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ABSTRACT
This paper presents a shape matching framework based
on a new shape decomposition approach. A new
region-based shape descriptor is proposed to compute
the best match between given 2D or 3D shapes. In
order to find similar shapes in a database, we first split
the interior of each shape into the adequate set of parts,
classes, or ellipsoids, then find the corresponding parts
between different shapes, and finally compute their
similarity.

Essentially, we compute the best shape decomposition
into k classes using an improved version of the k-
means clustering algorithm without prior fixing of the
number of parts. Additionally, we propose a new
tool which determines the best ellipsoids packing in
order to efficiently represent a shape according to its
components.

The shape recognition process compares the optimal
ellipsoidal partition of the new shape with the different
models of a database and extracts the closest shapes.
The performances of our shape matching framework
are shown through experiments on various data of
MPEG-7 and benchmark databases.

KEYWORDS
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1. INTRODUCTION
Shape matching and recognition aims at measuring
how much objects are similar, finding the closest

shapes to a given shape, called a model, or associating
an object to the corresponding class of similar objects
[36, 38]. However, this process remains long-standing
challenge due to the fact that shapes belonging to
the same class are not necessarily close to each
other, e.g. articulated bodies. Also, distortion, local
deformations, and geometric transformation, may add
more difficulties.
A crucial step in the shape matching and recognition
process is to find a way to describe and to represent
shapes by means of extracted features [15, 25]. This
is why in our proposed matching framework, we are
interested to find the best way to describe features
extracted from either boundary information or interior
content. Two type of methods are available: contour-
based methods, and region-based methods.
The shape-context approach is one of the popular
contour-based shape matching approaches. In [4],
the matching of two shapes is to compare the
corresponding context maps of shapes descriptor. The
shape context is among the robust discriminative
descriptor, however it is not adapted to articulated
shapes. Another contour-based descriptor, called
height function, defines each sample point related
to the distances of the other sample points on its
tangent line [37]. This descriptor is robust to
deformations and shows a great invariance to the
geometric transformations. Although the contour-
based descriptors are widely used, almost all of these
descriptors suffer from several drawbacks. One of
the most challenging is that they use a small set (e.g
sampled contour points) of shape information. They
also require a point-to-point matching which increases
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computational complexity.
In region-based descriptors, all points within a shape
are taken into account, rather that exploiting only
boundary points. We can find methods using skeleton
descriptors [2, 27], moments invariants [16], and
generic Fourier descriptors [39]. Unlike the contour-
based descriptors, region based methods allow to
capture part structure of the shape, since they combine
information across the whole object. Additionally,
they are more robust against noise and distortions,
and can be employed to represent disjoint shapes. In
this paper, we propose a new region-based approach
for 2D and 3D shape matching. Our approach
operates on the whole set of shape points and
combines shape decomposition, similarity measure and
database clustering. The database preprocessing phase
consists in: (i) ellipsoidal partitioning of shapes, (ii)
classification of shapes into different groups. In the
shape matching and retrieval phase, a given shape,
called model, is matched with the different shapes of
the closest group. We calculate the minimal cost of the
perfect matching using the Hangarian method [18].
In the proposed shape retrieval approach, we use the
ellipsoid skeleton representation proposed by Banégas
et al. [3] to find a tree of ellipsoids from a set
of 3D points for a given level of details. We also
propose a novel approach based essentially on a new
shape decomposition technique using an adequate set
of ellipsoids. We compute the best shape partition into
k regions improving the dynamic k-means clustering
algorithm [10].
Dissimilar to the classic algorithms, our proposed
clustering approach finds the best partition of interior
pixels or voxels into k different ellipsoids without
prior fixing of the number of ellipsoids. In fact, this
algorithm optimizes both intra-class and inter-class
differences, either by fulfilling the general requirement
for ellipsoidal decomposition of a given shape, or by
considering the spatial relation between different parts
of the shape. So, we determine the best ellipsoidal
packing of a shape, by iteratively incrementing the
partition class number until convergence.
Computing the similarity between two shapes A and
B both decomposed into k ellipsoid representations
is equivalent to an optimal matching in a complete
bipartite graph with 2k vertices. The k vertices of
A are linked to the k vertices of B. The cost of an
edge AiBj is obtained by using the Euclidean distance
between the characteristic point of the class Ai and the
characteristic point of the class Bj . Indeed, we find the
corresponding parts between the two shapes A and B.

