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Abstract—One of the steps of geometric modeling is to know
the topology and/or the geometry of the objects considered. This
paper presents different data structures and algorithms used in
this study. We are particularly interested by algebraic structures,
eg homotopy and homology groups, the Betti numbers, the Euler
characteristic, or the Morse-Smale complex. We have to be able to
compute these data structures, and for (homotopy and homology)
groups, we also want to compute their generators. We are also
interested in algorithms CIA and HIA presented in the thesis of
Nicolas DELANOUE, which respectively compute the connected
components and the homotopy type of a set defined by a CSG
(constructive solid geometry) tree. We would like to generalize
these algorithms to sets defined by projection.

I. INTRODUCTION

The main problem of computional topology is due to
the floating calculus. Indeed, we cannot decide if a space
is open or closed which is the basis notions in topology
(we say that topology is the study of neighborhoods). Then
with floating computation, we are not be able to decide
if two spaces are homeomorphic. That’s why, we consider
topological data structures, mostly algebraic, because their
computation is based on integer calculus and therefore on an
exact computation.

Data structures and algorithms that we give here are
topological invariants (ie invariant under homeomorphism) so
they are used to classify topological spaces.

They have also a topological interpretation (sometimes
also geometrically) which may be useful for the geometric
modeling: for example, some of these data compute the (path-
)connected components, the number of holes of a certain
dimension, ...

We want to compute these data structures for geometric
sets defined in different ways:

- implicitly: CSG trees where bases are sets of primitive

- parametrically: varying parameters in the square

but also projections, Minkowski sums,... and boolean op-
erations of such sets. We also have to treat meshs, smooth and
piecewise linear manifolds, simplicial complex,...

II. HOMOLOGY AND HOMOTOPY GROUPS [2] [1]

Background: A topological invariant is a map f that
assigns the same object to homeomorphic topological spaces,
that is to say: X ' Y ⇒ f(X) = f(Y ).

Examples: The number of (path-)connected components,
all topological properties (compactedness, connectedness,...).

The idea of homotopy groups and homology and algebraic
topology in general is to bring a topological problem (Are
two spaces homeomorphic ?) to an algebraic problem (Are two
groups isomorphic ?), and this last problem is more easier than
the topological one. We know that these groups are topological
invariants.

A. Homotopy groups

In this section, we first give the example of the first
homotopy group: the fundamental group (sometimes called
the Poincaré group), and the homotopy groups of upper order.

The fundamental group of a pointed topological space
(X,x) is the set of homotopy classes of loops in X which
rely x to itself (x ∈ X), provided by the composition of
paths. We note it by: Π1(X,x). If X is path-connected, then
the fundamental group does not depend on the basis point
and we will note Π1(X).

Examples:

• Π1(Rm) = {e} (the trivial group).

• ∀d ≥ 2,Π1(Sd) = {e} (Sd is the unit sphere of
Rd+1).

• Π1(S1) = Z (Z counts the number of loops around
the circle).

Proposition 1 (Compatibility with product): Let (X,x)
and (Y, y) two pointed topological spaces, then we have:

Π1(X × Y, (x, y)) = Π1(X,x)×Π1(Y, y).
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Fig. 1: The generators of Π1(T 2)

Examples: The torus T 2 := S1 × S1 in R3 is path-
connected and: Π1(T 2) = Z2.

The fundamental group is sometimes very useful to prove
that two spaces are not homeomorphic. For example, the unit
sphere S2 and the torus T 2 in R3 are not homeomorphic since:

{e} ' Π1(S2) 6= Π1(T 2) ' Z2

although these two spaces are compact, connected, and are
closed 2-manifolds in R3.

The introduction of the fundamental group is quite natural,
for against the actual computation of this data structure is
very complex for any topological space.

Homotopy groups of upper order: We note In := [0, 1]n

and ∂In its boundary. These groups generalize the previous
one. For n ∈ N, the nth homotopy group of (X,x0) is the
set of homotopy classes of maps f : In −→ X such that
f(∂In) = x0, provided by the composition. We note this
group Πn(X,x0). For n ≥ 2, the nth homotopy groups are
commutative but they are not finitely generated and then we
cannot determine easily their structure.

