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ABSTRACT
A star is a point in a set which can see all of the
boundary points. In this paper, algorithms to perform
emptiness test and star test for parametric patches are
investigated. With those algorithms a studied box is
tested whether it is empty, full, or its center is a star
point. Otherwise, the tests fail and the box is subdi-
vided. The results are theoretically guaranteed, and
will facilitate applying topology analysis algorithms of
geometric sets, such as the C.I.A. (Connected compo-
nents via Interval Analysis) and the H.I.A. (Homotopy
type via Interval Analysis). We implemented our al-
gorithms for Bézier patches. Since the interval com-
putation paradigm is used in the tests for implicit sets,
the tests for patches are based on the elegant proper-
ties of Bézier patches and the de Casteljau algorithm.
Our methods may fail because of insufficient accuracy
on some particular patches, failure cases are analyzed.
Experimental results, including those generated by the
C.I.A. algorithm, are given to show the effectiveness of
our approach.

KEYWORDS
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1. INTRODUCTION
Parametric patches such as Bézier patches and spline
patches are widely used in computer graphics, com-
puter aided design, and related fields [4]. Bézier
patches possess a lot of elegant properties, such as
convex hull property, variation diminishing property,
affine invariant, which are mathematically convenient.

A Bézier patch is defined in terms of tensor product bi-
variate (in 2D) or trivariate (in 3D) Bernstein polyno-
mials, while all the coefficients construct a control net.
The patch can be evaluated using the de Casteljau al-
gorithm [4], which is numerically stable and efficient.
For simplicity, we introduce our work for 2D cases.

Bernstein polynomials also have widespread applica-
tions in numerical computation, such as curve/surface
approximation and interpolation [14], root finding [13],
geometric constraint systems solving [7, 12], etc. It is
well-known that the de Casteljau algorithm converges
much faster than other iterative algorithms. How-
ever, the transformation matrix between high-degree
canonical power series to Bernstein polynomials is ill-
conditioned [5]. Bernstein polytopes [8] are proposed
to evaluate or solve high degree and multi-variate sys-
tems.

Bézier patches are preferred to implicit sets which
are defined by implicit functions, since they are much
easier to manipulate, and can construct more free-
form shapes. In addition, some common implicit sur-
faces such as spheres and cylinders can be well ap-
proximated or even exactly represented by rational
Bézier patches. However, some geometric computa-
tions which do not use subdivision are awkward if
Bézier shapes are used, for example, it is not so easy
to classify an arbitrary point as being inside or outside
the shape, while it is trivial for implicit sets. It will
be interesting if implicit sets and Bézier shapes can be
used to construct geometric models in a uniform way.
This is also one of the motivations of this paper.

CSG (constructive solid geometry) is one of the most
popular technologies to create a complex surface or ob-
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ject by using Boolean operations. Primitives are the
simplest solid objects used for the representation. Usu-
ally they are simple shapes: triangles, rectangles, disks,
ellipses in 2D, or cuboids, cylinders, prisms, pyramids,
spheres, cones in 3D. A convenient property of CSG
shapes is that it is easy to do geometric computations
like point classification (inside or outside). The com-
putations are dealt for all the underlying primitives and
the resulting boolean expression is evaluated. This is
a desirable quality for some applications such as colli-
sion detection.

One of the most significant features of a geometric
shape is its topological properties. Delanoue et al.
[1, 2] presented an approach to compute topological
properties for CSG shapes, whose primitives are all
implicit sets. By generating C.I.A. (Connected com-
ponents via Interval Analysis) and H.I.A. (Homotopy
type via Interval Analysis) graphs, a simplicial com-
plex which is homotopy equivalent to the input CSG
shape can be obtained. Both C.I.A. and H.I.A. are
based on two tests, that is emptiness test and star test.
In this paper, approaches of emptiness test and star test
for parametric patches are introduced, all the tests are
implemented on Bézier patches in 2D.

The rest of the paper is organized as follows. In Sec-
tion 2, we recall the properties of Bézier patches and
basic conceptions introduced by Delanoue [1, 2]. Then
methods of emptiness test and star test are introduced
in Section 3 and Section 4 respectively. Failure cases
are discussed in Section 5 and experimental results are
shown in Section 6. At last, we conclude the paper in
Section 7.