The cost of a perfect matching is the sum of the costs
of its matching edges. The matching evaluation is
obtained by calculating the minimal cost. This cost
is the distance related to the dissimilarity between the
shapes A and B.
We assess the validity and the robustness of the
proposed algorithm on the 2D data of MPEG-7 [20]
database, and on the benchmark reported in [30] for
3D models.
The rest of the paper is organized as follows. Section
2 presents a brief review of fundamental researches in
the field of shape matching and retrieval. Section 3
describes shape decomposition and the reconstruction
of the ellipsoids skeleton in details. Section 4 presents
shape retrieval and recognition, we present database
classification, the characteristic point of a class, shape
matching and optimal assignment of classes. In
Section 5, we discuss the results of our proposed
method used for the classification and the recognition
of 2D/3D shapes. Finally, Section 6 draws conclusions.

2. SHAPE MATCHING AND RETRIEVAL
APPROACHES

In this section, we provide a brief description of
shape matching and retrieval methods, reference [36]
surveys the state of the art. A comparative study
of shape matching algorithms is undertaken in [35]
since matching represents a fundamental operation in
the field of content-based retrieval approaches [8, 21,
34]. Shape matching algorithms can be classified in
two main categories: (i) local approaches use local
characteristics of shapes, (ii) global approaches use
global characteristics of shapes.
The local matching methods [33, 34] allow accurate
measurement of the similarity using local features
extracted from small area of a shape, like sub-curves or
sub-segment of boundary shape. Chen et al [7] present
a local shape matching method based on the Smith-
Waterman algorithm [32] to find similar parts between
two shapes using a point-to-point matching. The
similarity of shapes is achieved by using only some
parts of the shape. Another local method for matching
triangular meshes 3D surfaces is presented by Ran
Gal and Daniel Cohen-Or [12] where a local surface
descriptor is presented as salient features extracted
from meshes of the different 3D shapes. This method
allows finding similar parts in the same shape, and
decreases the complexity since it calculates features
of surfaces instead of vertices. Even if local methods
are considered as a powerful shape representation and
matching, one of their biggest challenges is to define
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local features in advance, which is not an easy task.

The global matching methods operate on the entire
shape. In this case, the entire shape of an object
represents significant and essential information to
measure the global similarity. These methods have
always attracted a lot of researchers [6, 9, 24]. Bernier
and Landry [9] found that representing the contour
points of the whole shape by means of their distance
and angle from the centroid polar coordinates shows a
great invariance to translations, rotations, and scaling
for matching 2D shapes.

Indeed, most of global methods show more efficiency
and robustness when there is no big differences
between shapes and no large articulations. This is
why in recent years, a lot of matching methods used
partitioning techniques to decompose shapes into parts
and regions in order to improve classical methods.
Shape decomposition is a powerful tool to extract
relevant and additional information, which provides
more robustness and matching accuracy.

In image processing and shape representation, several
segmentation and decomposition approaches for both
2D and 3D objects have been investigated [5, 17, 26].
Various mesh decomposition techniques are used for
matching objects in 3D shape retrieval [11, 23, 31].

Our method allows to combine the global and the local
aspects, by considering all points of a shape to extract
local features corresponding to each part, in order to
compute the global similarity of two shapes.

3. SHAPE DECOMPOSITION AND
CONSTRUCTION OF ELLIPSOID
SKELETON

Shape decomposition consists in representing a shape
by its components (regions). This strategy is widely
used in the field of data analysis. As a strategy of divide
and conquer, decomposition reduces information and
simplifies a complex problem to make it more
understandable and easier to handle.

In nature, animals and humans are able to identify
objects based on their components. We often need
to see just one or more significant parts of an object
to recognize it, for example non-rigid shapes. In the
literature, various decomposition methods have been
discussed in [14] where a decomposition algorithm
is provided for non-rigid shapes. A 3D mesh
decomposition method is proposed in [5]. Another
decomposition approach, based on random walks, to
partition 3D meshes and volume models is presented

in [19]. Several convex decomposition methods have
also been proposed [14, 22, 28].

In the next Section, we introduce our novel
decomposition approach based on ellipsoidal packing
of 2D and 3D shapes. We use a variant of the k-means
algorithm to decompose a shape into k best parts. Parts
are also called classes, ellipsoids, or clusters. The
different ellipsoids of a decomposed shape are obtained
by extracting its features. This decomposition into
ellipsoids is a crucial step in the proposed matching
process.