B. Homology groups

Unlike the homotopy groups, homology groups have a less
obvious construction but their actual computation is much
easier. We define in this section the notion of simplicial
homology.

The simplicial homology is before defined for a simplicial
complex.

Let K = (δi)i∈I be a simplicial complex in Rn.

Definition 1: The Euler characteristic of K is defined by:

χ(K) :=
∑
j∈N

(−1)jnj

where: nj := |{i ∈ I | dim δi = j}|.

Proposition 2: The Euler characteristic is a
topological invariant.

We note (for all n ∈ N) Cn(K) the free group generated
by the n-simplices of K.

Fig. 2: A simplicial complex

Fig. 3: counter-example of a simplicial complex

Definition 2: We call boundary operators and we note
∂ = (∂n : Cn(K) −→ Cn−1(K))n∈N the collection of group
morphisms defined by:

∂n([v0, ..., vn]) =

n∑
i=0

(−1)i[v0, ..., v̂i, ..., vn].

So, we have a sequence of group morphisms:

. . .
∂n+2−−−→ Cn+1(K)

∂n+1−−−→ Cn(K)
∂n−→ ...

C1(K)
∂1−→ C0(K)

∂0=0−−−→ C−1(K) = {0}.

with the property: ∀ n ∈ N, Im ∂n+1 ⊂ ker ∂n.

We call n-cycles the elements of ker ∂n and n-boundaries
the elements of Im ∂n+1.

Definition 3: Let K be a simplicial complex, we then
define the n-th homology group of K by:

Hn(K) = ker ∂n / Im ∂n+1.

In order to extend the definition of homology groups on
any topological spaces, we have to introduce the notion of
∆-complex structure.

The standard simplex of Rn is: ∆n := {(x1, ..., xn) | xi ≥
0 et

∑n
i=1 xi = 1}.

Definition 4: A ∆-complex structure on a topological
space X is a collection of continuous maps (σα)α∈Λ where
σα : ∆nα −→ X such that:
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(i) ∀ α ∈ Λ, the restriction σα|Int(∆nα) is injective
(ii) ∀ x ∈ X, ∃ ! α ∈ Λ, x ∈ σα(Int(∆nα))
(iii) ∀ U ⊂ X, (U is open in X)⇐⇒
(∀ α ∈ Λ, σ−1

α (U) is open in ∆nα).

Vocabulary: A topological space provided by a ∆-complex
structure is also called a ∆-complex.

Remark: With these axioms, we have the following
property: ∀ n ∈ N, σα|Int(∆nα) is a homeomorphism on
its image. Thus, we can say that the σα(Int(∆nα)) are open
nα-simplices on X , and that {σα(Int(∆nα))}α∈Λ form a
simplicial complex built on X (we also say triangulation of
X).

Then we can define the homology groups of a ∆-complex
considering for all n in N, ∆n(X) the free group generated
by the open n-simplices of X . These homology groups will
noted: H∆

n (X).

Remark: This definition of homology groups does not
depend on the structure of ∆-complex defined on the
topological space (we use the notion of singular homology
to prove it). Thus, this data structure only depends on the
topological space considered.

The H∆
n (X) are finitely generated, the structure theorem

of finitely generated abelian groups gives us:

∃ ! βn ∈ N?,∃ ! m ∈ N?,∃ ! t1 | t2 | ... | tm ≥ 2,

H∆
n (X) '

βn∏
i=1

Z×
m∏
j=1

Z/tjZ

Definition 5: βn is called the n-th Betti number of X .

Proposition 3: 1. β0 is the number of connected compo-
nents of X .
2. [Euler-Poincaré formula]:

χ(M) :=

d∑
i=0

(−1)ini =

d∑
i=0

(−1)iβi

More generally, βn is the number of n dimension holes
of the topological space considered.

Implementation: We give two ways compute the homology
groups (and possibly their generators).

