Witness computation for solving geometric constraint systems

Arnaud Kubicki ?, Sebti Foufou®"* Dominique Michelucci ®

2Le2i Lab, CNRS UMR 5158 , University of Burgundy, BP 47870, 21078 Dijon, France.

b Computer Science, College of Engineering, Qatar University, Qatar.

Abstract

In geometric constraint solving, the constraints are represented with an equation system F(U,X) = 0, where X denotes the
unknowns and U denotes a set of parameters. The target solution for X is noted Xr. A witness is a couple (Uw, Xw) such that
F(Uw,Xw) = 0. The witness is not the target solution, but they share the same combinatorial features, even when the witness
and the target lie on two distinct connected components of the solution set of F'(U, X) = 0. Thus a witness enables the qualitative
study of the system: the detection of over- and under-constrained systems, the decomposition into irreducible subsystems, the
computation of subsystems boundaries.

This paper investigates the witness computation in various configurations. The witness computation will be studied under several
numerical methods: Newton iterations from random seeds either in R and C, the Broyden-Fletcher-Goldfarb-Shanno method, the
Nelder-Mead simplex method. The robustness and performances of these methods will be analyzed and compared. The paper also
presents the numerical probabilistic method from which the witness method was originated, and shows how the witness can be

used for detecting dependent parameters within systems of geometric constraints.
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1. Introduction

In the context of Computer-Aided Design, the resolution
of geometric constraint systems aims at yielding figures
which satisfy spatial relationships between geometric enti-
ties. These spatial relationships may result from geometric
processes such as reverse engineering, or given by the user.
Instead of explicitly giving the coordinates of the points,
lines, planes and other geometric entities, the user draws a
sketch on which he provides, with specific tools, geometric
constraints (e.g. distances, angles, incidences, etc.) between
the entities. A configuration is a geometric model composed
of the constrained entities or a subset of them. Solutions
are given as the coordinates of the geometric entities, i.e.
the configuration, which satisfies all the constraints.

A geometric constraint system thus consists of a 3-tuple
S = (C,X,U) with C the set of constraints, X the set of

* Corresponding author

Email addresses: arnaud.kubicki@u-bourgogne.fr (Arnaud
Kubicki), sfoufou@qu.edu.qa (Sebti Foufou),
dmichel@u-bourgogne.fr (Dominique Michelucci).

unknowns (geometric entities), and U the set of parameters
(metric values of the constraints and coordinates specified
by the user). When considering equation-based solvers, one
may also consider a geometric constraint system as a set of
equations F' and the resolution process as the search of a
root for F(U, X) = 0.

A geometric constraint system can be under-constrained
(there is an infinity of solutions, because there are too
few constraints), over-constrained (there are no solutions
because of some direct — structural — or indirect depen-
dences, as well as inconsistencies) or well-constrained (there
is a finite non-zero number of solutions). A system is said
consistently over-constrained when it is generically over-
constrained but the values of the parameters are such that
there are actual solutions. Notice that a rigid system is
under-constrained since its solutions may be translated
and/or rotated without violating the constraints: for that
reason, most methods consider well-constrainedness mod-
ulo rigid motions. For more formal definitions of geometric
constraint systems and the levels of constrainedness, the
reader may refer to [11].



Geometric constraint solving has been an active research
area in the recent decades [2,6]. A review of the basic tech-
niques that are widely available for solving 2D and 3D ge-
ometric constraint problems can be found in [7]. Also, a
review of decomposition techniques can be found in [9].

To accommodate with, and take into consideration, the
specificities of geometric constraint systems, the available
resolution algorithms, also called solvers, vary in many as-
pects such as:

— the steps of resolutions (dependence detection, correc-
tion, decomposition, resolution of subsystems, etc.),

— the underlying resolutions techniques (classical methods
from numerical analysis, e.g. Newton-Raphson, graph
techniques, probabilistic methods, etc.),

— the interaction with the user during the resolution (au-
tonomous algorithms, semi-autonomous),

— the solution set provided to the user (a single configura-
tion, several or all configurations).

Detecting direct and indirect dependences in systems of
geometric constraints is a difficult task in which a lot of al-
gorithms fail. Particularly, graph-based solvers fail to find
non-structural dependences due to geometric theorems.
The witness configuration method proposed in [13] effi-
ciently overcomes the intrinsic limitations of graph-based
methods in detecting all dependencies between geometric
constraints (Section 2 defines the concept of witness for
a system of geometric constraints). The computation of a
basis of the vector space of the free infinitesimal motions
of a typical witness is presented in [15], as well as the use
of this basis to interrogate the witness for detecting all
dependencies. Several other important problems of geo-
metric constraint solving, such as the detection of maximal
well-constrained subsystems or the computation of a well-
constrained basis of a consistently over-constrained sys-
tem are addressed in [16] using the witness configuration
method.

The most important drawback of the witness configuration
method is the need of a typical witness, i.e. a solution to a
geometric constraint system, with the same sets C' and X
but different values of the parameters. The witness must be
typical, i.e. have the same combinatorial properties as the
solutions. Most of the time, the sketch drawn by the user
is a witness, but when the system contains many incidence
constraints (which must be satisfied by the witness) or when
the user unknowingly puts the geometric entities of the
sketch in singular positions, one may need to compute a
witness.

This paper complements the witness configuration method
by comparing the results of different methods used to com-
pute the witness: Newton’s iteration from random seeds
in both R and C, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method, the Nelder-Mead Simplex (NMS) method.