3.1. Dynamic Clustering Algorithm 1
The dynamic clustering algorithm or k-means [10]
partitions a data set into k disjoint classes. The aim is to
classify data into different groups of similar elements.

The k-means algorithm is widely used in various fields
that require data classification. In our method, we use
a dynamic clustering in order to partition a 2D or 3D
shape into k different parts (classes).

For a given number of classes k, the dynamic clustering
algorithm (see algorithm 1) can be written as follows:
Start from some partition into k classes (see below for
the choice of a good initial partition). Then, assign
each point to the class with the closest gravity center.
The gravity center c̄l = (x̄l, ȳl, z̄l) of the class cl is:

c̄l =
1

nl

∑
Pj∈cl

Pj =
1

nl
(
∑
Pj∈cl

xj ,
∑
Pj∈cl

yj ,
∑
Pj∈cl

zj)

where nl is the number of points in the class cl.
The distance between a point and the class cl is
the Euclidean distance between the point and the
gravity center c̄l of the class cl. Once each point is
assigned to its closest class, the gravity centers of the k
classes are re-computed. This process is iterated until
convergence, i.e., when gravity centers are stable up to
some ε threshold.
Algorithm 1 k-means(P, k, C)

Input: N points Pi(xi, yi, zi), k centers, C =
{c1, c2, . . . ck}.
Compute every c̄l for l = 1, . . . k
Repeat until convergence:

for i = 1, . . . N :
Let cn = argminkl (distance(Pi, c̄l)) in
Assign(Pi, cn)

Update cluster centers c̄l for l = 1, . . . k.
Output: A set of k-classes c1, . . . ck.

Figure 1 shows an example of shape decomposition
into different classes using Algorithm 1.
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Figure 1 A shape decomposed into 3, 4, 5, 7, 12, classes.

In practice, however it is not possible to know the
number of classes k of the optimal partition of points.
A random choice of the number k can give poor results.
So, to find the best number of classes, we increment k
until some criterion is satisfied. Before describing the
algorithm we are using, we need initially to introduce
certain statistical notions.

In statistics, variance measures how observations are
distributed around their mean average. It provides an
indication of the dispersion of points (observations).
For a set of n points P , where Pi(xi, yi, zi), the
variance measures the dispersion of these points
regarding their gravity center P̄ . The Euclidean
variance of P , or variance of P for short, is defined
as follows:

var(P ) =
1

n

n∑
i=1

(Pi − P̄ ) · (Pi − P̄ ) (1)

where n is the number of points in P , · denotes the
scalar product, Pi is a point of coordinates (xi, yi, zi),
and P̄ = (x̄, ȳ, z̄), the mean of observations (or gravity
center) of P , equals:

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, z̄ =
1

n

n∑
i=1

zi (2)

Thus:

var(P ) =
1

n

n∑
i=1

(xi− x̄)2 + (yi− ȳ)2 + (zi− z̄)2 (3)

We can rewrite Equation 3 as follows:

var(P ) = var(X) + var(Y ) + var(Z) (4)

var(X) =
1

n

n∑
i=1

(xi − x̄)2, x̄ =
1

n

n∑
i=1

xi (5)

var(Y, Ȳ ) and var(Z, Z̄) are defined similarly.
Variance measures the homogeneity of the class. The

smaller the variance, the greater the homogeneity of
the class. The intra-class variance is the average of the
variances of the classes of a partition. It is defined by:

var intra =
1

k

k∑
j=1

var(cj) (6)

In the same way, the average dispersion of the centers
of classes regarding the gravity center of the shape is
called the inter-class variance and is defined by:

var inter =
1

k

k∑
j=1

(c̄j − s̄) · (c̄j − s̄) (7)

where c̄j is the gravity center of the class cj , and s̄ is
the gravity center of the whole shape.

For a given point set P and a given number of classes k,
the sum of the inter-class variance and of the inter-class
variance is independent of the partition in k classes.

Table 1 and Figure 4 show the typical variation of the
intra- and the inter-class variances as a function of k
the number of classes.