1. By reducing the incidence matrices (i.e the matrices
of boundary operators) [7] under the Smith normal form.
The Smith normal form of an integer matrix is the equivalent
matrix which is diagonal and the non zero coefficients
d1, d2, · · · , dm verify d1 | d2 | · · · dm as in structure theroem
of finitely generated abelian groups. This reduction gives the
Betti numbers, the torsion coefficients, a basis of n-cycles
and n-boundaries but not a basis of homology groups.
From this normal form, we can compute the Smith-Agoston
normal form which is similar to the previous one. With this
normal form, we have the generators of homology groups.

2. Using the Mayer-Vietoris exact sequence [10]. The
main idea of this method is to compute the homology
by decomposing the space in two smaller spaces. It is
interesting only if the homology of the two subspaces and
their intersection is easier to compute than for the initial one.

As we said in introduction, in data processing we con-
sider algebraic data structures to study the topology. These
data structures are often topological invariants and then gives
topological equivalences which are less stronger than homemo-
morphism. We summarize these equivalences and the relations
between themselves:

Isotopy ⇒ Homeomorphism ⇒ Homotopy ⇒
Homology.

Definition 6: An ambiant isotopy between two surfaces S
and S′ in R3, is a continuous map

Γ : R3 × [0, 1] −→ R3

such that Γ(., t) is an homeomorphism from R3 to itself for
each t ∈ [0, 1], and Γ(S, 1) = S′.

Fig. 4: A geometric object which is homeomorphic to the torus
but not isotopic

In R3, the cylinder and the circle are homotopic (the circle
is a deformation retract of the cylinder) but not homeomorphic.

III. MORSE THEORY

We are focused here in differentiable manifolds, their
topology is studied using smooth functions defined on them.
The main idea of Morse theory it is enough to study the
topology of the manifold at the neighborhood of each critical
point.
Let M be a differentiable n-manifold and h : M −→ R a
smooth function. We note: Ma

h := h−1(]−∞, a]).
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A. Topology of manifolds [3]

Definition 7: We say that h : M −→ R is a Morse function
if all its critical points are non-degenerate.

There are three types of critical points non-degenerate:
minimums, saddle points, maximums.

Definition 8 (Morse Index): The Morse index of p for h is
defined by one of the equivalent following assertions:
(i) the number of minus signs in the the development of f
using the Morse lemma
(ii) the number of negative eigenvalues of the Hessian matrix
of f at the point p
(iii) the number of independant directions where f decreases
from p.

Examples: If M is a 2-manifold in R3 and p ∈M a critical
point non-degenerate of h, then:

ih(p) =

{
0 if p is a minimun
1 if p is a saddle point
2 if p is a maximum

.

Theorem 4: Let a < b, we assume that h−1([a, b]) is non
empty, compact (it is always the case if M is compact) and
does not contain critical points.
Then, Ma and M b are diffeomorphic.

This theorem justify the fact that it is sufficient to study the
topology of the manifold at the neighborhood of each critical
point.

Corollary 5 (Reeb theorem): Assume that M is compact
and there exists a Morse fonction defined on M with only two
critical points. Then, M is homeomorphic to a sphere.

We now give a theorem which gives the evolution of the
topology when you cross a critical point.

Theorem 6: We assume that p ∈M is a critical point of h
and that: ∃ ε > 0, h−1([α− ε, α+ ε]) is compact and contains
no other critical point that p. We note: α = h(p).
Then, Mp+ε

h is homotopic to Mp−ε
h which is added a (n −

ih(p))-cell (which is in fact the unstable manifold Wu
h (p) (see

definition 9)).

Fig. 5: changement of topology at the neighborhood of the first
saddle point

Fig. 6: changement of topology at the neighborhood of the
second saddle point

Proposition 7: We have the two following relations:
1. [Morse inequality].

∀ k ∈ N, βk(M) ≤ µk(h)

where: µk(h) := |{x ∈M | ih(x) = k}|
2.

χ(M) =

d∑
i=0

(−1)iβi(M) =

d∑
i=0

(−1)iµi(h).