A complete, guaranteed, robust interval-based solver is de-
scribed in [5] and used in [16]. If this solver finds no solution,
it proves that no solution exists. Only a complete solver

brings this kind of guarantee and this degree of robustness.
However, most of the time, using a complete solver is ex-
cessive: the considered systems are most of the time very
under-constrained, with some redundant over-constrained
parts, so much simpler and faster methods suffice.

This paper is organized as follows: Section 2 recalls the wit-
ness definition and shows why witness computing is both
important and complicated. Section 4 presents a set of
methods in order to compare their performances for the
witness computation. Sections 5 and 6 give respectively 2D
and 3D examples for which the witness is calculated. Sec-
tion 7 presents the Numerical Probabilistic Method (NPM)
which constitutes the source of inspiration of the witness
configuration method; then discusses whether a qualitative
study is possible before computing a witness with numerical
methods. Section 8 studies, through two examples, the use
of the witness method in detecting dependences between
parameter values. Section 10 concludes the paper, and gives
some perspectives for future extensions of this work.

2. Witnesses

Let us consider the equation expression of geometric con-
straint systems, where the constraints are represented with
a set of equations F(U, X) = 0, where the symbol U de-
notes a set of parameters with prescribed values Ur = p(U)
(T for target), and X denotes the unknowns. The searched
solution for X is noted Xr. A witness is a couple (Uw, Xw)
such that F(Uw, Xw) = 0; most of the time, Uy and Ur
differ (and Xy and X as well), so the witness (Uw, Xw)
is not the wanted solution, but it has the same combina-
torial features as the (Ur, Xr1), even when the witness and
the target lie on two distinct connected components of the
solution set of F(U,X) = 0. Thus a witness enables the
qualitative study of the system: the detection of over- and
under-constrained systems, the decomposition into irre-
ducible subsystems, the computation of subsystems bound-
aries. These aspects are detailed in references [13-16].

The main advantage of the witness method, compared
to combinatorial (graph-based) methods, is that the wit-
ness method is able to detect dependences between con-
straints [15,16], not only the simplest ones, also called
structural, which are already detectable by graph-based
methods, but also non-structural dependences due to some
known or unknown geometric property or theorem.

2.1. Parameters as unknowns

One approach to build a witness is to consider both U and
X as unknowns. It is the approach used in [16], where the
system was solved with interval analysis. It is also the ap-
proach used in this paper.



2.2. Discarding constraints

Another approach is to reduce the system by discarding
metric constraints and keeping only incidence constraints.
This is justified by the fact that smooth modifications of
the values of parameters does not modify the properties of
a typical witness. The resulting system (a system of inci-
dence constraints) is smaller and easier to solve. Incidence
constraints are also called projective constraints (projective
geometry considers projective properties which still hold
after projections). In 2D, incidence constraints are: align-
ments of 3 points, cocyclicity of 4 points, tangencies, point-
curve incidences. In 3D, examples of incidence constraints
are: coplanarity of 4 points, cosphericity of 5 points, etc.

Note that incidence constraints can be formulated as equa-
tions in several ways: e.g. the collinearity of 3 points A, B, C
in 2D can be expressed as the vanishing of the determinant

za  ya 1

zp yp 1|=0

rc  yc 1

or as the subsystem:

(ra,ya,1). (a,b,c) =0
(zB,yB,1) . (a,b,c) =0
(xo,ye,1) . (a,b,¢) =0
a> + b2 —1=0

where the line ABC' has equation: ax + by + ¢ = 0, and
the vector (a,b) is normalized. Yet other formulations are
possible: non-Cartesian coordinates, or coordinates-free
formulations (see below). Whatever formulation is chosen,
discarding equations involving parameters is the simplest
way to obtain a system with only projective constraints.
This approach makes sense, since systems of incidence
constraints can indeed be over-constrained (which can be
counter-intuitive, cf. section 5.3) and a redundant over-
constrainedness will be detected when studying a witness.
For a system with a contradicting over-constrained sub-
system, there is no solution, thus no witness: a complete
solver (for instance an interval-based solver) is needed for
such cases.

Discarding equations involving parameters may overshoot,
since a combination of metric constraints (i.e. equations
involving parameters) sometimes implies projective con-
straints. The following two examples illustrate this fact in
2D and in 3D. In 2D, if 6 points M; are constrained by:
M1F12 + MZF22 = d2 (OI‘ MZF12 — MZF22 = d2), then they lie
on a common ellipse (or hyperbola), which 6 points gener-
ally do not. Thus discarding all equations M; FZ + M, F? =
d? yields a system which is projectively less constrained
than the initial system.

In 3D, the collinearity of 3 points A, B, C' can also be spe-

Fig. 1. A simple example : two points on a diameter of a circle and

a point on the circle

cified with the vanishing of the Cayley-Menger determi-
nant [12]:

0 1 1 1
1 0 Dap Dac
1Dap 0 Dpc
1 Dyc Dpc 0

where Dap, Dac, Dpc are squares of distances AB, AC,
BC. Clearly, discarding this constraint (if some distances
are parameters, and the rest represents unknowns) also can-
cels the incidence constraint.

Finally, apart from incidences, two numerical invariants
hold in projective geometry, in 2D: the ratio of signed length
between 4 collinear points (the well known cross-ratio, this
stands also for the complex cross-ratio between four co-
planar real points), and the ratio of signed areas of oriented
triangles. Canceling equations involving these parameters
is another way to form a system which is projectively less
constrained than the initial system. Due to the complexity
of this approach, we prefer the first one.