3.2. A 1D example
Figure 2 shows an example of the classification of a set
of integers into various similar groups.

The proposed approach determines the best number
of groups according to the best classification measure.
Indeed, in this example, we can easily distinguish
three groups (right); one group includes the negative
numbers, the second contains positive numbers, and
the third group contains positive number with greater
values. The differences between the numbers in the

Figure 2 One D classification example. Left: a set of
integers. Right: partition into three classes.

same group are small; the differences between the
numbers in distinct classes are bigger. Based on this
example, the best partition should have minimal intra-
class variance and, as much as possible, a maximal
inter-class variance.
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3.3. The best number of classes
The previous example illustrates the concavity of the
function var inter(k), i.e., the concavity of the inter-
class variance seen as a function of k, the number of
classes. The best number of classes K i.e., the number
of classes of the optimal partition [1], is the smallest
k such that var inter(k − 1) < var inter(k) and
var inter(k) > var inter(k + 1).

Figure 3 shows the different classes found using
Algorithm 1 according to k classes. Table 1 contains
the different values corresponding to the intra/inter-
variances. Again we can check that the intra-
class variance decreases when k increases. In this
example, the inter-class is maximal for k = 7; thus
the best number of classes is k = 7. Figure 4
shows the variation of values. Figure 5 shows
some decomposition results where the best number
of class is calculated as stated above. However,

Figure 4 Variation of Intra/inter class variances according
to the number k of classes. var − intra(k) is a
decreasing function, var− inter(k) is concave.

Figure 5 2D shapes decomposed into the adequate k
number of classes.

this decomposition is not necessarily satisfying. In
more complex shapes, certain parts are sometimes not
well covered by the union of the ellipsoids of the

classes. Before describing our tool, used to decompose
parts which are not sufficiently consistent, we need to
introduce the notion of ellipsoids.

3.4. The covariance matrix and the
ellipsoid corresponding to a class

Each class is geometrically represented by an ellipsoid.
The center of the ellipsoid is the gravity center of
the class, its main axes are the eigenvectors of the
covariance matrix of the class, its diameters are
the square roots of eigenvalues of the corresponding
eigenvectors. Physically speaking, the eigenvectors are
the main axis of inertia. This descriptor is invariant
with rigid body transformations (rotation, translation),
and robust against noise and sampling.

To calculate the ellipsoid corresponding to a class, we
need to calculate the covariance matrix Mc:

Mc =

 var(X) cov(XY ) cov(XZ)
cov(Y X) var(Y ) cov(Y Z)
cov(ZX) cov(ZY ) var(Z)

 (8)

cov(XY ) = cov(Y X) =
1

n

n∑
i=1

(xi− x̄)×(yi− ȳ) (9)

cov(XZ) and cov(Y Z) are defined similarly. The
covariance matrix Mc is symmetric and positive
definite, so it is diagonalizable. The orthogonalization
of the matrix allows us to determine the eigenvalues,
and the corresponding eigenvectors. We can
summarize this as follows:

Mc~vσ = diag(~σ)~vσ =

σ1 0 0
0 σ2 0
0 0 σ3

~vσ (10)

where σ1, σ2, and σ3 are the eigenvalues of the
covariance matrix, ~vσi is the eigenvector corresponding
to the eigenvalue σi. The eigenvalues are real
and positive. Figure 6 shows an example of the
decomposition of a shape into 5-classes represented by
their ellipsoids. The covariance matrix of the whole
dataset defines the coordinates system of the shape.
The origin is the gravity center of the cloud, and the
axes are the eigenvectors of the covariance matrix.
All points are described according to this coordinates
system.

3.5. The optimal final partition
As mentioned previously, in some cases it is possible
that the computation of the best number of classes
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Figure 3 Clustering example using the k-means algorithm. We take the different values corresponding to the intra/inter
class variance of the number k of classes.

Table 1 Values corresponding to the intra/inter class variances according to the number k of classes. K is the smallest k
such that var inter(k − 1) < var inter(k) and var inter(k) > var inter(k + 1)

k 1 2 3 4 5 6 7 8 9
Intra 0.84 0.44 0.25 0.17 0.06 0.02 0.015 0.013 0.011
Inter 0 0.17 0.25 0.32 0.38 0.39 0.42 0.40 0.36

Figure 6 Ellipsoidal skeleton of a shape.

(see Section 3.3) results in classes which are not
sufficiently consistent (e.g., Figure 7). Thus, we
suggest decomposing these classes into subclasses.

This problem results from the use of the Euclidean
distance. Each point is assigned the class with
the closest gravity center. No other information is
considered. Indeed, using the Euclidean distance
produces spherical classes (data partitioned equally
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Figure 7 Example of objects with inconsistent classes.

in space). Classes are sometimes unexpected and
inconsistent. Thus, we need a new technique.