Examples: 1. For the sphere S2 ⊂ R3 provided with the
height function h, we have:

µk(h) =

{
2 if k ∈ {0, 2}
0 otherwise

βk(S2) =

{
1 if k ∈ {0, 2}
0 otherwise

and therefore χ(S2) = 2.
2. We consider the torus T 2 ⊂ R3 provided with the height
function h, we have: χ(T 2) = 0.
Indeed, we have:

βk(T 2) =

{
1 if k ∈ {0, 2}
2 if k = 1
0 otherwise

and:

µk(h) =

{
1 if k ∈ {0, 2}
2 if k = 1
0 otherwise

.

B. Morse-Smale complex [12] [13]

We are focused in the following differential problem:

(E) :

{
x′(t) = Oh(x(t))
x(0) = x0 ∈M
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it admit an unique maximal solution (Cauchy-Lipschitz
theroem on a manifold). If M is compact, then the maximal
solution of (E) is defined on R.

Notation: γp the integral curve through the point p ∈M .

Proposition 8: Let x be an integral curve for h, we have
the following properties:
1. The integral curves are strictly increasing (according to h)
or constants and form a partition of M .
2. If the limits limt→+∞ x(t) and limt→−∞ x(t) exist (it is
always the case is M is compact), then they are critical points.
3. The integral curves are orthogonal to regular level sets.

Definition 9: Let p ∈M , we define the two following sets:
1. W s

h(p) := {x ∈ M | limt→+∞ γx(t) = p}: it is the stable
manifold of p.
2. Wu

h (p) := {x ∈ M | limt→−∞ γx(t) = p}: it is the
unstable manifold of p.

Proposition 9: We have the following properties:
1. W s

−h(p) = Wu
h (p) ; Wu

−h(p) = W s
h(p).

2. M is covered by the stable and unstable manifolds which are
open sets of Rd (with d which depend on the stable/unstable
manifold).

Theorem 10: Let p be a critical point, then the sets W s
h(p)

and Wu
h (p) are differentiable manifolds.

Moreover: dimW s
h(p) = ih(p)

and therefore dimWu
h (p) = n− ih(p).

Particular case: If M ⊂ R3 is a 2-manifold, p ∈ M a
saddle point (ih(p) = 1), then we have: W s

h(p) \ {p} (resp.
Wu
h (p) \ {p}) is the union of two curves coverging to (resp.

diverging from) p. These curves are called the stable (resp.
unstable) separatrices of the saddle point.

Definition 10: h : M −→ R is a Morse-Smale function if:
1. h is a Morse function
2. the stable and unstable manifolds intersect only transver-
sally, that is to say:
∀ x ∈W s

h(p) ∩Wu
h (q), TxM = TxW

s
h(p) + TxW

u
h (q).

Important remark: If h is a Morse-Smale function defined
on M ⊂ R3 a 2-manifold, then there is no integral curve which
connects two saddle points.

Definition 11: We assume that h is a Morse-Smale func-
tion. The Morse-Smale complex of M provided with h is the
subdivision of M formed by the connected components of the
intersections W s

h(p) ∩ Wu
h (q) when p and q range over all

critical points of h.

More precisely, the Morse-Smale complex of a 2-manifold
in R3 can be obtained as follow:
1. the vertices are the critical points
2. the edges are integral lines connecting a minimun (resp.
maximum) at a saddle point
3. the regions (i.e 2-cells) are the integral lines connecting a
minimum at a maximum.

Lemma 11 (quadrangle lemma): Each region of the
Morse-Smale complex of a 2-manifold in R3 is a quadrangle.
Futhermore, the Morse indices of the vertices of these
quadrangles are 0, 1, 2, 1 in this order.

Fig. 7: Morse-Smale complex

The blue points are the maximiums (index 2), the white
are the minimums (index 0) and the blue and white are the
saddle point (index 1).

Applications:
· in molecular form analysis [11]
· in topological data analysis [15]
· in vector fields analysis [16] [17].