2. BACKGROUND
2.1. Bézier Curve and Patch
Let {pi = (xi, yi), i = 0, ..., n} be the control points,
and

Bn
i (t) =

(
n

i

)
(1− t)n−iti, i = 0, ..., n (1)

be Bernstein polynomials. A Bézier curve is defined
by

P (t) =
n∑

i=0

Bn
i (t)pi, 0 ≤ t ≤ 1 (2)

The derivative of the curve has form

P ′(t) = n

n−1∑
i=0

Bn−1
i (t)∆pi (3)

where ∆pi = pi+1 − pi. The control points construct
a control polygon, and there is a well-known VD (vari-
ation diminishing) property which may also be gener-
alised into higher dimensions [6].
Property 1. (VD Property) If a line is drawn through
the curve, the number of intersections with the curve
will be less than or equal to the number of intersections
with the control polygon.

Let {pi,j = (xi,j , yi,j), i = 0, ...,m, j = 0, ..., n} be
the control points, a Bézier patch S is defined by tensor
product of Bernstein polynomials

P (u, v) =

m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v)pi,j , 0 ≤ u, v ≤ 1

(4)

Note that P (u, v) = (x(u, v), y(u, v)), and following
equation (3), P ′u(u, v) and P ′v(u, v) can also be ex-
pressed in Bernstein form

P ′u(u, v) = m
m−1∑
i

n∑
j

Bm−1
i (u)Bn

j (v)∆ipi,j

P ′v(u, v) = n

m∑
i

n−1∑
j

Bm
i (u)Bn−1

j (v)∆jpi,j

where ∆ipi,j = pi+1,j − pi,j , ∆jpi,j = pi,j+1 − pi,j .
Therefore, Jacobian determinant

|JP (u, v)| =
∣∣∣∣x′u(u, v) x′v(u, v)
y′u(u, v) y′v(u, v)

∣∣∣∣ (5)

can also be expressed in Bernstein form, whose order
is (2m − 1) × (2n − 1). A point (u0, v0) is called
a critical point if the Jacobian determinant vanishes,
i.e., |JP (u0, v0)| = 0. Moreover, if x′u(u0, v0) =
x′v(u0, v0) = 0 and y′u(u0, v0) = y′v(u0, v0) = 0, the
point P (u0, v0) is called a cusp. If there are two dif-
ferent points in uv-domain, that is (u0, v0) 6= (u1, v1),
such that p = P (u0, v0) = P (u1, v1), the point p is
called a multiple point. When there are no multiple
points, P : [0, 1]2 → R2 is injective, Lagrange et. al
[9] proposed a method to perform injectivity test.

Let S be a set in Rn, Sc be the complementary set of
S, then a point p ∈ S is called a boundary point if and
only if ∀ε > 0, N(p, ε) ∩ Sc 6= ∅, where N(p, ε) is a
ε-neighbourhood of p. A set S is called closed if ∂S ⊂
S. For parametric patches, the boundary ∂P ([0, 1]2)
of the patch is a subset of following curves, i.e., four
curves P (∂[0, 1]2), and the critical curve P (K) where
K is the set of critical points: K = {(u, v) ∈ [0, 1]2 |
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(a) (b)

Figure 1 A patch S defined by P (u, v) = (12(u2 + v2), uv), the critical curve is shown in red, both in xy-domain and
uv-domain. (a) The contour of the patch. (b) uv-domain.
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Figure 2 An illustration of the star test in a box.

|P ′|(u, v) = 0}. An example is illustrated in Figure
1. Algorithms to trace implicit curves like P (K) have
been discussed in [10].

2.2. Star test
Here we recall some fundamental concepts and propo-
sitions [1, 2].
Definition 1. A point s is a star for a subset X of an
Euclidean set if X contains all the line segments con-
necting any of its points and s.
Definition 2. If s is a star for subset X of an Euclidean
set, one says that X is star-shaped or s-star-shaped.
Proposition 1. Let X and Y be two s-star-shaped
sets, then X ∩ Y and X ∪ Y are also s-star-shaped.
Proposition 2. Let f be aC1 function from Rn to R, B
be a convex set and S = {x ∈ B ⊂ Rn | f(x) ≤ 0}.
If there exists s ∈ S such that

{x ∈ B | f(x) = 0, ∇f(x) · (x− s) ≤ 0} = ∅

then S is s-star-shaped.

