
Noname manuscript No.
(will be inserted by the editor)

Rigorous Outer Bounds with the Dual Simplex

Algorithm in Tableau Form

Presented at SCAN 2010, Ecole Normale Supérieure Lyon.

Received: date / Accepted: date

Abstract In this paper, we describe how to compute rigorous outer bounds
for linear programming problems occuring in linear relaxations derived from
the Bernstein polynomials. The computation uses interval arithmetic for the
Gauss-Jordan pivoting steps on the tableau. The resulting errors are stored as
interval right hand sides. Additionally, we show how to generate a start basis
for the linear programs of this type. We give details of the implementation and
comment on numerical experiments.

Keywords verified simplex algorithm · interval arithmetic · tableau form

PACS 90C05 · 65G30 · 65N15

1 Introduction

Linear relaxation [6] is a common method to solve non-linear systems over
variable intervals Di ⊂ R, i = 1, . . . , N . For the system with variables x1 ∈
[0, 1] and x2 ∈ [0, 1],

x2
1 − x2 = 0

x2 − x1 ≤ 0

e.g., a linear relaxation derived from the tangent plane in x1 = x2 = 0.5, for
example,

(x1 − 0.5) − (x2 − 0.5)− 0.25 ≥ 0
x2 − x1 ≤ 0

In [3], linear relaxations, derived from the Bernstein polynomials, were used
for the monomials x2

i and xixj , i < j with xi ∈ Di. The curves (xi, x
2
i), and

the surfaces (xi, xj , xixj), i < j are enclosed in a polytope, called Bernstein

polytope (Figure 2).

2

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

x1^2-x2
(x1-0.5)-(x2-0.5)-0.25

x1

x2

Fig. 1 Linear relaxation (in green) for x2

1
− x2 (in red).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
x

Bernstein polytope for x^2

B0^2(x)
B1^2(x)
B2^2(x)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Bernstein polytope for x*y

B0^1(x)B0^1(y)
B0^1(x)B1^1(y)
B1^1(x)B0^1(y)
B1^1(x)B1^1(y)

x

y

Fig. 2 Bernstein polytope enclosing the curve (x, x2) (left) and the surface (x, y, xy) (right)
on x, y ∈ [0, 1].

With linear relaxation, the quadratic system

F (x) = 0, G(x) ≥ 0, x = (x1, . . . , xN)

gives a linear system in the variables xi, xii, and xij , i < j. For example, a
lower bound on the variable domain Di can be obtained by solving a linear
program: minimize xi on the linear system and the Bernstein polytope as
constraints.

In [3], the revised simplex code SoPlex [7] in floating point arithmetic
and a backward analysis of the final linear system for the objective value was
used. A comparison of linear programming codes using rational arithmetic and
floating point arithmetic can be found in [2]. Of course, the use of floating point
arithmetic, which is used at least in parts of the code, is significantly faster
than exact rational arithmetic. In [1], a method to compute a lower bound is
described using an arbitrary linear program solver, which is based on the weak

optimality theorem: Any feasible point y of the dual problem Aty ≤ c (max bty)
gives a lower bound bty for the minimum of the primal problem Ax = b,
x ≥ 0 (min ctx). As outlined in [1], the lower bounds obtained by a verified
computation of a feasible point can be much off from the optimum value for

Rigorous Outer Bounds with the Dual Simplex Algorithm in Tableau Form 3

ill-conditioned problems. Additionally, the computation of upper bounds is
considered.

In this article, we show how to use interval arithmetic in a tableau-form
implementation of the dual simplex algorithm (Section 2) to verify computa-
tions and to generate a tight lower bound on the minimum value. The tableau
has floating point entries and uses an interval right-hand side. In a pivoting
operation of the Gauss-Jordan algorithm, rounding errors are collected and
stored in the right-hand side intervals (Section 2.2). For the application of
linear relaxations using the Bernstein polytope, we give two ways to gener-
ate a start basis for the occurring linear programs in Section 2.3. Finally, we
conclude on this work in Section 4.

1.1 Notation

Concerning notation, we use R for the lower bound of an interval R and R for
the upper bound. For a real number a, we denote by a− the largest floating
point number smaller or equal to a, and by a+ the smallest floating-point
number larger or equal to a. We denote by ek the kth vector of the canonical
basis with ek,k := 1, and 0 otherwise. As usual, an inequality between vectors,
like x ≥ 0, applies to all components i: xi ≥ 0.