For the computation of Morse-Smale complexes, Edelsbrunner
et al. propose a method for piecewise linear 2-manifolds
[19] (resp. 3-manifolds [20]) using the notion of quasi
Morse-Smale complexes.

IV. CYLINDRICAL ALGEBRAIC DECOMPOSITION

The main objective of this algorithm is to create a cylin-
drical decomposition which partitions the set S into connected
subsets compatible with the zeros of the polynomials. This
means that on each subset of the CAD, each of the polynomials
either vanishes everywhere or nowhere.

Definition 12 (Cylindrical decomposition): A decomposi-
tion of Rn into finitely many connected regions is cylindrical
if for any two regions A and B of the decomposition and
any k, 1 ≤ k ≤ n, the projections of A and B onto Rk are
either identical or disjoint. A cylindrical decomposition D of
Rn induces cylindrical decompositions of Rk for every k ≤ n.

This definition leads us to construct a cylindical (algebraic)
decomposition of Rn+1 from one of Rn.

Definition 13 (Cylindrical Algebraic Decomposition): A
cylindrical decomposition of Rn into semi-algebraic sets is a
cylindrical algebraic decomposition.

More formally, we can define a cylindrical decomposition
by means of a recurrent definition. A cylindrical decomposition
of Rn is a decomposition of Rn in cells (Ci)i for which:

• n = 1: A cylindrical decomposition of R is a subdi-
vision a1 < . . . < al, with ai ∈ R for all 1 ≤ i ≤ l.

• n > 1: A cylindrical decomposition of Rn is given by
a cylindric decomposition of Rn−1 such that for each
cell C of the decomposition of Rn−1 there exist l(C)
semi-algebraic functions

ϕC,1 < . . . < ϕC,l(C) : D → R.
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Input: A finite family Pn of polynomials on R[X1, . . . , Xn].
Output: A cylindrical algebraic decomposition adapted to Pn.

1) if n = 1 then
2) Return a cylindrical decomposition D1 of family P1.
3) else
4) Construct a family of polynomials Pn−1 on

R[X1, . . . , Xn−1] such that a decomposition adapted
to Pn−1 is the base of a decomposition adapted to
Pn.

5) Dn−1 ← Collins(Pn−1).
6) For every cell C in decomposition Dn−1, compute

the decomposition of the cylinder under C induced
by polynomials Pn.

7) Add all those cells to Dn and return Dn.
8) end if

Fig. 8: Algorithm for the Cylindrical Algebraic Decomposi-
tion.

The (n− 1)-cells of the cylindrical decomposition of
Rn are the graphs of the functions ϕC,i

{(x, ϕC,i(x)); x ∈ D}, 0 < i ≤ l(C).

The n-cells are the sets ]ϕC,i, ϕC,i+1[ =

{(x, y) ∈ D × R/ϕC,i(x) < y < ϕC,i+1(x)},

0 < i ≤ l(C),

with ϕC,0 = −∞ and ϕC,l(C)+1 = +∞.

For 0 ≤ i ≤ n, an i-cell is a subset of Rn which
is homeomorphic to Ri, and every element of a cylindrical
decomposition is an i-cell for some i.

Given a finite family Pn of polynomials on R[X1, . . . , Xn],
Collins algorithm constructs a cylindrical algebraic decompo-
sition of Rn such that all polynomials have constant sign at
every cell. Such a decomposition is called adapted to Pn.

Collins algorithm is a recursive algorithm. The main con-
cept is as follows: from a finite family Pn of polynomials
on R[X1, . . . , Xn], create a family Pn−1 of polynomials on
R[X1, . . . , Xn−1] such that a decomposition adapted to Pn−1

is the base of a decomposition adapted to Pn. Algorithm 8
presents this method.

For the case n = 1, the decomposition is made by the set
of real roots of the polynomials of P1. The 0-cells will be
the roots, and the 1-cells will be the intervals defined by two
subsequent roots.

For the case n = 2, we are going to present a limited
version for R2. The general case is a little more complicated
but general concepts remain the same.