Figure 2 illustrates the star test in a box through
an example: Let S be the patch, and B =
([xmin, xmax], [ymin, ymax]) be the studied box. Point
E is a star for S ∩ B. Point A is a star for the inter-
section of S and the upper edge of B. Point B is a
star for the intersection of S and the left edge of B.
Point D is a star for the intersection of S and the bot-

tom edge of B. The intersection of S and the right
edge is empty. Finally, A (and C) are trivial stars for
A ∩ S (and C ∩ S). The simplicial complex homo-
topic to S ∩B is also shown, see Figure 2 right. The
maximal simplices are triangles ABE,BCE,CDE.
Other simplices of dimension 1 (AB,BE,EA, etc)
and dimension 0 (A,B,C,D,E) are deduced by in-
clusion. By definition of simplical complex, either two
simplices intersect on another simplex of the complex,
or they are disjoint.

3. EMPTINESS TEST
Generally, a patch may contain critical points and/or
multiple points. In this section, we give approaches of
emptiness test for a given studied box. Existences of
different kinds of points are discussed.

3.1. General points
In this subsection, we present a method to test if a stud-
ied box B contains a point of a patch S = {p | p =
P (u, v), 0 ≤ u, v ≤ 1}, which is mainly based on the
de Casteljau algorithm.

By the convex hull property, a studied box B is
empty if it does not intersect with the bounding box
of the control points. As we already know, p0,0 =
P (0, 0),pm,0 = P (1, 0),p0,n = P (0, 1), pm,n =
P (1, 1), therefore, if one of these four corner points
is in the studied box, the box is not empty. Moreover,
if B is bounded by four boundary curves P (∂[0, 1]2),
for example if ∀(x, y) ∈ B

x0,j ≤ x ≤ xm,j , j = 0, ..., n

yi,0 ≤ y ≤ yi,n, i = 0, ...,m (6)

we know that B ⊂ S, the box is full as shown in Fig-
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(a) (b)

Figure 3 This patch contains A CURVE (in red) of critical points, and multiple points. (a) The contour (including the
critical curve in red) of the patch in the xy-domain. (b) The contour of the patch (including the critical curve in
red) in the uv-domain.

Algorithm 1 GeneralPointTest(B, S)
Require: B a studied box, S a given patch

1: Compute bounding box Bb of control points of S
2: if B ∩Bb = ∅ then
3: return FALSE
4: else if {p00,pm0,p0n,pmn} ∩B 6= ∅ or B ⊂ S

is guaranteed then
5: return TRUE
6: else if size(Bb) ≤ ε then
7: return UNKNOWN
8: else
9: Subdivide S into {Si}3i=0 using the de Casteljau

method
10: for i = 0 to 3 do
11: resi ← GeneralPointTest(B, Si)
12: if resi = TRUE then
13: return TRUE
14: end if
15: end for
16: if UNKNOWN ∈ {resi}3i=0 then
17: return UNKNOWN
18: end if
19: return FALSE
20: end if

ure 4. See Algorithm 1 for details.

If the studied box is degenerated to a point (x0, y0), it
is a test for the existence of the solution in [0, 1]2 for
such a system of equations

x0 − x(u, v) = 0

y0 − y(u, v) = 0

There are theorems to guarantee existence of a root of
the system inside a box [11].

After the procedure terminates, the box is empty if
FALSE is returned. If UNKNOWN is the final result,
then it means the studied box may be tangent to the
patch on the contour or the intersection is too small,
and the accuracy is not sufficient enough to detect it.
TRUE and FALSE answers are guaranteed to be cor-
rect.

Figure 4 The studied box is bounded by four boundary
curves, it is full.

3.2. Critical points
Since |JP (u, v)| can also be expressed in Bernstein
form, again the de Casteljau method can be used to
test whether a patch contains critical points. Suppose
{Ji,j , i = 0, ...,M, j = 0, ..., N} to be Bernstein coef-
ficients of the Jacobian determinant, then existence of
critical points can be guaranteed if

max{J0,0, JM,0, J0,N , JM,N} ≥ 0
min{J0,0, JM,0, J0,N , JM,N} ≤ 0

Algorithm 2 gives the details of the steps. We return
UNKNOWN as the result if the accuracy is not suf-
ficient enough to get a guaranteed result. In Figure 3,
we picture the critical curve both in xy-domain and uv-
domain.

