convex hull if
and only if all the other points lie on the same side of the ABe This simple method is correct, but it may fail in the case of
four points almost aligned and it may then output an emptyewhull, due to the imprecision of floating-point arithnoeti
To get four points almost aligned, start with four points bex-axis and apply an arbitrary rotation, using floating-point
arithmetic. In such a case, the failure of this method is aiuig to the numerical uncertainty. The explanation is dedail
in the following example. Numerical errors also cause fauof more sophisticated algorithms for computing the egnv
hullin 2D and 3D.

Example 2. In the plane, three distinct unaligned poiAt8,C define an angl&BCthat is oriented either to the left or to
the right; orientation is given by the sign of the determinan

Xa ya 1
orienA,B,C)=det| x8 ys 1
X Yo 1

This determinant vanishes if the three points are alignethdory, the orientation @@BAis the opposite of the orientation
of ABC: orienA,B,C) = —orien(C,B,A). In practice, one can easily generate three pdinBC almost aligned, such that
ABCandCBAhave the same orientation. Indeed, offeB,C) is the sum of two terms: the exact result, and a "numerical
noise” or numerical error. When the exact value is close to,28e numerical error term predominates: the resultigeva
of orien(A, B,C) and its sign are thus unpredictable.

A first possible consequence of this inaccuracy is that aeohull of 4 points can be empty. Here is another possible
consequence: I&BCandABC two contiguous triangles of a mesh, with the verti€endC’ located on opposite sides of
AB. Let a poinK located inABC, very close to the edgkB, cf. Fig. 1. The computation of the orientations (ofi&rB, K),
etc...) is used to determine which triangle of the mesh dostne pointK. An inconsistency on ori€i, B,K) and
orien(B, A, K) may imply that neither the triangkeBC nor the triangleABC containsK. If K’ is a point located within the
triangleABC, the intersection point between the triangular mesh antinad& K’ can be missed, even when the line is not
at all tangent to the mesh.

Computing or counting intersecting points between a meshaaine or a half line is a basic geometric routine, typically
used to decide if a given point lies inside or outside a gedmebject whose boundary is described by a mesh. The point
lies inside when a half line starting from this point intertsethe mesh at an odd number of intersection points.

The computation of the sign of the orientation of three poista fundamental "predicate”, which is used in the if-tledse
tests of 2D geometric programs. Another predicate ofted rs@D determines if a point belongs to the circle circum-
scribed to three other points. Indeed, all of the algoritfion2D geometry (which handles segments, lines, polygons,
Delaunay triangulation, Voronoi diagrams) can be writising only these two predicates. Both predicates can easily
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Figure 1. Example wheré belongs neither to the triangheBC nor to the trianglBAC’; the intersection betwedtK’ andABis missed.

generalized in 3D, and are used to perform the intersecBbmden polyhedral or 3D Delaunay triangulation, for exampl
in reverse engineering for the reconstruction of objeamfpoint clouds which sample their surface.

Example 3. Computing the intersection point between two planar seggrism trivial problem. However, the intersection
point does usually not have coordinates that may be repieseractly as floating-point numbers. The computed interse
tion point will therefore lie not exactly on the two segmernihis introduces a contradiction between on the one hand the
topological information stored in the geometric repreagan, and on the other hand the numerical model (coordirwte
the points, and line equation) of this representation. Hmesapplies to the intersection point between two curve®in 2
or between three surfaces in 3D.

At first glance, the problem of numerical inaccuracy seeimgtr and easy to fix. It may seem sufficient to consider that
the numbers whose absolute value is less than a threslanézero and that two numbers differing by less thane equal.
This technique is known aapsilon-heuristicwheres measures the accuracy of the computations. But things atbato
simple. For example, should relative or absolute test bd wdeen comparing two numbers? Should the sarbe used
for lengths, areas and volumes? Moreover, this heurisfioraption introduces new potential sources of inconsigtenc
one can find numbems < b < ¢ such that is equal tob up to the precisior, b is equal toc up to the precisior, buta
andc are different because— a > €. Equality up toe loses the transitivity property of equality. But only a feaognetric
algorithms still work without this property.