2 Linear Programming Problem

A linear program in standard form is defined by

min ctx

Ax = b

x ≥ 0

where A is a m × n real matrix, b is a m-component real vector, and c is
a n-component real vector. The system Ax = b contains the linear equality
constraints, and the function ctx defines the linear objective function to be
minimized. An inequality at

1x ≤ b1 is transformed into an equality by a new
variable xs ≥ 0: at

1x+xs = b1, which is called a slack variable [4]. Note that in
our case it is m ≤ n, i.e., our problem has at least as many variables as rows
due to the slack variables. Note also that to ensure non-negativity x ≥ 0, we
use symbolic substitutions xi → (xi − Di) if Di < 0.

The tableau-form implementation of the simplex algorithm (with column
basis) selects a maximal subset of m linear independent columns of A (cor-
responding to components of x), where m is the rank of the matrix A. The
subset with index set B is called a basis, and the corresponding submatrix
A∗,B is invertible; the rest is denoted by A∗,NB . Non-basis variables always
have a zero value. A basis update operation maintains the reduced row-echelon
form of the tableau
(

ct
BA−1

∗,Bb = ct
BxB (cB − ct

BA−1

∗,BA∗,B)t = 0 (cNB − ct
BA−1

∗,BA∗,NB)t

A−1

∗,Bb = xB A−1

∗,BA∗,B = I A−1

∗,BA∗,NB

)

4

which allows to look up the relative costs in the first row, the objective function
value in the first column of the first row, and the basis variable values xB

in the first column below the first row of this tableau [4]. Furthermore, we
group matrix rows into equalities (without a slack variable) given by the index
set E and inequalities (each having a slack variable) given by the index set
NE. Maintaining this form is possible with the Gauss-Jordan algorithm from
numerical linear algebra. As tableau rows define basis variables, it is possible
to check the non-negativity constraints x ≥ 0 and to select a leaving variable
in the simplex algorithm (pricing [4]). The leaving variable is replaced by an
entering variable, which can be selected from the reduced costs in the first
tableau row (ratio test [4]). For applications, this dual form of the simplex

algorithm is beneficial [5], which changes an infeasible basis with a lower bound
value into an optimum, feasible basis. It selects the leaving variable from the
infeasible basis first and replaces it by the entering variable. In contrast the
primal form of the simplex algorithm, selects the entering variable first, then
selects the leaving variable until an optimum objective value is reached.

2.1 Pricing Rule and Ratio Test

Important for the performance of the solver is the pricing rule, the ratio test,
and the start basis [5]. For the pricing rule, we consider

Definition 1 (Goldfarb-Forrest pricing rule) Select row r which has the

most negative ratio xr

|et
rA

−1

∗B
|2

.

For the ratio test, we use

Definition 2 (Harris ratio test) Select column s so that ar,s is minimum

with
cj

ar,j
≥ θr(ε), ar,j < 0, θr(ε) := min{

cj+ε

ar,j
: ar,j < 0}.

This rule chooses the element cs

ar,s
of the set {

cj

ar,j
≥ θr(ε) : ar,j < 0} defined

by a small parameter ε > 0, so that the denominator ar,s < 0 has largest
magnitude in order to have only small shifts of the number’s significant in the
evaluation of the division.

2.2 Pivoting Steps using Interval Arithmetic

For error collection during a pivoting operation of the Gauss-Jordan algorithm,
we use interval arithmetic. Let ar,s be the pivot element in row r, and Di the
variable domain for variable xi. Then the linear equation

∑

j

ar,j

ar,s

xj =
br

ar,s

transforms into an interval equation
∑

j

Rr,jxj = Rr

Rigorous Outer Bounds with the Dual Simplex Algorithm in Tableau Form 5

Fig. 3 Hyperplane arrangement (grey) for the interval equation [0.8, 1.2]x + [1.0, 1.0]y +
[−0.5, 0.5] = 0, x, y ∈ [−1, 1]. A thick hyperplane (green) results from the selection of interval
representatives 1.0x + 1.0y + [−0.7, 0.7] = 0.

where we can select a floating-point value ar,j ∈ Rr,j of the interval so that
Rr,j ⊂ ar,j +[(Rr,j −ar,j)

−, (Rr,j −ar,j)
+]. The intervals can be collected and

stored as an interval right hand side R′
r

∑

j

ar,jxj = Rr −
∑

j

[(Rr,j − ar,j)
−, (Rr,j − ar,j)

+]Dj =: R′
r

With the representative ar,j := mid(Rr,j)
−, the resulting interval [(Rr,j −

ar,j)
−, (Rr,j − ar,j)

+] has smallest width. Figure 3 shows the hyperplane ar-
rangement for an example equation.