A point of a patch is a cusp when x′u(u, v) =
x′v(u, v) = y′u(u, v) = y′v(u, v) = 0. Since
all the items can be expressed in Bernstein form,
existence of cusps can be tested using the de
Casteljau method. There are cusps if the patch
(x′u(u, v), x′v(u, v), y′u(u, v), y′v(u, v)) contains point
(0, 0, 0, 0). Or there are no cusps if (0, 0, 0, 0) is out
of the patch. Otherwise, the patch needs to be sub-
divided and the steps are repeated until the bounding
box of subdivided patch fulfills a ε condition, in which
case UNKNOWN is returned. Since there are more
constraints than variables, only non-existence of cusps
is proved. In geometric modelling, cusps are not ex-
pected.
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(a)

(b)

(c)

Figure 5 This α shaped patch contains multiple points, but no critical points. (a) The contour of the patch. (b) A studied
box which does not intersect with contour curves and its pre-image in uv-domain. (c) A studied box which
intersect with one contour curve and its pre-image in uv-domain.

(a)

(b)

(c)

Figure 6 This patch contains a critical curve and multiple points. (a) The contour of the patch. (b) A studied box which
does not intersect with contour curves and its pre-image in uv-domain. (c) A studied box which intersect with
one contour curve and its pre-image in uv-domain.
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Algorithm 2 CriticalPointTest(B, S)
Require: B a studied box, S a given patch

1: Compute bounding box Bb of control points of S
2: if B ∩Bb = ∅ then
3: return FALSE
4: end if
5: Compute Jacobian determinant and note {Ji,j} the

Bernstein coefficients
6: if max{Ji,j} < 0 or min{Ji,j} > 0 then
7: return FALSE
8: else if max{J0,0, JM,0, J0,N , JM,N} ≥ 0 and
min{J0,0, JM,0, J0,N , JM,N} ≤ 0 and Bb ⊂ B
then

9: return TRUE
10: else if size(Bb) ≤ ε then
11: return UNKNOWN
12: else
13: Subdivide S into {Si}3i=0
14: for i = 0 to 3 do
15: resi ← CriticalPointTest(B, Si)
16: if resi = TRUE then
17: return TRUE
18: end if
19: end for
20: if UNKNOWN ∈ {resi}3i=0 then
21: return UNKNOWN
22: end if
23: return FALSE
24: end if

3.3. Multiple points
More generally, a patch may contain multiple points
or/and critical points, see Figures 5 and 6. We intro-
duce a sufficient condition that a studied set contains
multiple points.
Theorem 1. Let D ⊂ Rm be a closed set, S = P (u),
u ∈ D be a parametric set. If for a closed path-
connected set B, B ∩ S 6= ∅, P−1(B ∩ S) =
∪i{Di}ni=0, {Di, i = 0, ..., n} are also closed path-
connected sets, and Di ∩ Dj = ∅, i 6= j, there ex-
ist a non-empty set Di0 ⊂ D \ ∂D such that 0 /∈
|JP (Di0)|, then
1) B = P (Di0) ⊂ S \ ∂S.
2) P : Di0 → B defined by P (u) is injective.
3) B contains multiple points of S if n > 0.

Proof. Consider the case when n = 0, we have
P (D0) = B∩S. Since Di0 ⊂D and 0 /∈ |JP (Di0)|,
we know P (D0) ∩ ∂S = ∅, thus B ∩ ∂S = ∅ and
B ⊂ S \ ∂S.

Suppose there exist x0 and x1 such that P (x0) =

Algorithm 3 preImage(B,S,node)
Require: B a studied box, S a given patch, node a

quad tree node whose data is the parametric do-
main of S

1: Compute bounding box Bb of control points of S
2: if Bb ⊂ B then
3: Label node INSIDE
4: else if Bb ∩B = ∅ then
5: Label node OUTSIDE
6: else if size(Bb) < ε then
7: Label node BOUNDARY
8: else
9: Subdivide (S,node) into {(Si,ni)}3i=0

10: for i = 0 to 3 do
11: preImage(B, Si, ni)
12: end for
13: end if

P (x1), then following the intermediate value theo-
rem, we have 0 ∈ |JP (Di0)| or Di0 ∩ ∂D 6= ∅,
which is conflicted with the conditions. Therefore,
P : Di0 → B defined by P (u, v) is injective.

If n > 0, since Di is path-connected, and Di ∩Dj =
∅, i 6= j, we can find a closed path-connected set
D̃i0 ⊂D such that Di0 ⊂ D̃i0 , D̃i0∩Dj = ∅, j 6= i0.
Consider S̃ = P (D̃i0) as a sub-patch, by the case
n = 0, we know B ⊂ S̃ ⊂ S. Furthermore,
∀p ∈Di, i 6= i0, p is a multiple point.