2.3. Interrogating a witness : an example

To give an example of witness interrogation, let us consider
the following system of five equations:

0=a +yi — d* (1)
0=a3 +y5 —d* (2)
0=a3+y3 — d° (3)
0=21y2 — Y122 (4)
0= (21 —x3)(x2 — 23) + (Y1 — ¥3)(y2 — ¥3) (5)

The first three equations (1), (2), (3) mean that points P, =
(z1,11), Po = (z2,y2) and P3 = (z3,ys) lie on the circle
with center (0,0) and radius d. d is a parameter, which is
considered as an unknown, like x;, y;, to compute a witness.
Eq. (4) means P; and P, lie on the same diameter. Eq.



unknown x1 -5 5 ;

unknown y1 -5 5 ;

unknown x2 -5 5 ;

unknown y2 -5 5 ;

unknown x3 -5 5 ;

unknown y3 -5 5 ;

# parameter d is considered as unknown:

unknown d 0 20 ;

# P1, P2, P3 are on the circle of center 0 and radius d:
x1*x1 + ylxyl - d*xd =0 ;

X2%x2 + y2*y2 - d*¥d = 0 ;

x3*x3 + y3*y3 - dxd = 0 ;

# P1 and P2 are on the same diameter (using determinant):
x1*y2 - y1*x2 =0 ;

# P1P3 and P2P3 are orthogonal:

(x1-x3) *(x2-x3) + (y1-y3)*(y2-y3) =0 ;

Fig. 2. The data file for the simple 2D example in Fig.1.

(5) means that P, P; and P,Ps are orthogonal; the latter
constraint is redundant, due to a geometric theorem.

One can easily show that points P, = (—4,—3), P» = (4,3)
and P3 = (4, —3) form a witness of this system. It is shown
on Fig.1. The jacobian matrix at the witness is:

-8—-6 0 0 0 0 —10
0 0 8 6 00 —10
0 0 0 0 8—-6-10
3 43 -400 0
0 6 -808—-6 0

and it has rank four, showing that one equation is a conse-
quence of the others. Remark that for a random point, the
rank is maximum (i.e. five here).

3. Implementation issues

We choose to represent the constraints as a systems of
equations and inequalities. It may also be represented in a
more abstract way before translation into equation form.
See Fig.3 the data file for the problem of two rigid triangles
discussed in section 5.1.

Expressions in equations and inequalities are represented as
DAG (Directed Acyclic Graph), roughly trees with sharable
nodes. A DAG is either a given number, a variable given
by its name (a parameter or an unknown), a binary oper-
ation (4, x, —), a power (eg x°), a trigonometric function
(cos). Many operations can be performed on DAGs: sym-
bolic operations (symbolic derivation, simplification, pretty
printing, compilation, static analysis) and evaluation oper-
ations (floating-point arithmetic, evaluations with interval
arithmetics, substitution —a kind of symbolic evaluation—,
conversion to polynomials when possible, etc). DAG eval-
uation uses the Visitor design pattern [18] to ease exten-
sion and evaluation with other mathematical objects (dual
numbers for example). Many implementations (recursive,

unknown x1 -30.000000 30.000000 ;
unknown y1 -30.000000 30.000000 ;
unknown x2 -30.000000 30.000000 ;
unknown y2 -30.000000 30.000000 ;
unknown x3 -30.000000 30.000000 ;
unknown y3 -30.000000 30.000000 ;
unknown x4 -30.000000 30.000000 ;
unknown y4 -30.000000 30.000000 ;
unknown x5 -30.000000 30.000000 ;
unknown y5 -30.000000 30.000000 ;
unknown x6 -30.000000 30.000000 ;
unknown y6 -30.000000 30.000000 ;
unknown d12 0.000000 100.000000 ;
unknown d23 0.000000 100.000000 ;
.000000 100.000000 ;
.000000 100.000000 ;
.000000 100.000000 ;
.000000 100.000000 ;
.000000 100.000000 ;
.000000 100.000000 ;
unknown d36 0.000000 100.000000 ;
0= (x1 -x2)72 +(y1 -y2)72 -di1272;
0= (x2 -x3)°2 + (y2 -y3)"2 -4d23°2;
0=(x3 -x1)72 + (y3 -y1)"2 -d3172;
0= (x4 -x5)"2 + (y4 - y5)"2 - d45"2 ;
0= (x5 -x6)72 + (y5 -y6)"2 -d5672 ;
0= (x6 -x4)"2 + (y6 - y4) 2 - d64a"2 ;
0=(x1 -x4)"2 + (y1 -y4)"2 -d1472;
0= (x2 -x5)°2 + (y2 - y5)"2 -d2572 ;
0=(x3 -x6)72 + (y3 -y6)"2 -d3672;

unknown d31
unknown d45
unknown d56
unknown dé4
unknown d14
unknown d25

O O O OO OO oo

Fig. 3. The data file for the two rigid triangles.

or non-recursive, hash-consing, some kind of compilation or
optimization) were investigated, because DAG evaluations
may be a complex operation.

4. Methods

Four different methods have been experimented in order
to generate a witness: Newton iterations in R, Newton it-
erations in C, Nelder-Mead downhill simplex method [17],
and the BFGS method. Random points are used as starting
seeds for all of these methods.

To avoid long time processing in our experiments, we have
limited the number of iterations to 100 iterations, beyond
this number we consider that the method fails to converge.

All the tried methods converge if the starting point is a
root, or is close enough to a root. Proximity of starting
points to a root helps the solver to converge to this root,
but this convergence depends on the underlying methods
of the solver. The basins of attraction of a root depend on
the used solver; for instance Newton basins are fractals,
homotopy basins have smooth boundaries.

4.1. The Newton method

Given a good starting point, the main advantage of this
method is the high rate of convergence (superquadratic).