The proposed-heuristic is therefore incorrect, but it has an empiricatification: it works in most cases and its imple-
mentation seems simple. When it fails for a given set of daguser perturbs the precisierby trial and error until it
works. Theg-heuristic is historically the first strategy used in indysfior example in geometric modelers for CAD-CAM,
and it is still the most frequent today in industrial softeiait requires a human operator to tune theln the case of
geometric modelers for CAD-CAM, users have learned trickawioid such errorsg. boolean operations between ob-
jects must be computed before moving them around. In shegtsuadapt the values of parameters, tolerances or data, to
move away from "difficult areas”. However, thisheuristic cannot be used without risk for autonomous repbehen they
perform geometric computation to plan their trajectoriea cluttered environment: indeed this heuristic sometifaiés

2. THE QUEST FOR ROBUSTNESS: CLASSICAL ATTEMPTS

This section reviews different attempts, for tackling thelgem of guaranteed geometric computations: first thecr
proposed by the computational geometry community, thegrmat arithmetic, constructive analysis, practical Solus
used in industrial software, and probabilistic and stat$imethods.

2.1 Theexact computation paradigm of Computational Geometry

Computational Geometty’ focuses on the theoretical complexity of geometric prolsleamd it suggests optimal algo-
rithms for some fundamental problems: convex hull, booleperations between polyhedrals, computations of Voronoi
diagrams or Delaunay triangulations, in 2D or 3D. It conssdgzometric objects which are numerically simple, in gaher
falling into the category of "linear objects”: segmentsds, planes, triangles or polygonal faces in 3D. Initiatynpu-
tational geometryassumed a model of computers where arithmetic operatiens, x, +, \/) are performed exactly in
constant time. However, with floating-point arithmeticcleaperation is performed in constant time, but with a round-
ing error. Algorithms from computational geometry are afifjuamong the most sensitive, that is, the less resistant to
numerical approximations. Indeed, these algorithms owi #fficiency to an intensive use of arithmetic coherenie (t
fact thatR andC are fields) or geometric coherence: for examplé, i§ a point inside a polygon, ari8la point outside,



then the segmemB crosses the polygon boundary an odd number of times. It murhthat numerical errors invalid such
statements, as seen above.

To solve the problems caused by numerical inaccuracy, Ctatipnal Geometry uses exact computations, specifically
it takes correct and therefore consistent decisions ihéfitelse tests. Typically data points coordinates aredediho
integers, and the sign of determinants or polynomials imngetac predicates (orien, etc) is computed using an exact
arithmetic. In passing, note that rounding is easy only fostwuctured points sets, since rounding does not preserve
orientation, alignment, coplanarity, convexity, etc: fostance, rounding a convex polygon can make it concave, and
rounding two disjoint but close segments or polygons manpthice intersections. Actually, rounding a polyhedron or
an arrangement without introducing self-intersectiorragwut to be a difficult problem. Fortunately, the input f@ 2
and 3D Delaunay triangulation is usually an unstructuréds@oints, and Delaunay triangulation is the method from
Computational Geometry which is most frequently used in GBBM.

Nowadays, a classical optimization is to use exact matheatatomputations only when strictly necessary. Micheiucc
was one of the first to use lazy exact decisions, in his thesik m 1984. With Jean-Michel Mored! they introduced
the idea oflazy arithmeti¢c which became known d#tering in the computational geometry community and implemented
in geometric softwares such as CGAL or LEDA.

Unfortunately, even with lazy arithmetic, only rational@aations are practical, while non rational numbers oaary
easily, with rotations of parts, intersection points bedweircles, square roots of distances, etc, intersectietvgden non
linear curves or surfaces. There have been some attempthgMcci, Manocha, Yap, and a few others) to use algebraic
lazy arithmetics, such as quadratic arithmetic. The latilews 2D geometric constructions “with a ruler and a conspyas
Bouhineafi has used such an arithmetic in his thesis, for Cabri Gé@matl these attempts have confirmed that the exact
computation paradigm is impractical for industrial prahke this approach can only be used temporarily, to guardngéee
termination of an algorithm, for instance the computatibsamne Delaunay triangulation.

In CAD-CAM, exact computation methods are used only locélifen they actually are), for example to calculate De-

launay triangulation from point clouds in 2D or 3D. Most o&tlendering pieces of software (Maya, for example) used
for virtual movie scenes and video games do not use exaatlatiin. Quite the opposite, they use processors or GPU,
on which the accuracy is rather lower, and therefore gives éess guarantees than a standard floating-point arittmeti
processor: speed prevails on accuracy. However, for syglitafions, a wrong pixel has usually no consequences.

2.2 Interval analysis
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Figure 2. From left to right: Cassini curve with naive intararithmetic, with Bernstein based arithmetic. A curve tuartin et al?
with naive interval arithmetic, with Bernstein based arittic. Bernstein bases enable tighter intervals, and ldssidsion.