Given is a family P2 of polynomials with two variables. We
will find a decomposition D1 adapted to P1. The constraints
that the cells in the decomposition D1 must hold are:

1) For every cell C in D1, all polynomials in P2 must
have a constant number of roots as polynomials of
variable x2.

2) For every open cell C in D1, the curves defined by
the roots of the elements in P2 never intersect.

We analyze the conditions for those two constraints to hold.
For the first one, there are two possibilities:

• A real root becomes complex. Then, singletons {x1}
verifying

∃ x2 ∈ R, P (x1, x2) = 0 =
∂P

∂x2
(x1, x2) (1)

must be in D1.

• A real root becomes infinite. Then, if P (x1, x2) can
be written as an(x1) xn2 + . . . + a0(x1) = 0 with
ai ∈ R[X1], the singletons {x1} verifying an(x1) = 0
must be in D1.

For the second one, there are also two possibilities:

• Both curves are roots of the same polynomial. Then
P (x1, x2) has a multiple root and equation 1 must be
fulfilled.

• Both curves are roots of two different polynomials P
and Q. Then, singletons {x1} verifying

∃ x2 ∈ R, P (x1, x2) = 0 = Q(x1, x2) (2)

must be in D1.

In order to find the univariate polynomials on x1 which
will belong to D1 such that their zeros contain the previously
enumerated elements of D1, we have to add an(x1) to P1

for the second case, and for the other cases P1 must contain
polynomials which vanishes whenever equations 1 and 2 hold.

V. C.I.A AND H.I.A ALGORITHMS [4]

In this section, we consider topological spaces defined by
CSG (constructive solid geometry) trees. More precisely, a
such space E is defined as follow:

E :=

s⋃
i=1

ri⋂
j=1

{x ∈ Rn | fi,j(x) �i,j 0} (])

where: fi,j are C1-functions and
�i,j ∈ {= ; ≤ ; ≥}.

A. Connected components: C.I.A algorithm [5]

This algorithm computes the path-connected components
of a topological space defined as in (]). For that, it covers the
space E by a collection of boxes (pi)i∈I such that:

∀ i ∈ I, E ∩ pi is star-shaped (and therefore path-connected).

We start by giving a sufficient condition for a point to be
a star.

Proposition 12: Let v ∈ E, is the following system:

f(x) = 0, dxf(x− v) ≤ 0, x ∈ E

is inconsistent (i.e: has no solutions), then v is a star for E.

Definition 14: A star-spangled graph of E, noted GE , is
a relation R on a tiling P where:

• P = (pi)i∈I is a tiling,
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Fig. 9: Star test: we have dx1f(x1−v) > 0 and dx2f(x2−v) ≤
0, then v is not a star.

• R is the reflexive, symetric relation defined by:

p R q ⇐⇒ E ∩ p ∩ q 6= ∅

• E ⊂ ∪i∈I pi.

Proposition 13: With a such decomposition, we have the
following fundamental result:
|{ path-connected components of E}| = |{ connected compo-
nents of the graph GE}|.
In particular, E is path-connected if and only if GE is
connected.

C.I.A algorithm

Notations:
P? contains boxes p such that E ∩ p is star-shaped.
Pout contains boxes p such that E ∩ p is empty.
P∆ contains boxes such that nothing is known about them.

This algorithm decomposes itself in three algorithms:

• Star-shaped (E, p) which determines if E ∩ p is star-
shaped or not (thanks to proposition 15)

• Build-graph-interval (E,P) which computes the star-
spangled graph of E provided with the tiling P .

• C.I.A (E,X0) which computes the path-connected
components of E.

Star-shaped (E, p):
Inputs: f : Rn −→ R a C1-function, p a box of Rn.

1. If f(p) ⊂ R?+ then we return ”E ∩ p = ∅”
2. else for all vertex vp of p do
3. if {x ∈ p, f(x) = 0, f(vp) ≤ 0, dxf(x − vp) ≤ 0} is
inconsistent then we return ”E ∩ p is star-shaped”
4. end if
5. end for
6. return ”fail”
7. end if.