This method is also easy to implement in its principles,
we compute the symbolic derivatives of the function (this
is computed once). In order to use the Newton method
when the Jacobian matrix is not invertible or not square, a
pseudo-inverse is calculated using Singular Value Decom-
position. Let N : X — = X — J 'F(X) be the New-
ton iteration where J~' denotes either the inverse or the
pseudo inverse of the Jacobian matrix of F' at X. The New-
ton iteration is then defined as follow :

Xn+1 = N(Xn>

X being the starting point.
4.2. The Nelder-Mead downhill simplex method

The Nelder-Mead downbhill simplex method ( NMS ) [17] is
a minimization technique in two steps: the minimization of
IF'||, and a check for || F'|| to be zero (to avoid local minima).

This method has the advantage of avoiding the computa-
tion of the derivative, but it is not efficient in term of num-
ber of function evaluations (due to the high number of iter-
ations). Given a big starting simplex (computed from the
initial random starting point), the algorithm computes the
minimum of the function with different kinds of steps such
as:

— the computation of the maximum of the function on the
simplex and then the ”reflection” of the vertex towards
the opposite hyper-face, or

— the use of the previous reflection step plus an expansion
of the simplex, or

— the contraction of the simplex toward the highest point
i.e. the vertex which maximizes ||F||, or the contraction
in multiple directions toward the lowest point i.e. the
vertex which minimizes || F||.

These different operations may be combined in a way to
make the simplex "walk” towards a minimum. A more in-
depth description of the algorithm is available in [19].

4.3. The BFGS method

This is also a minimization method, hence a procedure sim-
ilar to the one of the NMS method is applied. This method
is a variant of the Newton method, and requires the com-
putation of the gradient. It constructs an approximation
of the Hessian matrix which is guaranteed to be definite
positive in order to be sure that the algorithm makes || F||
decrease [19].This approximation is then updated with an
iterative process and used to compute the next step.

4.4. The interval Newton method

When a complete solver is needed, we use the Newton
method with intervals.

method success rate|total time
Newton 100% 0.24 s
Newton in C|100 % 0.26 s
BFGS 100 % 3.88 s
NMS 0 % 3.88 s

Table 1
Computing the witness of the two rigid triangles

Here, [X] denotes an interval vector (i.e. a box ) and X a
vector. X, denotes the center of the box. The center evalu-
ation of a function G for the box [X] is defined as follows:

G([X]) € G(Xe) + G'((X])([X] = Xe)

We define the interval Newton iteration Ny by taking G =
N (cf. section 4.1). Note that if we use the naive interval
evaluation, we can never contract the interval because when
we add two intervals, the result is always larger. As the
roots are both in [X,,] and [X,, 1] we then compute [X,, 1]
as (N;([Xn])) N [X,]. When we can’t reduce the studied
interval, we bisect it and study each half separately.

Two optimizations are possible:

— the Segupta-Hansel optimization consists in taking the
most up-to-date interval when updating X.

— take into account, and study, the monotonicity of F' (for
example if [X] = [a,b] and f is increasing then f[X] =
[F(a), F0))

We have used only the first optimization.

5. Results in 2D

In this section, we give several 2D examples of geometric
constraint systems and the respective results of the different
methods mentioned in Section 4.

The computer we use for the experiments is a quad core
Xeon with about 4 GB of RAM.

The complete solver described in section 4.4 needs more
time (several minutes) than other methods to find the so-
lutions. To conduct our experiments in a practical way, the
running time is limited to 10 minutes, beyond which we
consider that the solver doesn’t converge.

5.1. Two rigid triangles

This 2D example is composed of two triangles ABC and
A’'B'C’; each triangle is constrained with the lengths of its
three edges, see Fig. 4. The assembly of the two triangles
is rigidified with 3 constrained distances: AA’, BB’, CC".
It is sufficient to pick at random six points in 2D to get a
typical witness.

Except NMS, the tried methods succeeded to find a witness
as shown by the Table 1.



A A’

C’

C

Fig. 4. A rigid 2D system made
of two rigid triangles linked by
three distance constraints

Fig. 5. An example of circle
packing. For simplicity the tri-
angle is equilateral and all cir-
cles have the same radius.

5.2. Clircle packing

Circle packing is a 2D configuration of circles tangent to
each others, see Fig. 5 for an example. Circle packing is use-
ful in approximating some analytical functions, in graph
embedding, and random walks [21]. Any planar map, or
simplicial 2D complex, can be represented with a contin-
uum of circle packing: each vertex is represented as a circle,
and each edge AB in the planar map, or the simplicial 2D
complex, means that the two circles for vertices A and B
are outwardly tangent.

There are a lot of degrees of freedom for the shape of the ex-
terior contour of the circle packing. For instance, it is pos-
sible to find a circle packing where all exterior circles are
tangent to a common circumscribing circle. This property
is a discrete analogue to Riemann theorem: there is a con-
formal map between any topological (open) disk and the
unit disk. Some specific algorithms [3] converge iteratively
to the circle packing of any given simplicial 2D complexes;
Those algorithms work in interactive time for thousands of
circles; they are much faster than general purpose numeri-
cal solvers.

For simplicity, we fill triangles with circles, as in Fig. 5. Let
k be the number of circles tangent to one side of the triangle.
We generated the systems of geometric constraints for k =
1,2,3,4,5, so there are 1, 3, 6, 10, 15 circles totally. The
parameters are the coordinates of the three vertices of the
triangle; when computing a witness, they are unknowns, as
are the radii and the coordinates of the centers of circles.
We do not check if the computed circles indeed lie inside
the triangle, nor that they are outwardly tangent since this
is not needed for a witness.