Another classical approach is interval arithméfidnterval computations include interval arithmetic and remival interval
analysis. Interval computations ensure that the resultseo€alculations are correct: the result is an interval goted to
contain the exact solution. The main challenge with intecemputations is to limit the growth of the width of intersal
during the calculations. This growth has two main sourcesth® one hand, every multidimensional object is enclosed
into a parallelepiped with sides parallel to the axes: thisnown asvrapping effect On the other hand, thdependency
problemis the loss of the dependence between variables. For irestaith naive interval arithmetic, forin the interval
[0,1], the polynomiak(1— x) lies in the interval0, 1], while the exact range i, 1/4]. Even worse, the polynomial x?

lies in the interval—1,1]. The first formulax(1— x) is computed agxi(1—X2) : X1 € X, X2 € X}: in other words, the
correlation betweexry andx; is lost. Many libraries for interval computation have beesgwsed, for example Profil/BIAS,



IntLab or Alias. Such libraries are able to solve systemsnafdr and non-linear equations: typically they output tdfs
regular boxes, each one containing a unique regular rodtadist of residual boxes, where they can not conclude: for
instance some residual boxes containing multiple rootshere/the interval evaluation of the formula contains 0 simpl
because of overestimation. In Computer Geometry and Cam@uaphics, interval analysis is classically used to campu
guaranteed covers of implicit curves or surfagég. 2 illustrates in 2D how a recursive subdivision of ariatisquare

in the plane and interval evaluation of the range of a fumctitx,y) is used to compute a cover of the curve with equation
f(x,y) = 0. (The figure also illustrates the importance of the choidl® polynomial basis, when extensions of interval
analysis, such as Taylor models methods, are used.) Thimhetsily extends in 3D and to objects described with CSG
trees (see Appendix). The interval arithmetics have alemIseiccessfully used to compute reliable covers of thectdira

of certain functions (for example, the function of Henaor, the eponymous attractot),'2or periodic orbits, repulsive or
attractive, of a given period.

Interval computations are limited by the fact that they aameliably find the sign of a number represented by an interva
containing 0. More generally, they cannot sort two numbamkn by intervals that overlap. This limitation was theedz

by constructive analysis (see below). As a consequenagyaltcomputation cannot help in solving problems in Compu-
tational Geometry, which require the sign of geometric raigs. Some kind of interval computations is used for filtgr

if the two interval bounds of the value orighiB,C) -used in a previous example- do not contain 0 and are of the sam
sign, then the orientation is known, and the use of an expersiact computation is avoided.

2.3 Thelessons from Constructive analysis

Constructive analysl$ classifies what is computable using arithmetic and what is Bract algebraic (or transcendent,
for that matter) computations are ruled out. Within condtiue analysis, a number is said to be computable if thergt®ai
program that produces a sequence of nested intervals withasing (and prescribed) accuracy and containing thidoeum

In theory, the interval bounds are rational numbers. Intacfor programmers, they are often dyadic numbers, of
the form 2¥n,n € Z,k € N. Not every real number can be represented, because thets erly a countable number
of programs and thus a countable number of computable reabeu More generally, constructive analysis shows that
computable functions must be continuous. This result isitimely obvious for the function sign: sigri= -1 for x < 0,
sign(0)=0, signf)=+1 for x > 0. This function is discontinuous &t= 0. If the numbex is zero, but is represented by a
sequence of nested intervals (of non-zero width), its tyutlan never be decided. On the other hand,iff not zero, an
interval of the sequence will eventually have its two bouofithe same sign. It is sometimes said that the computation
of the nullity of a number, or of the equality of two numbers&f deterministic (or recursively enumerable): nullityda
equality are not decidable, whereas non-nullity of a nunalnelnon-equality of two numbers are decidable.

Arrangements, Delaunay triangulation, Voronoi diagrage®metric objects defined by systems of equations or ilequa
ties are not continuous functions of the input and theredioeenot computable.

2.4 Probabilistic methods

As previously mentioned, since the beginning of the CAD-Cilllustry, numerical problems have existed and being dealt
with. CAD-CAM softwares are built to be robust to geometricansistencies: such softwares often receive completely
inconsistent geometric data like triangles soups: thew thge algorithms that do not require geometric consisteamy,
that, for example, do deal with surfaces with cracks.