Build-graph-interval (E,P) :
Inputs: E ⊂ Rn, P a tiling

Outputs: an interval graph [g, g]

1. g := ∅, g := ∅
2. for all (pi, pj) ∈ P × P do
3. if E ∩ pi ∩ pj 6= ∅
4. then if a vertex of pi ∩ pj is in E then we add (pi, pj)
to g and to g
5. else we add (pi, pj) to g
6. end if
7. end if
8. end for
9. return the interval graph [g, g].

C.I.A (E,X0) : path-connected components
using interval analysis :
Inputs : E ⊂ Rn, X0 a box of Rn which contains E.

1. P? := ∅, P∆ := {X0}, Pout := ∅
2. While P∆ 6= ∅ do
pop the last element p of P∆

3. if E ∩ p = ∅ then do Pout ← Pout ∪{p} and go to step 2
4. else if E∩p is star-shaped and Build-graph-interval(E,P?∪
{p}) = [g, g] is punctual (i.e g = g) then push p in P? and
go to step 2
5. else subdivide the box p in two boxes p1 and p2, push p1
in P∆, push p2 in P∆ and go to step 2
6. end if
7. end while
8. [g, g] := Build-graph-interval (E,P?)
9. n← |{ connected components of g}|
10. return ”E has n path-connected components”.

Fig. 10: Path-connected components: C.I.A algorithm

B. Homotopy type: H.I.A algorithm [6]

This algorithm computes a simplicial complex which is
homotopic to E.

Definition 15: We say that a space is contractible if it is
homotopic to a point.
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Example: The star-shaped spaces are contractibles.

Definition 16: We say that {pi}i∈I is a compact con-
tractible covering of E if:
(i) I is finite
(ii) ∀ i ∈ I, pi is compact
(iii) ∀ J ⊂ I, pJ := ∩i∈J pi ∩ E is contractible or empty.

Definition 17: 1. An abstract simplicial complex K is a
subset of P({a0, a1, .., an}) such that:

∀σ ∈ K,∀τ ⊂ σ, τ ∈ K

The ai are called abstract vertices ans subsets of {ai0 , ..., ais}
(s ∈ N?) the abstract simplices.
2. The dimension of an abstract simplex
{ai0 , ..., ais} is s. The dimension of an abstract simplicial
complex is the maximal dimension of its abstract simplices.

Example : K0 := {{a0}, {a1}, {a2}, {a0, a1},
{a0, a2}, {a1, a2}, {a0, a1, a2}, {a3}, {a4},
{a3, a4}}
dim K0 = dim {a0, a1, a2} = 2.

Fig. 11: The abstract simplicial complex generated by K0

Definition 18: Let σ1,..., σm ∈ P({a0, ..., an}). We note
σ1 + ... + σm the abstract simplicial complex generated by
(σi)i∈[|1,m|] defined by:

σ1 + ...+ σm :=

m⋃
i=1

P(σi)

Example: K0 = {a0, a1, a2}+ {a3, a4}.
Definition 19: Let K an abstract simplicial complex and x

an abstract node such that {x} /∈ K.
We note C(x,K) the abstract simplicial complex generated by
x and K, that is to say we have the following formula:

C(x,K) := K ∪
⋃
s∈K
{x} ∪ s

Notation: Si K = σ1 + ...+ σm, then we note:

C(x,K) = x ∗ (σ1 + ...+ σm) := x ∗ σ1 + ...+ x ∗ σm
where: x ∗ σ := {x} ∪ σ.

Definition 20: Let {pi}i∈I a compact contractible covering
of E.
We note: J := {J ⊂ I | pJ 6= ∅}.
We say that an abstract simplicial complex K(E) is adapted
to {pi}i∈I if it is the smallest simplicial complex such that:

Fig. 12: The abstract simplicial complex C(x,K′)

- ∀ J ∈ J , an abstract vertex (aJ) is in K(E)
- ∀ J ∈ J , an abstract simplicial complex KJ defined by:

KJ := aJ ∗

 ∑
J′∈J |pJ′⊂pJ

KJ′


is an abstract simplicial sub-complex of K(E).