For this example, among the standard numerical methods,
the best results are given by the Newton algorithm. Remark
in passing that for this example it does not make sense to
discard equations involving distance parameters.

Table 2

k|method success rate|total time
1|Newton 98% 0.42 s
Newton in C[100 % 0.72 s
BFGS 5% 6.08 s
NMS 0% 1.82 s
2|Newton 68% 1.34 s
Newton in C|82 % 1.42 s
BFGS 0 % 14.7 s
NMS 0% 4.88 s
3|Newton 36% 3.3s
Newton in C|86 % 2.5 s
BFGS 0% 25.88 s
NMS 0% 10.56 s
4|Newton 14% 6.46 s
Newton in C|78 % 5.06 s
BFGS 5% 45.62 s
NMS 0% 24.24 s
5/Newton 4% 11.46 s
Newton in C|82 % 8.9 s
BFGS 0 % 70.84 s
NMS 0% 47.96 s
6|Newton 4% 32.28 s
Newton in C|83 % 25.96 s
BFGS 0 % 162.24 s
NMS 0 % 1375 s
7|Newton 0% 50.44 s
Newton in C|81 % 42.44 s
BFGS 0% 229.72' s
NMS 0% 225.76 s
8|Newton 0% 78.74 s
Newton in C|83 % 67.9 s
BFGS 0 % 316.4 s
NMS 0% 352.08 s

Circle packing (witness)

Fig. 6. An example of Desargues configuration.




method success rate|total time
Newton 91% 6.28 s
Newton in C|97 % 6.28 s
BFGS 0% 24.56 s
NMS 0% 16.78 s

Table 3
Desargues configuration (with lines)

method success rate|total time
Newton 100% 0.54 s
Newton in C|100 % 0.78 s
BFGS 100 % 12.08 s
NMS 100 % 1s

Table 4
Desargues configuration (vanishing of determinants)

method success rate(total time
Newton 100% 1.94 s
Newton in C[100 % 2.66 s
BFGS 17 % 6.62 s
NMS 0% 13.48 s

Table 5
Pappus configuration (lines)

5.3. Desargues configuration

The Desargues theorem ensures that if 2D points o, p;, g; are
collinear, for i = 0, 1,2, then the three intersection points
PiPit1 mod 3749i% 1 mod 5 are collinear as well, see Fig. 6.
This theorem holds when points o, p;, ¢; are coplanar, and
when they lie in 3D.

The objective of this example is to find points o, p;, ¢; in
Desargues configuration; there are 9 alignments due to the
hypothesis and one due to the conclusion. Actually, any
one of the alignments results from the others. The system
is both very under-constrained (no distance and no angle
is specified), and also consistently over-constrained.

We have two possible formulations for alignments:

(i) use the vanishing of the determinant, or
(i) define each line with a triple (a, b, ¢) with a? +b? = 1,
and a point (z,y) lies on the line iff axz + by + ¢ = 0.

Tables 3 and 4 shows the percentage success and computa-
tion time of each method. In general, Newton method per-
forms better than the others. Results are better when the
determinants formulation is used than when the lines for-
mulation is used. In this case, all the methods are able to
find a witness in less than 1 second as shown in Table 4.

5.4. Pappus configuration

Pappus theorem ensures that if points pi,ps,ps are
collinear, and points ¢i, g2, g3 are collinear, then the 3 in-

Fig. 7. An example of Pappus configuration.

method success rate(total time
Newton 100% 0.26 s
Newton in C[100 % 0.2 s
BFGS 100 % 314 s
NMS 0 % 3.36 s

Table 6
Pappus configuration (determinants)

tersection points r;; = piq; N p;q;,¢ # j are collinear as
well (see Fig. 7).

The objective of this example is to find points p;, g, 74;
in Pappus configuration; the nine alignments are specified:
eight are due to the hypothesis, and the ninth is the con-
clusion of Pappus theorem. The system is both very under-
constrained (no distance and no angle is specified), and
also consistently over-constrained: one alignment is a con-
sequence of the other 8 alignments; actually, due to sym-
metry, any one of the nine specified alignments is a conse-
quence of the others.

We consider again the two formulations for alignment given
in section 5.3. Except NMS, all the numerical methods con-
verged with both formulations, and the best results are
given by the Newton algorithm. Notice also that computa-
tion time is lower when formulation (4¢) is used, see Tables 5
and 6).

5.5. Pascal configuration

Pascal theorem ensures that if six points lie on a common
conic, then opposite sides of the hexagon (for any permuta-
tion of the vertices) intersect in three collinear intersection
points. Another formulation is as follows: if a 2D hexagon
(possibly self-intersecting or concave) pop1pap3paps is such
that its three opposite sides meet in three collinear points

Pop1MP3pa, p1p2Npaps and pap3Npspe, then the same prop-
erty holds for all permutations of pop1papspaps, see Fig. 8.

In our tests, we considered the hexagon pipopapspsps. We
generated the system with all constraints of the hypothesis



Fig. 8. An example of Pascal configuration.

method success rate(total time
Newton 100% 0.24 s
Newton in C[100 % 0.3s
BFGS 100 % 4.72 s
NMS 0% 4.46 s

Table 7
Pascal configuration

of the theorem, and the constraint of the conclusion. The
alignments of three points were expressed with the vanish-
ing of the 3 x 3 determinant of (homogenized) coordinates
of the three points. The system was consistently redundant.

Except NMS, all the methods found a witness. The quickest
is the Newton algorithm, see Table 7.