A probabilistic solution to the problem of numerical acayd is illustrated by the following example: computing the
shortest path on a surfaé& Computational geometers have proposed algorithms fargléameshes, but these algorithms
are difficult to use in practice since they assume that thedioates of vertices are rational. However a practical ahdst
solution has been proposed: the mesh is sampled by a poid.clograph is constructed using these points as vertices,
and an edge links close vertices, with distance less thaescpbed threshold. Then the Dijkstra algorithm is used to
determine the shortest path between two vertices of thehgrahe surface, or mesh, is then re-sampled with a greater
density in the vicinity of the shortest path. This methodxt@mely simple and robust. However it does not provide
any guarantee on the result quality. This method may be géned to compute geodesic cycles with given homology.
Software for assembly line planning during manufactureooffinding robots trajectories in environments with obstacl
use the same principle of random sampling of the configuraiace.
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Figure 3. Left: a B-rep of a square, corrupted by (exaggdjateccuracy; it has no interior. Right: the tolerancedasgquthicknesses
are exaggerated. Courtesy of Vadim Shapiro.

Computer Graphics also uses the probabilistic paradigningtance for radiosity computations, the rendering equas
solved with Monte Carlo integration methotfs.

Finally the stochastic arithmetic of the CESTAC method jissdl by Jean Vignes also relies on a probabilistic argument:
the same computations are performed several times, wiigrelift rounding modes. They give a set of numeric samples,
whose mean and variance can be computed; this way it is pedsilestimate the number of probably correct bits in a
numeric result, and thus its quality. This stochastic amilic is used to detect numerical instabilities during rsitfie
computations: typically these algorithms iteratively gerge to a solution, and do not branch in if-then-else tegiart
from the stopping criterion test. The behaviour of the whadgorithm is in this case not much perturbed by the use of
stochastic arithmetic.

3. EMBRACING INACCURACY, TOLERANT MODELING
3.1 Tolerant modeling

Practitioners of Geometry Computing consider that thedneacy corrupting computations and geometric data strestu
is unavoidable. To account for it, all CAD-CAM geometric nebets use some kind of tolerant modeling. However
each company uses its own peculiar, empirical, non exg@jmitroach, which prevents the inter-operability of geoioetr
softwares and the exchange of geometric data.

Qi and Shapird’ proposed a formalization of tolerant modeling. Tolerandeling, see Fig. 3, attaches a tolerance to
each cell of the simplicial complex underlying a B-rep (bdary representation, see Appendix): vertex, linear oredrv
edge, and surface patch. The thickened element is calledea Zbie idea is that tolerances permit to fill possible gaws, f
instance between edges and their incident surface patochbstween vertices and their incident edges. Also, whike tw
planar curves, or three 3D surfaces meet at points with Goates which are generally not representable with floating-
point numbers, their corresponding zones meet (geneyjdalla region with non-zero measure (area in 2D, volume in
3D): this region contains points with floating-point cooraies. Thus these intersections can be represented byemn inn
approximation, like a box or a ball.

This corresponds to the general practice in CAD-CAM: geoime@iodelers sample the intersecting curve and they get
points with floating-point coordinates which lie not far finc¢his curve. These points represent approximately theecurv
and are interpolated, typically using spline curves. T#modeling gives a solid theoretical background to thigagch,

in particular it gives an upper bound to the distance betwleeinterpolated curve and the exact intersecting cureace

a small but still suitable tolerance has been determined.

To get a more detailed representation, interval analysisheaapplied to compute a cover of zones, that is an outer
approximation. Thus it is possible to sandwich a z@rtgetween an interval of solid$:C Z c O, wherel andO are the
inner and the outer representations. Moreover, it is ptesgibimpose an upper bound to the Hausdorff distance between
the inner and the outer representations. Another possitiéesiructure is a fair cover of zones: a fair cover is a caamh
piece of which (voxels, balls) is guaranteed to interseetctbvered object.

Instead of using one global tolerance per zone, in case ahpetric curves or patches, it is possible to attach a toberan
to each control point® The goal is to adjust the tolerance such that for instancéckehed surface and its boundary
thickened curve intersect.



A question which arises from tolerant modefigs: is it possible to explicit conditions to guarantee thableranced
B-rep is valid in a certain sense? If this is possible, thaimgnplies that tolerant modeling gives theoretical fisditions

to heuristic usage, by giving some guarantees on the regegms. For instance, each zone should be simply corthecte
ie. topologically equivalent to a ball, since this propertydsfor each corresponding cell (vertex, edge, surface patch
the simplicial complex of the B-rep. The intersection of #omes of two incident cells (a vertex and an incident edge, or
an edge and an incident patch) should also be topologiogllwalent to a ball. Finally, all relative interiors (a zoménus

the zones of its bounding cells) should be disjoint.