Similarly, a row operation as required in the Gauss-Jordan algorithm be-
tween row r and row i

∑

j

(ai,j − ar,j

ai,s

ar,s

)xj = bi − br

ai,s

ar,s

can be performed in interval arithmetic

∑

j

Ri,jxj = Ri

and rewritten using an interval right-hand side

∑

j

ai,jxj = Ri −
∑

j

[Ri,j − a−
i,j , Ri,j − a+

i,j]Dj =: R′
i

In this form, a sufficient condition for the feasibility of xi, i ∈ B is Ri ≥ 0.

In case Ri < 0, it is infeasible and a candidate for the pricing rule. Otherwise

6

some Ri have positive and negative values, in which case we stop the solving
process with a lower bound of the optimum value.

In the geometric view of the polytope, the thick hyperplanes bound a set
of polytopes, which are not necessarily of the same topology. See Figure 4
for an example, where the minimum-y vertex of the outer hyperplanes is de-
fined by the intersection of r1 and r3, but the minimum-y vertex of the inner
hyperplanes is defined by the intersection of r1 and r2.

Fig. 4 Polytope bounded by thick hyperplanes r1, r2, r3 and r4. Note that the topology of
the polytope built by the outer hyperplanes (thick) is not the same as the one by the inner
hyperplanes (thin).

Note that these topology changes make situations possible, where the outer
polytope is non-empty but the inner polytope is empty. In such cases, the
algorithm can not decide feasibility of the linear program.

2.3 Start Basis Generation

Inside the non-linear solver, we only have to handle objective functions of
the form xi = et

ix for a variable index i. Start basis generation can be done
by performing the Gauss-Jordan algorithm on the equation part AE,∗ of the
system. This defines a subset BE of the basis B. Note that the set BE depends
on the pivot selection strategy in the Gauss-Jordan algorithm.

The first possibility is to select only pivots with column index different
from i. In this case, where BE does not contain variable index i, we can easily
complete the basis from the vertex with smallest value xi of the Bernstein
polytope for (xi, x

2
i).

The second strategy is to select a pivot with column index i. In this case,
where BE contains the variable index i, we can generate a start basis from
the equation row k defining variable xi. Let xi +

∑

j 6=i ak,jxj = Rk be row
k. If there are columns ak,j > 0 the current basis part BE is not optimum,

Rigorous Outer Bounds with the Dual Simplex Algorithm in Tableau Form 7

and it can be changed by primal steps into a optimum basis. I.e., for each
such column j with ak,j > 0 we determine a row r such that ar,0 ≥ 0 and
−ar,0

ak,j

ar,j
< 0 is minimum. Both strategies are compared in Section 3 based

on a numerical example.

3 Implementation and Numerical Experiments

We have implemented the dual simplex algorithm in C/C++ using the tableau
organization shown in Figure 5. Note that the tableau can be physically stored

objective function row
User equ. rows, n vars User equ. rows, u + 3c + 4d slack

User inequ. rows, n vars User inequ. rows, u + 3c + 4d slack
Bernstein rows, n vars Bernstein rows, u + 3c + 4d slack

Fig. 5 Tableau organisation in regions for the user system and for the Bernstein polytope
(u user inequalities, c squared variables, d mixed variables).

as a m × n array of double-entries or in a sparse form as an array of m rows
of index/double-entry pairs.

In the following, we demonstrate the different strategies of start basis gen-
eration on the example system mixed.sys :

0.5x1 = x2x3

0.5x2 = x1x3

0.5x3 = x1x2

on D1 = D2 = D3 = [−1, 1]. The basis variables are marked by a box around
them. When pivoting with x23, x13, x12, the system is in reduced row-echelon
form

0.5x1 = x23

0.5x2 = x13

0.5x3 = x12

and can be completed with two inequalities of the Bernstein polytope for
xii into a start basis. Figure 6 shows a statistics of the interval width of the
objective value in the course of the pivoting steps. The computation (described
in [3]) performs 54 reductions (382 pivot steps in total), 11 bisections, and the
solution time is 0.25s (Windows XP, Intel Pentium T7400, 2.2GHz). The worst
condition number of the tableau is 373.2.

When pivoting with x1, x13, x12, the system is in reduced row-echelon form

0.5 x1 = x23

0.5x2 = x13

0.5x3 = x12

8

 1e-020

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 50 100 150 200 250 300 350
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

er
ro

r

pi
vo

t s
te

p

min/max x, mixed.sys

Interval width
Num pivots (min)
Num pivots (max)

Fig. 6 System mixed.sys with start basis from Bernstein polytope for xii. Errors are
derived from the interval width of the objective value. The average number of pivot steps
per reduction is 4.07.