To fix this issue, we detect inconsistent classes, and
then we decompose them into subclasses, using the
procedure explained in section 3.3. To determine if
a class is sufficiently consistent or not, we calculate
an error measuring how well an ellipsoid covers its
corresponding class. It is the ratio of data size to
ellipsoid axes:

Error =
Ni

Mi
× 100% (11)

whereNi is the number of pixels or voxels in class ci (a
pixel/voxel is a square/cube with side length 1), andMi

is the ellipsoid area corresponding to class ci. A class is
decomposed into subclasses if the error is greater than
5%.

Figure 8 Decomposition of a class into subclasses.

This process assures the treatment of classes which
are insufficiently consistent and keeps those which
are already consistent. Assuming that we continue to
increase the number of classes k, we will decompose
all parts, even those which are sufficiently consistent.
This method also provides a faster convergence of the
algorithm.

Another solution to this issue, which we are currently
testing, is to use the geodesic distance instead of the
Euclidean distance. The geodesic distance of a point
p to a class is the length of the shortest path inside the
shape from p to the gravity center of the class.

3.6. Initialisation of a k-partition
In addition to the number of classes and the used
distance, the initialization of the dynamic clustering is

a crucial step. Initial centers influence the convergence
of the algorithm. A bad choice of the initial centers will
produce undesirable results. It is not easy to find the
perfect initial centers. Various methods and algorithms
have been presented to solve this issue (for instance
starting from many random k centers). We have opted
to use the initialization tool described in [13].

Algorithm 2 modified k-means algorithm
Input: Pi = (xi, yi, zi), C = {c1, c2}
k-means (P, 2, C)
while (V arInternew > V arInterold):
ck ← distant(

⋃k
i=1 farthest(Ci))

C ← C ∪ {ck}
k ← k + 1
k-means(k, P , C)

return k-means(k, P , C)

It is a modified version of the dynamic clustering
algorithm.
Definition 1. LetC be a class, c is the gravity center of
this class. A point f in C is called its farthest point (we
note f = farthest(C)) if this point is the most distant
from the center c (using the Euclidean distance). Since
there are k classes, F = {f1, f2, . . . fk} is the set of
all farthest points. We note distant(F ) the point in F
with the maximal distance from the gravity center of its
class.

Initially, the algorithm starts with two centers to
calculate the initial two clusters. These are the two
most distant points of the shape (Figure 9.a).

Figure 9 The initial centers for clustering. (a) the two
farthest points P1 and P2 (the two initial
centers). (b) the two farthest points P1 and P2

according respectively to centers c1 and c2. If
d1 < d2, P1 is the new center, otherwise P2 is.

When incrementing the number of classes, and to find a
new cluster, we calculate for each existing class Ci, its
farthest point fi = farthest(Ci) (Figure 9.b). Thus,
distant(F ) is the new center.

This is based on the fact that if a point is far from the
center of the cluster, it is dissimilar to the other points
of the same class. So, it is possible that it is badly
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Figure 10 Objects decomposed into adequate number of
ellipsoids.

assigned. Figure 10 shows some decomposition results
using Algorithm 2. This method gives the appropriate
number of k (classes) of a shape. The more detailed a
shape, the more ellipsoids it is filled with. In Figure 11
and Figure 12, a best ellipsoid packing is calculated.

4. SHAPE RETRIEVAL AND
RECOGNITION

4.1. Dataset classification
The recognition of a given shape S, called a model,
implies looking into the dataset to find shapes
S1, S2, . . . Sn which are the most similar to it, and
compute the differences between the model and these
shapes. To manage a large dataset (a dataset containing
a big number of shapes), and to accelerate the
recognition process, we have developed a tool for
indexing the dataset. The idea is to classify elements
of the dataset into different groups, according to their
number k of classes (ellipsoids).

In a preliminary step, all shapes in the dataset are
transformed into ellipsoidal skeletons. All shapes
described by their ellipsoids are spread over different
groups. We use the algorithm described previously
(Section 3.3) to obtain the groups. Represented
by discrete data, each shape is decomposed into its
number of classes, in order to classify it in the right
cluster. So, we get n groups of shapes, where each
group contains shapes with similar or close number of
classes k. Finally, the model is compared with all the
shapes of the nearest group.