Moreover, to make sense, these validity conditions for eréwiced model should be computable with approximate com-
putations, most of the time. Here, the words "most of the tiare used to account for the situations where typically,
interval analysis can not decide if two zones intersect driaoin cases where they are tangent, or very close to tangency,
due to their tolerances and the accuracy of the computatiorssich cases, the computations will fail, typically whiba t
topological properties of the inner approximation and ef duter approximation do not match.

Tolerances must be seen as degrees of freedom: the mainaidédhie main difficulty) of tolerant modeling is to tune
and optimize the zones tolerances, to avoid undecidablenbigaious situations. A possible direction of research is to
check whether tolerances can be optimized using some |pregramming method, by expressing constraints such as
dist(A, B) + threshold< tol(A) + tol(B) and by minimizing the tolerances. To get such constrainfgstistep will be

to compute tight enough intervals of the distances betwedns pf geometric cells — distance is a continuous function,
so it is computable from a tigh enough fair cover, or from disigitly accurate interval of solidse( inner and outer
representations).

Next section presents recent methods, whose existencessgbat these validity conditions should be computabée in
near future.

3.2 Computing topological properties with interval analysis

Recently, Delanoue et 2% and Manocha et & independently used interval methods to compute in a gueednt
manner the topological properties of geometric objectscdieed by boolean combinations of nonlinear inequalities
instance the unit sphere is described by the inequadity y* + 22 — 1 < 0). Each inequalityf (x,y,z) < O describes a
geometric primitive.

Both methods recursively subdivide the 3D space into voxelsl the intersection between the studied geometricaibje
and each voxel, its faces and its edges, is simple enaegéither empty, or full, or contractible to a point: a geoneseét
Sis contractible to a poinp when all points of the segmengslies in Sfor all s€ S. Furthermore, Delanoue et al. remark
thatpis a star point foAuUB and forANB if pis a star forA, and forB. This remark implies that it is sufficient to have a
contractibility test for primitives. The contractibilitgst is equivalent to solving a system of nonlinear (usuatijgbraic)
equations.

Delanoue’s method constructs a simplicial complex whidgjuiaranteed to be homotopic to the geometric object. Itis thu
possible to compute the homology group which is a signatfitBeoobject, to check that the set is connected, or simply
connectedié. it is topologically equivalent to a ball). These questionsur when wanting to prove that a toleranced B-rep
is valid, as seen above. Delanoue’s method is thus a first@tegyds an answer.

Both Delanoue’s and Manocha’s methods require some géyeranditions on the geometric object. Its boundary must
be a manifoldje. the boundary is everywhere locally homeomorphic to a diskyell as the boundary of all geometric
primitives. Moreover tangencies between distinct priveisi described by inequalities are forbidden: it is due tdfdlee
that equality and nullity are not decidable with intervatqmutations. These methods detect when the genericity tonsli
are not fulfilled, and thus when they cannot produce a singbliomplex: in such cases, they fail and issue a warning.

Other cases of failure are the following. First, no geonsgtrimitive must be tangent to one of the subdivision planes,
since tangential intersections are not computable. A srople consists in perturbing randomly the subdivision gdan
to remove these accidents with probability 1. Finally, theaBiest feature size of the geometric objects must be greate
than the precision of the floating-point arithmetic. Sonehteques based on floating-point arithmetic and yieldingeex
precision could be worth considering.



A limitation of these methods is that they do not consideroty whose boundary are parametric surfaces, or thick-
ened parametric surfaces. Nor do they consider objectsedeby projections. Actually parametric curvesy,z) =
(f(t),g(t),h(t)),0 <t < 1 and parametric surface patchegsy,z) = (f(u,v),g(u,v),h(u,v)), where(u,v) € [0,1]2, can

be considered as projections of 4D or 5D objects on the 3Despar The possibility to extend this kind of method to
zones of a parametric curve or surface, or in an equivalenherato objects defined by projection of a higher dimendiona
object to 3D space, that is to objects occurring in toleraotleting remains an open question. Another open question is
the generalization of these methods to toleranced objects.