 1e-020

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 50 100 150 200 250
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

er
ro

r

pi
vo

t s
te

p

min/max x, mixed.sys 0/1/2

Interval width
Num pivots (min)
Num pivots (max)

Fig. 7 System mixed.sys with start basis from Bernstein polytope for xij . Errors are
derived from the interval width of the objective value. The average number of pivot steps
per reduction is 4.53.

and can be completed with three inequalities of the Bernstein polytope x23

into a start basis. Note that the reduced row-echelon form for variables x2

and x3 is similar and thus omitted here. Figure 7 shows a statistics of the
interval width of the objective value in the course of the pivoting steps. The

Rigorous Outer Bounds with the Dual Simplex Algorithm in Tableau Form 9

computation (described in [3]) performs 32 reductions (275 pivot steps in to-
tal), 8 bisections, and the solution time is 0.15s (Windows XP, Intel Pentium
T7400, 2.2GHz). The worst condition number of the tableau is 308800, and
it results in larger objective value intervals, i.e., worse lower bounds. In the
comparison, the second start basis results in less pivoting steps in the dual
simplex iteration. Tableaus of worst condition number normally occur due to
the Bernstein inequalities for very small intervals Di. Such polytopes can be
avoided by replacing them with thick planes or lines as described in [3].

 1e-020

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 0 100 200 300 400 500
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

er
ro

r

pi
vo

t s
te

p

min/max x, mixed.sys

Interval width
Num pivots (min)
Num pivots (max)

Fig. 8 System mixed.sys solved by SoPlex. Errors are derived from the duality gap (ct
−

y∗ tA)x, x ∈ D, where y∗ is the corresponding dual vector to the primal solution vector x∗.

In general, the tableau form tends to populate rows quickly. On the system
mixed.sys, the user and Bernstein region of the tableau get filled approximately
60% to 80%.

For comparison with the revised simplex implementation SoPlex, we com-
pute a rigorous lower bound bty + e using the duality gap

e = min{(ct − y∗ tA)x : x ∈ D}

The primal solution vector x∗ is directly available, and the correspond-
ing dual solution vector y∗ can be derived from the constraint slacknesses at
x∗. Figure 8 shows the statistics of the duality gap sizes during solving the
system mixed.sys. Large duality gap sizes (larger than 10−10) result from lin-
ear programs, where no bound reduction could be achieved due to an early
termination of the simplex implementation in SoPlex.

10

4 Conclusion

In this paper, we have presented a new way to implement the dual simplex
algorithm in tableau form with interval pivoting steps for the direct computa-
tion of a rigorous lower bound. Such an algorithm can be used for example in a
polynomial system solver using linear relaxations. Compared to a lower bound
computed from the duality gap, it is not so much affected by the condition of
the given linear program and an early termination of the simplex code. But
due to the use of the tableau form it performs more floating point operations
than state-of-the-art revised simplex implementations (e.g., SoPlex [7]). The
algorithm can not exploit the system’s sparsity easily, so that a pivoting step
requires Θ(nm) interval operations.

Nevertheless, the computation is based on Gauss-Jordan pivoting and has
a corresponding memory access pattern. Due to this regularity, it might be a
good candidate for a fine-grained parallel implementation of the dual simplex
algorithm.

In future work, we want to consider reducing the number of variables xij

by replacing some of them by its interval Di ·Dj . Additionally, we would like to
look into using an interval right hand side similarly in a revised implementation
of the dual simplex algorithm.

References

1. Ch. Keil Lurupa – Rigorous Error Bounds in Linear Programming, Algebraic and
Numerical Algorithms and Computer-assisted Proofs (B. Buchberger, S. Oishi, M. Plum,
S. Rump), Dagstuhl Seminar Proceedings (Number 05391) 2006.

2. Ch. Keil A Comparison Of Software Packages For Verified Linear Programming, sub-
mitted to SIAM Journal on Optimization 2008.

3. Ch. Fünfzig, D. Michelucci, and S. Foufou Nonlinear systems solver in Floating-

Point Arithmetic using LP Reduction, ACM/SIAM Symposium on Solid and Physical
Modeling 2009.

4. Ch. Papadimitriou, K. Steiglitz Combinatorial optimization: algorithms and com-

plexity, Dover 1998.
5. R.E. Bixby Solving Linear and Integer Programs, Block Course Combinatorial Opti-

mization at Work, Berlin 2009.
6. R.B. Kearfott Discussion and Empirical Comparisons of Linear Relaxations and Al-

ternate Techniques in Validated Deterministic Global Optimization, Optimization Meth-
ods and Software 21(5), pp. 715-731, 2006.

7. R. Wunderling SoPlex Library Version 1.4.2, Technical Report, Zuse Institute, Berlin
1996.