4.2. Characteristic vector of a class
To compute the best matching between two shapes, we
need to characterize the classes (ellipsoids) describing
them. To do so, we associate to each classCi of a shape
a characteristic point (signature). The elements of the
class signature are the two or three eigenvalues of the
corresponding ellipsoid, and the distance d between the
gravity center of the ellipsoid and the gravity center of

the shape. Banégas [3] tested some signature variants
and concluded that the simplest signature is the best.
Thus the characteristic point (signature) of a class is:

(vp1, vp2, vp3, d) = (
√
σ1,
√
σ2,
√
σ3, d) (12)

where the vpi are the lengths of the ellipsoids axes
Ei (for instance in decreasing order), the σi are the
eigenvalues of the covariance matrix of the class, and
d is the Euclidean distance between the gravity center
of the ellipsoid Ei and the gravity center of the shape.

Note that we can use other signatures, such as the
orientation of the ellipsoid, or consider only the natural
coordinates of the center of the ellipsoid. However,
when ellipsoids are close to disks (eigenvalues are
almost equal), eigenvectors become unstable. It is
why the signature using eigenvalues is more stable and
robust than the one using eigenvectors. Bangas already
observed that.

4.3. Shape matching and perfect
matchings in bipartite graphs

The matching between two shapes A and B, both
described by their k ellipsoids E1, E2, . . . Ek and
E′

1, E′
2, . . .E′

k, is a minimal matching problem
solved using the Hungarian method [18] in strongly
polynomial time. It is equivalent to an optimal
matching in a complete bipartite graph with 2 × k
vertices. The first k vertices represent the ellipsoids of
shape A, and the last k vertices represent the ellipsoids
of shape B. Each vertex Ai is linked to all vertices
Bj , i.e., it is a complete bipartite graph, with k! perfect
matchings (or bijections). The cost of the edge AiBj
is the Euclidean distance between the characteristic
point (signature) of the class Ai and the characteristic
point (signature) of the class Bj . The cost of a perfect
matching is the sum of the costs of the k edges in the
matching. Among the k! perfect matchings between
the ellipsoids of A and those of B, the optimal perfect
matching is the one with minimal cost. This optimal
matching not only gives the dissimilarity between A
and B, but also matches each ellipsoid of A to the
corresponding ellipsoid in B (thus some morphing
from A to B can be imagined).

5. EXPERIMENTAL RESULTS
In this section, we discuss the results achieved by the
proposed ellipsoid-based shape matching approach. In
order to evaluate our shape matching approach, we
apply this algorithm to the well-known MPEG-7 [20]
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Figure 11 Decomposition examples of 3D models. Line 1: Original models. line 2: 3D Ellipsoidal skeletons.

Figure 12 Decomposition examples of 2D shapes. Line 1: Original models. Line 2: Ellipsoidal skeletons.

Figure 13 Optimal matching in a bipartite graph
(correspondence between two ellipsoidal
skeletons.)

dataset for 2D shapes, and also to the benchmark
dataset for 3D models [30]. The MPEG-7 dataset
contains 70 categories, where each category contains
20 shapes. Described in [30], the benchmark dataset
contains 458 3D models, divided into different classes;
each class contains a variety of poses.

In a preprocessed phase, all the shapes belonging to
a database are transformed into ellipsoidal skeletons
using our decomposition algorithm. So, the database
is partitioned into a collection of classes or groups
containing each one shapes with the same or nearest
number of ellipsoids. The performance of the
database classification for both 2D and 3D shapes is
illustrated in Table 3. The results reported in the table
demonstrate that the algorithm shows a great ability to
place similar shapes in the same group.

To evaluate the retrieval process, in an on-line phase,
a chosen element from the database is used as a
query, and compared to all elements of the closest
groups. Distance is measured between each shape
in the collection and the query shape in order to
obtain the most similar shapes. Figure 14 shows some
classification results of 3D models. The first element
in each line represents a model, and the remaining
elements are the corresponding shapes sorted by
increasing distance to the model.

The effectiveness of the retrieval engine is shown and
reported in Tables 2, 4, 5, and 6 which illustrate
the dissimilarity results between different shapes in
the MPEG-7 database. We can see that values
are significant, meaning that objects are dissimilar.
Objects are similar if the distance is small (Table 2).
The accuracy of our matching algorithm is measured
in terms of correct matches of various 3D and 2D
shapes. Tables 7 lists the number of correct matches
for different shapes.