6. Results in 3D

In this section, we give 3D examples of geometric constraint
systems with the results of the methods we have imple-
mented and tested.

6.1. Desargues configuration

The 3D Desargues configuration is similar to the 2D
one: the 3D points o, p;,q; are collinear, for ¢ = 0,1, 2,
but the plane popips and the plane ¢gqiq2 are differ-
ent; in the generic case, these two planes meet along
a line, which contains the three intersection points
PiPii1 mod 3 N 9441 mod 3 Petween homologous sides,
thus these three intersection points are collinear. It is
possible to formulate the theorem in a more general way,
to account for degenerate cases (the planes p; and ¢; are
parallel or equal, or one line p;p, | 1,44 5 s parallel to its
homologous ¢;q; | 04 3 etc.), but we prefer to discard
them for simplicity.

We have generated the constraints of alignment for the hy-
pothesis and for the conclusion of the theorem. All these
constraints are projective, i.e. they are all incidence con-
straints: so there is no parameter of distance or angle.

method success rate|total time
Newton 100% 3.14 s
Newton in C|100 % 344 s
BFGS 100 % 18.72 s
NMS 100 % 1.02 s

Table 8
Desargues 3D configuration

We formulate the collinearity of three points with deter-
minants in two ways. In the first formulation, we use the
vanishing of two determinants:

1 — o T2 — o 1 — o T2 — o 0
Y1 — Yo Y2 — Yo 21— 20 22 — 20
In the second formulation we use also:
Yr—Y% Y2 — Yo
=0
21 — 20 Z2 — 20

This last formulation is redundant for each alignment. All
methods converge (at least on all random values tested) the
quickest is the NMS, see Table 8.

6.2. Beltrami configuration

Let W;,7 =0, 1,2 be three non-coplanar white lines in 3D,
and let B;,7 = 0,1,2 be three non-coplanar black lines
in 3D, such that all pairs of a white line W; and a black
line B; are coplanar (they meet at a point Q;;, possibly at
infinity). A line is called black (white) if it intersects the
three white (black) lines. Then all black lines are coplanar
to all white lines. Coxeter [4] credits Beltrami for this 3D
incidence theorem. One can note that the white and black
lines generate a ruled quadric surface, for instance an hy-
perboloid of one sheet, or an elliptic hyperboloid.

We reformulate the theorem as follows: Given a set of 16
points in 3D: P;;, i = 0,1,2,3 and j = 0, 1,2, 3 such that
for all i, P;o, P;1, P;s are collinear, P;g, P;1, P;3 are collinear,
and symmetrically for all j, Fy;, Pij, P2; are collinear,
Pyj, Pij, Psj are collinear. Any of these 16 alignments is a
consequence of the 15 others.

For a human being finding a witness is not trivial in this
case: it is not sufficient to pick 16 points at random.

We have used two different formulations to generate these
16 constraints of alignment. In a first formulation, the align-
ment of 3 points is expressed as the vanishing of two de-
terminants. In a second formulation, each alignment is ex-
pressed as the vanishing of three determinants, which is re-
dundant. Here the Newton algorithm has always converged
for both formulation, see Tables 9 and 10.



method success rate|total time
Newton 100% 1.72's
Newton in C|100 % 1.72 s
BFGS 100 % 26.56 s
NMS 100 % 1.32's

Table 9
Beltrami configuration (2 determinants)

method success rate|total time
Newton 100% 7.22 s
Newton in C|100 % 7.76 s
BFGS 100 % 44.3 s
NMS 100 % 1.96 s
Table 10
Beltrami configuration (3 determinants)
method success rate|total rate
Newton 99% 0.74 s
Newton in C|100 % 0.48 s
BFGS 48 % 15.62 s
NMS 0% 712s
Table 11
Line tangent to four given spheres
method success rate|total time
Newton 100% 0.68 s
Newton in C|100 % 0.7 s
BFGS 30 % 9.88 s
NMS 0% 11.16 s
Table 12
Octahedron

6.3. Line tangent to four given spheres

This underlying 3D problem was first considered and solved
by Hoffmann and Yuan in [8]: compute the lines tangent to
4 given spheres.

To generate a witness is trivial (at least for a human being):
generate randomly a line and 4 centers for the spheres; then
deduce the 4 radii: they are the distances to the line of the
4 centers.

We generated the related system of geometric constraints.
The line is represented by the vanishing of 2 determinants.

Here the best results were given by Newton method with
complex numbers, see Table 11.

6.4. Octahedron

3D polytopes (convex polyhedrons) are completely de-
scribed with the lengths of their edges, and the coplanari-
ties of vertices lying on a common face. In other words the
related systems are rigid: it is Cauchy theorem.

A specific algorithm computes a realization (consistent co-
ordinates for vertices) of 3D polytopes, given their graph
(called skeleton, or 1-skeleton); it computes a 2D Tutte em-
bedding of the graph of the polytope and lifts it in 3D [20].
Remarkably, all coordinates are rational numbers, and even
integers after some scaling. This algorithm is a computa-
tional proof of Steinitz theorem: all convex polytopes have
an integer realization whatever their topology (i.e. graph).
This algorithm should be used to compute a witness for a
polytope with a described graph. Steinitz theorem does not
extend beyond 3D.

For an octahedron, all faces are triangles, so there is no
coplanarity constraints; thus generating a witness is trivial:
just pick 6 vertices in 3D space at random, then measure the
lengths of its edges. Remark that the generated polytope
may be self intersecting, or concave, but it does not matter:
it is a witness.