Now we give a method to test the existence of multi-
ple points. Let U0 = [0, 1]2, Algorithm 3 constructs a
quad tree in uv-domain. Actually, in Algorithm 3, the
de Casteljau method on (x, y, u, v) ∈ (S,U0) is used.
By the adjacency of boxes in the tree, all boxes which
are not OUTSIDE can be clustered into different com-
ponents. Let {D̃i, i = 0, ..., n} be these components,
then we have

P−1(B ∩ S) ⊂
n⋃

i=0

{D̃i}

From Theorem 1, if there is a D̃i ∈ (0, 1)2 which con-
tains no critical points, then B ⊂ S is guaranteed, also
B contains multiple points if n > 0. Otherwise, the
studied box B should be subdivided and the test is
performed for each small box. Once a ε condition in
xy-domain is fulfilled and no guaranteed result can be
obtained, UNKNOWN is returned.

In Figure 5, an α shaped patch is given, two differ-
ent studied boxes included by the patch and their pre-
images are shown in Figures 5(b) and 5(c). For Fig-
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ure 5(b), the pre-image of the studied box contains two
path-connected components, none of which are inter-
sected with ∂[0, 1]2, thus the studied box is proved to
be in the patch. The studied box in Figure 5(c) is in-
tersected with one of the four curves P (∂[0, 1]2), and
its pre-image also contains two path-connected compo-
nents. One of them is intersected with ∂[0, 1]2, while
the other is not, so the box is also in the patch.

Figure 6 gives another example, where the given patch
contains critical points and multiple points. None of
the two components of the pre-image of the studied
box in Figure 6(b) are intersected with ∂[0, 1]2, or con-
tain critical points, thus the studied box is guaranteed
to be in the patch. In Figure 6(c), the studied box is
intersected with one of the contour curves, and its pre-
image contains two components. One of them is not in-
tersected with ∂[0, 1]2, and contains no critical points,
so the box is in the patch.

4. STAR TEST
C.I.A. and H.I.A. need to test if a given box B in the
visible space (x, y) is empty (B ∩ P ([0, 1]2) = ∅),
or full (B = B ∩ P ([0, 1]2)), or, when B contains
boundary points, if the center of B is a star. If the
star test fails then the box B is subdivided. In this
section, only the case B contains boundary points is
considered, other cases can be tested using methods in
previous section.

By the definition, we know that S is s-star-shaped if
∀p ∈ ∂S, {p} = {(1−t)·s+t·p | t > 0}∩∂S, which
is a test for the uniqueness of a solution [15, 16, 3].
Since ∂S ⊂ P (∂[0, 1]2)∪P (K), and P (∂[0, 1]2) are
Bézier curves, the uniqueness of intersection of a line
and P (∂[0, 1]2) can be tested according the variation
diminishing property. In other words, if a parametric
patch S without critical points is bounded by a Bézier
curve, then a point s ∈ S is a star of S if it is a star
of the control polygons. This gives a basic idea for the
star test of regular patches.

However, a general patch may contain multiple and/or
critical points, which makes the test more difficult. We
recall a sufficient condition for the uniqueness of inter-
section of two curves [15, 16]. Let P (t) be a Bézier
curve, and {pi, i = 0, ..., n} be the control points,
T denoted the set of positive linear combinations of
∆pi = pi+1 − pi, which is called tangent cone [15].
Two curves can not intersect more than once if their
tangent cones are not overlapping [15, 16].

Let ∂S = ∪ni=0{S′i} ∪ P (K) be a partition of the
boundary of a patch, for s ∈ S, let Si = {(1−t)·s+t·

p | 0 ≤ t ≤ 1,p ∈ S′i} and SK = {(1−t)·s+t·p | 0 ≤
t ≤ 1,p ∈ P (K)}, Ti be the tangent cone of S′i. Then
there are no loops composed by curves P (∂[0, 1]2) if
Ti ∩ Tj = ∅ where i 6= j and ∂Si ( Si ∩ Sj [15].

In this paper, we assume there are no loops com-
posed by critical curves for a given patch. Thus, S =
∪ni {Si}∪SK if {(1− t) · s+ t ·p | p ∈ ∂S′, 0 ≤ t ≤
1} ⊂ S and {(1 − t) · s + t · p | p ∈ ∂SK , 0 ≤ t ≤
1} ⊂ S. Furthermore, s is a star of S if it is a star of
each Si and SK .