3.3 Remaining issues
This section lists some more remaining issues and hintslofisns.

As seen on Fig. 2, using Bernstein polynomial bases (cf. Agp@ can be a cure to a high number of subdivisions. These
bases are still rarely used in interval analysis, wherea®CAM practitioners, who use commonly Bernstein polyndmia
bases, are still not well acquainted with interval analysigotentially useful technique could be to represent therod
points by small intervals (with a width of the order of a snmallltiple of the floating-point precision).

Interval analysis provides sufficient and effective coiodis to establish the existence and uniqueness of a root in an
interval, besides enclosing it: Brouwer theorem can beiagpNewton-Kantorovitch being the version of this theorem
used in the Alias library. Could these conditions be extdndean effective way, to the uniqueness of the interseaifon
three surfaces, or to the uniqueness of a whole intersecting?

The definition of an interval of solids should take into acabfurther useful features. For instance, in 2D, it is dédea
that a curve is sandwiched between two polygonal lines aatlith cone of normals (or of its tangent vectors) is also
sandwiched. If the cone of normals were sandwiched as vielh tletermining the uniqueness of the intersection point
between two such curves would be easy: it would be sufficleattthese two cones were disjoint. Let us notice that the
use of Bernstein bases simplifies the determination of sanks

The list of properties that can be computed using the toterentleling approach still waits to be elaborated: it has been
seen that several topological properties are within rea@stablish that a B-rep is valid, a more extensive list isyabt
available. Literature is scarce, concerning the certificadf the validity of B-reps.

Finally, a thorough comparison of the various approachtesdunced in this paper shoud be led, to compare (in terms of
efficiency and guarantee) the different representatiomeriouter polyhedrons, fair covers, voxel or pixel arrays

4. CONCLUSION

The exact computation paradigm in Computational Geomgtrgries inaccuracy and its damages. But this approach has
a restricted scope, it can be used only temporarily andlipdal the real world, inaccuracy is unavoidable. In this @ap

we propose to embrace inaccuracy with tolerant modelingclwbpens a new field for research: how to get guaranteed
results with only approximate computations.
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Appendix: Typical modelsfor geometric data

This section lists the most commonly used models for rept@spgeometric objects, and it mentions related probldtas.
use is to illustrate on which objects (the representatidiggeometric data) the problem of inaccuracy applies: cowrigis
of points, sets of triangles when it is known that they sharedge, coordinates in specific polynomial bases and so on.

e The discrete representations, as 2D or 3D images, are 2D arfas of elements, pixels in 2D, voxels in 3D. An
element can be a grayscale, a color, a density, or an mat@rdlfier. Medical devices (scanner, CT, MRI) are major
providers of 3D images. The geometry and discrete imagey/sisadlgorithms propose to deal with such images.
These images can be efficiently represented by quadtred3,iarl octrees in 3D. The most common treatments
are thresholding, reconstruction of contours, labelingpeel is part of the liver, the lungs, etc.), pattern rectigni
compression with or without loss to speed up the transfemaiges between different devices, signature, and so
on. It is possible to apply discrete data structures or nutimm discrete geometry temporarily, to continuous
geometric problems. For example, precomputing which d¢fies (or other geometric objects) are present in each



voxel of a grid can accelerate the computation of the rendeif he calculation of a cover of a surface or a curve is
another example.

e Meshes, usually triangular meshes, are widely used in ctenguaphics, but also by CAD-CAM. In CAD-CAM,
meshes are often produced from surfaces or high-leveligéiscis of geometric object (see below). These meshes
are generally conformal, that is, they form a simplicial gdex: the intersection of two cells (triangles, edges, ver-
tices) of the mesh is a cell of the mesh. Thus, topologicalputtations can be performed on this type of mesh, such
as homology groups or cohomology groups (homotopy groupsaely computed, because the related problems
are typically undecidable). More and more, guaranteesaetiation are requested: not only the Hausdorff distance
between the mesh and the exact surface object must be lesa firescribed tolerance, but the topology must be
respected. The mesh must be topologically equivalent (i#pg on the case, homeomorphic, or homotopic, or
isotopic) to the exact surface.

e Some meshes, typically tetrahedral meshes, partitiondhene occupied by the objects, and not only the surface
boundary of the object. These meshes are typically usedite &#lement simulation.

e In 2D, the Delaunay triangulation of a given set of distinaitys, called seeds, is a triangulation of the convex hull of
the seeds, which vertices are the seeds, and for any trighglepen circumscribed disc (without the circumscribed
circle which is the boundary of the disk) contains no othedsé his definition generalizes in 3D. The 3D Delaunay
triangulation is used by reconstruction algorithms: tlgsial is to reconstruct the continuous surface of the frontie
of an object, from a set of sample points on the surface of lject This problem typically occurs in reverse
engineering in CAD-CAM (digitize an object manufacturedsdbgompetitor, or a prototype modified manually by an
artist), in the preservation and modeling of cultural feyé with the digitization of works of art (statues, painting
buffers, buildings). Various instruments, or optical pgebare used to sample these items.