We have generated the system of 12 distance constraints;
both coordinates of the 6 vertices and the 12 distances are
unknowns.

We have also tried to solve the related target system, i.e. we
fixed the 12 distances parameters, and looked if the solvers
still succeed (see Table 17 and Table 12).

6.5. Octahedron with Cayley-Menger determinants

The distances between five 3D points are not independent:
the related Cayley-Menger determinant must vanish. Thus
Cayley-Menger determinants [12] provide a simple solution
to the octahedron problem, or to the Stewart platform.
Write the Cayley-Menger condition for 4 “equatorial” (gen-
erally non-coplanar) vertices and the North vertex; write
the Cayley-Menger condition for the 4 “equatorial” vertices
and the South vertex. These 2 equations involve 2 unknown
distances, the distances between opposite vertices among
the 4 “equatorial” vertices; all other distances are known
by hypothesis. This system is much simpler than the naive
system (initially containing 12 unknowns and equations,
easily reducible to 9 when pinning one triangle on the Oxy
plane). Unfortunately, we do not know how to extend this
Cayley-Menger idea to other polytopes.

We generated the related system of 2 equations; for com-
puting a witness, all distances (the 12 edge lengths and the
2 distances between pairs of opposite ”equatorial” vertices)
are considered as unknowns.

We have also tried to solve the related target system, i.e.
we fixed the 12 distances parameters, and checked if the
solvers still succeed (see Table 17 and Table 13).

6.6. Hexahedron

The cube is an hexahedron: the graph of the hexahedron
is the graph of the cube. The hexahedron has 6 (coplanar)



method success rate|total time
Newton 89% 5.9 s
Newton in C|100 % 4.06 s
BFGS 80 % 129.16 s
NMS 0% 54 s
Table 13
Octahedron (Cayley-Menger)
method success rate|total time
Newton 100% 1.96 s
Newton in C|100 % 2.16 s
BFGS 14 % 57.42 s
NMS 0% 34.06 s
Table 14
Hexahedron
method success rate|total time
Newton 100% 2.24 s
Newton in C|100 % 2.34 s
BFGS 100 % 41.5 s
NMS 0% 56.46 s
Table 15
Icosahedron

quadrilateral faces. It is described unambiguously (up to
its location and orientation in 3D space) with the copla-
narity conditions and the lengths of its 12 edges (at least
for generic edges lengths).

Due to the coplanarity conditions, it is not sufficient to
choose 8 vertices at random in 3D. However it is easy to
find a witness: the Platonic cube is an obvious witness for
all hexahedra. However it is not a typical witness.

We generated the related system; for the witness, the
lengths of 12 edges are considered as unknowns. The copla-
narity of four vertices is specified as the vanishing of the
4 x 4 determinant of the (homogeneous) coordinates of the
four involved vertices.

We have also tried to solve the related target system, ¢.e. we
fixed the length of the 12 edges, and checked if the solvers
still succeed, we found out that NMS method fails, and the
success rate of the BFGS is too low, see Table 14.

6.7. Icosahedron

An icosahedron is a regular polyhedron with 20 identical
equilateral triangular faces, 30 edges and 12 vertices. There
is no coplanarity condition, so generating a witness is triv-
ial, it suffices to pick at random 12 points in 3D space; the
resulting polytope may be self intersecting, or concave, but
it is a witness.

We generated the related system; for the witness, all 30
edges lengths are considered as unknowns. The Newton
method gives a result with a rate of 100%, see Table 15.

1N

method success rate|total time
Newton 100% 5.6 s
Newton in C|100 % 5.8 s
BFGS 100 % 182.38 s
NMS 100 % 3.02s
Table 16
Dodecahedron

6.8. Dodecahedron

The graph of the dodecahedron is the one of the regular,
Platonic, dodecahedron. The dodecahedron is made of 12
pentagonal faces, 20 vertices, 30 edges. It is the dual of
the icosahedron. Due to the coplanarity of the pentagonal
faces, it is not sufficient to generate 20 vertices at random
to get a witness.

We generated the related system; for the witness, all 30
edges lengths are considered as unknowns. The coplanarity
of five vertices ABCDE in a common face is specified
with the vanishing of two 4 x 4 determinants, |ABCD| =
|ABCE| = 0. These 24 coplanarity conditions are indepen-
dent, see Table 16.

Table 17 summarizes our experimental configurations, both
in 2D and in 3D, for witness computations and lists the
methods with the best convergence rates.

7. The Numerical Probabilistic Method

Before computing a witness, is it possible to perform a
qualitative study of the system (where both parameters and
unknowns must be considered as unknowns)? Of course, we
can not use a witness-based decomposition.

Several approaches may be considered for this qualitative
study. We can use either a graph-based method like [1]
to detect structural dependences, with all the limitations
of this type of methods, or the Numerical Probabilistic
Method (NPM). NPM is a bit more powerful than graph-
based methods: NPM decides in polynomial time the rigid-
ity of frameworks (i.e. all constraints are point-point dis-
tances, with generic values; there is no incidence constraint
at all) in 3D or beyond, while the combinatorial character-
ization of rigidity in 3D and beyond is unknown.

The main idea of the NPM is to study the Jacobian of a
system F(X) = 0 (or F(U,X) = 0) at a random (thus
generic) value for X (or for X and U). It is easy and worth-
while to check that equations are independent at a random
point (call it a weak witness for convenience). If the Ja-
cobian does not have full rank, then with probability one,
the equations of F' are dependent. Indeed, assume that the
equations of F' are independent, except in a set of measure
0 (which is called the singular manifold), then the proba-
bility is null to randomly select a point in this set.