However, the performances of our method drop when
applied on shapes with a large articulation and big
number of parts, this is because we do not consider
structural information of shapes. Thus, in some cases
decomposition results can be different for the same
category of shapes. A solution is to sample the postures
(sitting, standing, squatting, walking, etc. for a human
being). Another limitation comes from the choice of
the initial centers, since it is not obvious to find the
best centers which assure the best decomposition of a
shape.
We have used C++ language, including OpenGL,
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Table 2 Distance matrices between some similar shapes. The values are small, unlike the values corresponding to
distances between dissimilar shapes as in Tables 4, 5, 6.

Rat1 Rat2 Rat3 Rat4 Rat5
Rat 0.014 0.026 0.117 0.059 0.077

Key1 Key2 Key3 Key4 Key5
Key 0.056 0.085 0.12 0.091 0.034

Bottle1 Bottle2 Bottle3 Bottle4 Bottle5
Bottle 0.028 0.075 0.042 0.033 0.056

Table 3 Some statistics for partitioning results of the databases. Table shows membership of some category of shapes to a
group considering the number of parts (classes) k defining each group..

Database clusters 2D shapes 3D shapes
Group1 (2 < k < 4) Spoons (95%) Airplanes (97%)

Children (93%) Dolphins (90%)
Bones (87%) Pliers (95%)

Group2 (5 < k < 10) Devices (96%) Human (90%)
Snicks (89%) Teddy (91%)

Group3 (10 < k < 20) Butterfly(60%) Ants (75%)
Octopus (57%) Crabs (78%)
Springs (83%) Dinosaurs (80%)

Table 4 Distance matrix of two different shapes (Fish and
Children).

Fish1 Fish2 Fish3 Fish4
Childr1 0.406 0.448 0.425 0.497
Childr2 0.439 0.456 0.412 0.446
Childr3 0.482 0.437 0.492 0.465
Childr4 0.497 0.454 0.463 0.431

Table 5 Distance matrix of two different shapes (Bone and
Bottle).

Bone1 Bone1 Bone1 Bone4
Bottle1 0.341 0.368 0.335 0.319
Bottle2 0.322 0.394 0.367 0.331
Bottle3 0.383 0.328 0.372 0.324
Bottle4 0.337 0.341 0.382 0.353

OpenCV, and GSL libraries for developing our
application to test the presented method. Experiments
were performed on a laptop (IntelrCore(TM)2 Duo
CPU T5470 1.60GHz 2GB RAM) running under
Debian GNU/Linux 6.0.

6. CONCLUSION
In this paper, we have described a new region-based
shape matching approach for 2D and 3D shapes.
Indeed, we developed a new dynamic clustering
algorithm.

Our method was able to compute the best ellipsoid
packing of a shape without worrying about fixing in

Table 6 Distance matrix of two different shapes (Key and
Butterfly).

Keys1 Keys1 Keys1 Keys4
Butter1 0.637 0.591 0.603 0.654
Butter2 0.622 0.637 0.599 0.601
Butter3 0.642 0.621 0.598 0.615
Butter4 0.626 0.597 0.681 0.663

Table 7 Retrieval precision for 2D and 3D shapes.

2D Shapes Accuracy 3D shapes Accuracy
Whole 81% Whole 85%
Bone 87% Airplanes 96%

Devices 90% Ants 78.5%
Beetle 78% Hand 75%
Spring 82 % Pliers 95%
Spoon 93% Cups 80%

advance the number of classes, which is determined
in a non-supervised process according to shape
complexity.

It seems to us that the use of the ellipsoid
representation contributes to provide a robust shape
descriptor, and allows to ensure the accuracy of the
matching.

However, there is a limitation in our algorithm, it is
specifically for non-rigid shapes, when in some cases
we are not able to capture the same parts structure
for the same category of shapes. We also look to
use a graph-based decomposition method to replace
the Euclidean distance with an approximate geodesic
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Query (1) (2) (3) (4) (5) (6)

Figure 14 Classification results. Column 1: new shape (model). column i: Corresponding shapes sorted according to their
distances from the model.

distance, i.e., the length of the shortest path between
vertices, in order to calculate clusters; graph clustering
is a well studied topic [29]. Future work will also cover
the application of our method for real world data and
for various applications such as object detection and
tracking, quality control, content-based shape retrieval,
medical imaging, shape repository, model retrieval in
CAD/CAM or robotics.
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