Figure 4. The Bernstein polynomials of degree 1, 2, 3, 4, fiefito right. Each square is the unit square. The maximunmiafmum)
value ofB; 4 occurs ak =i/d.

e Triangles soups are sets of triangles, approximating agcobjrface. The triangles may intersect, and are not nec-
essarily connected, leaving gaps between the triangléSoinputer Graphics, a soup of triangles suffices to display
an object: each triangle is displayed independently. b aften suffices for the manufacturing, if the accuracy is
adapted: the cutting tool (typically a half-sphere, or anaed cylinder with standardized dimensions) should not
be able to enter a gap between two triangles that are suppmbedcontiguous. Triangles soups are not simplicial
complexes and do not benefit from their properties and tlgisistency, which prohibits many algorithms. Repair-
ing algorithms attempt to rectify triangle soups, and cettreem into meshes; generally an operator is required to
interactively guide the software, a sort of 3D PhotoShop.

e Point clouds are object models even more sparse than teiarsglups: the surface of objects is known only by
sampling points. These clouds are provided by a variety ti€alpor physical sensors, which scan physical objects
(acar door, a statue, etc.). The density of points is supptodee roughly constant on a unit area on the surface (e.g.
100 to 130 dots per squared inch). It may happen that the seragésasampled by several local point clouds, which
partially overlap. The software has to merge these clouttsy@construct a surface, such as a triangular mesh, or a
set of NURBS (Non Uniform Rational Basis Spliféspatches after segmentation of the triangular mesh.

The points of the cloud may be replaced by surfels: to eaadht pdia cloud is assigned an oriented normal, a color,
and possibly a radius when the surfel is considered as a diskheosurface, or even two main components of an
ellipse for elliptical patches.
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Figure 5. Two de Casteljau iterations on a Bézier curve vfthe graph of an univariate polynomial of degree 3. Thedifpolygons
are the convex hulls of the control points.

To solve certain geometric problems, it is more robust toradg the object geometry in a point cloud or a set of
surfels, for example to calculate roads or geodesic patlassomface. This strategy uses a "probabilistic” approach.

¢ To interactively define a mesh is difficult. Most people prgfarametric surface representations (Bézier, B-Splines
NURBS) for interactive surface modeling: the user places moves interactively control points, and the corre-
sponding surface automatically follows. Recently, sulsitim surfaces are also used: the user describes a mesh with
few vertices, and a subdivision algorithm produces a smswitface according to a certain scheme. The interest of
subdivision surfaces is that they allow greater freedonhertapology of the control net.

e Two kinds of analytical surfaces are typical in CAD-CAM andr@puter Graphics: implicit surfaces described
by an equatiorf (x,y,z) = 0, wheref is typically algebraiceg. quadrics, torii, cyclides; and parametric surfaces
x=X(u,v),y=Y(u,v),z=Z(u,v) whereX,Y, Z are polynomial or rational functions, andv are parameters lying in
[0,1]%: Bézier surfaces, Splines, NURBS are examples of parassetrfaces. Computer Graphics and CAD-CAM
also uses procedural surfaces: subdivision surfacesracigif surfaces.

o We will define only Bézier curves and surfaces, since theytgpical and at the roots of parametric curves and
surfaces. A Bézier curve is expressedéds = Zid:o Bi a(t)pi where 0<t < 1: thepjs are 2D or 3D control points,

and theB; 4(t) = (‘i’)ti(l—t)d*i are the Bernstein polynomials of degiésee Fig. 4 for the Bernstein families of
degrees 1 up to 4). They are a base of the polynomials of delgpeéess. The conversion between the canonical
base:(1,t,t?,...t9) and the Bernstein base is a linear mapping, for example,dgred = 3, By 3(t) = (1—1)3,

B1a(t) = 3t(1—1)2 Bpa(t) = 3t3(1—t), Ba3(t) =t3 or in matricial form:

Boa(t) 1 -3 3 -1 1 1 1 1 1 1 Boa(t)
Bist) | | 0 3 -6 3 t o] t |0 Y8 231 B1a(t)
Baat) [ [ O 0 3 -3 t2 > ] 0o o 13 1 B2a(t)
Bg,g(t) 0 O 0 1 t3 t3 0 O 0 1 Bg,g(t)

For allt € [0,1], the BernsteirB; 4(t) are positive and their sum is 1, igt) is a linear convex combination of
the pi: p(t) lies inside the convex hull of its control points. Controimts are actually coefficients of polynomials
expressed in the Bernstein base. Contrarily to coefficierttse canonical base, control points have a very intuitive
interpretation: the user can move control points with thaisgoand predict the shape of the polynomial from the
control polygonp;,i = 0,d. Moreover the convex hull property allows to compute tightlesures of polynomials
p(0 <t <1):itis bounded by the smallest and the greatest coefficieh&iBernstein base. Finally the de Casteljau
algorithm bisects Bézier curves . it computes the half and right control polygons fox < 1/2, and for
1/2 <t < 1. Actually the ¥2 can be replaced with any constant, even out€idg. The de Casteljau algorithm (see
Fig. 5) is used to compute covers of Bézier curves, and dstemparametric polynomial or rational curves.

e Bézier surface patchgg0 < u < 1,0<v<1) are defined by tensor product:
m n
p(u,v) = Bi.m(U)Bj.n(V) pij
22,
The surface patch lies in the convex hull{is+ m) x (1+n) control 3D pointsp;j. The convex hull property and the

de Casteljau method extend to bivariate and multivariatgnmanials. Some numerical solvers of algebraic systems
of equations rely on the convex hull properties of tensonBin base$>2°



e Boundary representations (B-reps) are generalizationgeshes, where the embedding of the edges and faces is no
longer linear: the planar faces are replaced by Bézieasanbatches or other NURBS surface patches.

e Higher level geometric descriptions depend on the apjpticaf clearly medical software, video games and CAD-
CAM do not need the same geometric models. However, a higdi-teescription fairly widespread in computer
graphics and CAD-CAM are the CSG (constructive solid geoyhétees. The nodes represent affine transforma-
tions (translations, rotations, scaling) or deformati@wssting), boolean operations (union, intersectiorfedténce),
and the leaves carry primitive shapes (unit cube, spheliedey) or geometric objects described by a systems of
equations and inequalities, mostly algebraic (toroidslidgs, etc). The geometric modelers of CAD-CAM manage
two models: a CSG tree, and its corresponding B-rep. Usedifynihe CSG tree and the software updates incre-
mentally its corresponding B-rep, this operation is calbedindaries evaluation and is a generalization of surface
meshing methods (for example, boolean operations mustrerped). In CAD-CAM, the same guarantees as for
the meshing of surfaces are requested: the Hausdorff destagtween the calculated frontiers and the exact ones
must be less than a prescribed tolerance, and the topologlybmuespected; for instance, no self-intersection must
be introduced. Computer Graphics is less demanding.

e Infact, the previous description is outdated: for fifteeange all geometric CAD-CAM modelers have been provid-
ing one or two additional software layers. These are thepatidac modeling and the variational modeling. The CSG
trees are parametrized by length, angles, or non-geonpetideneters (colors, types and properties of materials, etc

The parametric modeling enables the user to interactiveliimthe values of these parameters. Dynamic geometry
software such as Cabri, Cinderella, GeoPlan, GeoSpacepmgdarized this type of modeling: the user defines a

geometric figure typically starting from points; then he be snay define the line or the circle passing through the
points previously defined, or intersection points betwdenlines or circles yet defined. The user specifies in the
same time an example and a construction plan, which is storeaime data structure. Then the user can move the
starting points with the mouse, and the software updatesdatively the whole figure coherently. This allows to see

geometric theorems in action: for example, when three aestare forced to move on the circle circumscribed to

three other vertices, then the opposite sides of the hex@gpaints define 5! possible hexagons) meet at 3 aligned
points, after Pascal’s theorem.

In variational modeling, the user no more specifies a gedomnstruction, but specifies only constraints, for exam-
ple, distances or angles between vertices or axes, p#ualielincidences and tangencies. These constraints grovid
a system of equations, typically algebraic, which are themerically solved. The most frequently used method

is the Newton-Raphson’s iteration: the initial guess isgketch, which is the approximate solution interactively

provided by the user. Other used numerical solvers areigradescent, homotopy or continuation, interval solvers.
Symbolic computations are usually not practical for reatldiproblems.