Theorem 14: (Nerve theorem) If {pi}i∈I is a covering of
E and if K(E) is an abstract simplicial complex adapted to
{pi}i∈I , then E and K(E) have the same homotopy type.

H.I.A algorithm:

Notations:
P? the tiling such that: ∀ {pj}j∈J ⊂ P?, ∩j∈JE ∩ pj is
contractible or empty.
P∆: nothing is known about its boxes.

This algorithm decompose itself in two
algorithms:

Nerve (E,P = {pi}i∈I)
Inputs: a set E is a covering {pi}i∈I (pi are boxes).
Outputs: un complexe simplicial abstrait K(E) which is
adapted to {pi}i∈I .

1. K(E)← ∅ ; J ← ∅
2. for all J ⊂ I do
3. if EJ is contractible then J ← J ∪ {I}
4. end if
5. end for
6. K(E)←

∑
i∈I′ Cone({i})

where: I ′ := {i ∈ I|{i} ∈ J }
and Cone(J) is recursively defined for J ∈ J by the
following formula:

Cone(J) := aJ ∗

 ∑
J′∈J |EJ′⊂EJ

Cone(J ′)


.

H.I.A (E,X0): homotopy type via interval
analysis
Inputs: E ⊂ Rn, X0 a box of Rn which contains E.
Outputs: an abstract simplicial complex K(E) which is
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homotopic to E.

1. P? := ∅ ; P∆ := {X0}
2. while P∆ 6= ∅ faire
3. pop the last element p of P∆

4. if ∀ {pj}j∈J ⊂ P? ∪ {p}, ∩j∈JE ∩ pj is contractible or
empty then push p in P?
5. else subdivide p in two boxes p1 and p2, push p1 in P∆,
empiler p2 in P∆

6. end if
7. end while
8. K(E)← Nerve (E,P?).

Fig. 13: homotopy type, H.I.A algorithm

Application: An important application of these two
algorithms is the path planning [9], especially in robotics
where the CIA algorithm used to determine feasible positions
from a given configuration of the robot.

Now we present how Varadhan & Manocha apply the
technique in HIA to compute a roadmap in motion planning.

C. Varadhan & Manocha’s method [18]

Varadhan & Manocha’s method is based in the same idea
as Delanoue et al.’s, and present a very similar method to
compute the star-shaped decomposition of the original set. So
we will consider that the method to create so a decomposition
is irrelevant.

Based on star-shapedness the intra-region connectivity is
captured. In order to achieve also inter-region connectivity the
concept of connector is introduced. The presented approach to
compute the roadmap is:

1) Compute a star-shaped decomposition Σ of the free
space.

2) For every pair of adjacents regions in Σ, compute a
point c (connector) on their common boundary.

3) Construct a star-shaped roadmap R as the undirected
graph (V,E). Denoting by S and C the set of star-
points and connectors respectively, V = S ∪C. Each
connector c connects two star-points s1, s2 of two
adjacent regions. Let Stars(c) denote {s1, s2}. Then,

E = {(c, s) : c ∈ C, s ∈ Stars(c)}

Theorem 15: Let F ⊂ Rn and p, q ∈ F two points in it.
Let R be a star-shaped roadmap for F defined as before. Then
p and q are connected in F if and only if ∃ p∗, q∗ ∈ F such
that p and p∗ are connected in F , p∗ and q∗ are connected in
R and q and q∗ are connected in F .

This theorem sets the basis to find a collision-free path
between two points in F .

VI. CONCLUSION

We presented in this paper a non-exhaustive list of data
structures and algorithms describing topology and/or geometry.
As regarding the computation of homology groups, we need to
know how to compute a simplicial complex on the topological
space (ie bring it to a ∆-complex structure). Another method
is to compute a simplicial complex which is homotopic to the
geometric object, for example using the HIA algorithm.
The CIA and HIA algorithms do not apply as such to sets
defined by projection. It is possible to generalize the two
algorithms to solve this problem: a new representation of
geometric sets is used for that [14]. We also would like to
know if you can replace homotopic by isotopic in the HIA
algorithm.
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