Clearly, we can use the NPM before computing a witness,



System Dimension|#unknowns|#parameters|#equations|Best method|Success rate
Two rigids 2D 12 9 9 Newton 100%
Circle packing (k) 2D 2k 3 E§:0(3i) Newton in C|82%
Desargues 2D 30 0 20 Newton 100%
Pappus 2D 45 0 36 Newton in C|100%
Pascal 2D 22 0 11 Newton 100%
Desargues 3D 50 0 40 NMS 100%
Beltrami 3D 48 0 32 NMS 100%
Line tangent to 4 spheres 3D 28 0 10 Newton in C|100%
Octahedron (metrics are unkwnowns)|3D 30 0 12 Newton 100%
Octahedron (metrics are parameters) |3D 18 12 12 Newton 100%
Octahedron (Cayley-Menger) 3D 14 0 2 Newton in C|100%
Hexaedron (unknown param.) 3D 36 0 18 Newton 100%
Hexaedron (valued param.) 3D 24 12 18 Newton in C{40%
Icosahedron (unknown param.) 3D 66 0 30 Newton 100%
Icosahedron (valued param.) 3D 36 30 30 Newton 14%
Dodecahedron (unknown param.) 3D 91 0 55 NMS 100%
Dodecahedron (valued param.) 3D 61 30 55 Newton 97%

Table 17

The experimental systems (number of unknowns, number of parameters, number of equations) and the best convergence rates of the methods
we have tried to compute the witness. In the first column, “unknown param.” means that parameters are considered as unknowns; “valued

param.” means that parameters have specified numeric values. Parameters were given in a way which ensures the existence of a solution.

to detect some dependences and to compute the smallest
dependent sets with the method in [16], or to decompose the
system. However, we must be conscious of the limitations of
the NPM. The point where the Jacobian rank is computed
is random, so it does not lie on the solution set of FI(X) =0
(or F(U, X) = 0) which means that the random point is not
representative of the solutions. NPM becomes unsafe when
incidence or projective constraints are used: the witness
method was introduced to overcome this limitation of the
NPM.

8. Detecting dependent parameters from a witness

Parameters should be independent, at least in a correct sys-
tem of constraints. Such dependences do not prevent the
computation of a witness. The witness method, i.e. study-
ing the Jacobian of the system at the witness, permits to
detect the dependences between parameters. Previous arti-
cles [13-16] did not present this feature, which is illustrated
now with two simple examples.

First example. The system: t —u = . — v = 0, has 1
unknown x and 2 parameters u, v. A witness for this system
is easily computed. The parameters v and v are clearly
dependent: © = v. Note that if u, or v is considered as an
unknown, then the system is indeed correct; for instance,
let us rename v as y: the system becomes z—u = x—y = 0,
which makes sense.

Second example. The system: x +y = u, z + 2z = v,
y — z = w has 3 unknowns z, y, z and 3 parameters u, v, w.
A witness for this system is easily computed. The parame-
ters u, v, w are dependent: w = u —v. Here again, when pa-
rameters are considered as unknowns, the 3 equations are
independent, since the Jacobian contains the 3 x 3 iden-
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tity submatrix when deriving relatively to u, v and w. The
witness method detects the dependence when considering
the Jacobian for variables z,y, z (and discarding variables
u,v,w): the 3 x 3 submatrix has rank 2 because the last
row is the difference of the first and the second.

This difference in the rank of the same set of rows, depend-
ing on whether the columns of parameters are considered
or not, permits the detection of dependences between pa-
rameters. Recall that each row contains the derivative of
an equation, and each column is related to a variable, an
unknown or a parameter.

We mentioned that discarding constraints involving param-
eters may yield a system which is projectively weaker (less
constrained) than the initial system. Actually this hap-
pens when parameters are not independent. Precisely, the
method proposed in this section detects such dependences
between parameters. We conclude this section with exam-
ples of dependences between parameters: for 4 points in 2D
there are 6 distance parameters, but only 5 of them are
independent. For 5 points in 3D there are 10 distance pa-
rameters, but only 9 of them are independent. The method
proposed in this section allows the detection of these de-
pendences. Similarly, it can detect dependence in systems
containing not only distances but also angles.

9. Further works

This work can be completed with the following investiga-
tions. First, start from a degenerate solution (for example
all points are equal) and make a random walk on the tan-
gent space to the solution manifold: pick a random direction
in the tangent space, then perform a prediction-correction



step; this method clearly applies to all homogeneous sys-
tems.

Second, investigate a damped variant of the Newton
method: instead of moving forward AX, we only move
forward Al—é( or so; we also imagine to perform a line search
along the Newton direction.

Finally, we will try to perform some decomposition before
computing the witness (cf section 7). Once a witness is
known, we plan also to test re-parametrization [10].

10. Conclusion

This paper compared several methods to compute a wit-
ness. For all these methods, starting points were random.
No attempt was made to decompose the systems. Among
the tested numerical methods, the Newton method is the
winner in term of both rate of convergence and time per-
formance. In most of the cases, this algorithm converges to
a witness after a reasonable number of iterations. See Ta-
ble 17 for an overall view of our experimental systems and
the methods with the best success rates.

In some cases, the Newton method is also able to solve
the related target systems. The Newton method achieves a
better rate of converge in C but at a cost of a small overhead.

The paper also shows that it is easier to compute a witness
than to solve the target system directly. It is also easier to
find a witness with a standard numerical method than with
a complete solver.

From this study we derive the following strategy: to com-
pute a witness, try the Newton method starting from 50
random seeds and when failing, resort to a complete solver
like an interval solver.
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