We give a method to do the star test for patch contain-
ing no critical points, details are illustrated as the Algo-
rithm 4 and 5. Algorithm 4 gives a star test for regular
patches, which contain no multiple points and no criti-
cal points. Algorithm 5 needs to be run for the star test
of patches with multiple points but no critical points.

Patches without cusps are considered in this paper, so
P ′(u, v) is continuous and there is no more than one
critical point on a line connecting s ∈ S and a point
on the critical curve if {(P (u, v) − s) · ∇P (u, v) =
0} = ∅, which can be tested using interval arithmetic
method. We also considered to use the de Casteljau
method, but instability happens because of high degree
of the equation. For patches containing critical points,
another test whose steps are similar to Algorithm 4
shall be run to complete the star test. The differences
are the stack Lstack saves the patches containing crit-
ical points, and interval arithmetic method is used for
the star test of SK .

The star test fails if FALSE or UNKNOWN is returned,
different cases of failure are discussed in Section 5.

5. LIMITATIONS
Delanoue’s method fails when the studied set is not fat
(a set is fat when it is equal to the closure of its in-
terior), or when the boundary is tangent to one of the
subdivision hyperplane (a line in 2D, a plane in 3D):
in this latter case, no point can be found (thus no star
point can be found) inside the intersection of the stud-
ied object and of the subdivision hyperplane: thus De-
lanoue’s method fails. Our test also fails in the same
cases. To discard the first case of failure, Delanoue as-
sumes the studied set is fat; we also assume that the
studied set is fat (otherwise it can not be manufac-
tured). He used a probabilistic argument to discard the
second case of failure: each subdivision hyperplane in
the visible space x, y or x, y, z is randomly perturbed,
and the probability for an hyperplane to be tangent to
an object is zero. If a failure is due to this kind of acci-
dent, re-running the program will succeed with proba-
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Algorithm 4 RegularStarTest(S, B,S)
Require: B a studied box, S a given patch, B∩S 6= ∅

1: Initialization: S = ∅
2: for all P (t) ∈ P (∂[0, 1]2) do
3: tmin = min{t|P (t) ∈ B}
4: tmax = max{t|P (t) ∈ B}
5: Stack P (t), tmin − ε ≤ t ≤ tmax + ε in Lstatck
6: end for
7: s = center(B)
8: if s /∈ S then
9: return FALSE

10: end if
11: while Lstatck 6= ∅ do
12: Pop Lstatck into C
13: Compute the bounding box Bb of C
14: if not (B ∩Bb = ∅ or Bb ⊂ S) then
15: if not {(1 − t) · s + t · p|0 ≤ t ≤ 1,p ∈

∂C} ⊂ S then
16: return FALSE
17: else if {(1− t) · s + t · p|0 ≤ t ≤ 1,p ∈ C}

is s-star-shaped then
18: Push C in S
19: else if size(Bb) < ε then
20: return UNKNOWN
21: else
22: Subdivide C into {Ci}
23: for all Ci = P (t) do
24: tmin = min{t|P (t) ∈ B}
25: tmax = max{t|P (t) ∈ B}
26: Stack P (t), tmin − ε ≤ t ≤ tmax + ε in

Lstatck
27: end for
28: end if
29: end if
30: end while
31: return TRUE

bility 1.

Actually, Delanoue’s method may fail in a third case:
when some parts of the studied object are so thin that
the accuracy of the floating point arithmetic (which is
used by the interval arithmetic) is insufficient, or all the
memory of the computer is used.

There are several particular cases of patches which may
cause failure, first when there are cusps on the patch.
For a cusp, where the patch is degenerate, none zero
normal vector can be computed and the star test will
fail. A second failure case is that the boundary curves
of the patch are tangent or nearly tangent to each other
such that a ring is formed, see Figure 7. Our method
can not detect the coincidence of the boundary curves,

Algorithm 5 CrossStarTest(S, B, S)
Require: S result of Algorithm 4, B a studied box, S

a given patch
1: while S 6= ∅ do
2: Pop S into C
3: C = {(1− t) · s + t · p|0 ≤ t ≤ 1,p ∈ C}
4: Compute the tangent cone TC of C
5: for all Ci ∈ S do
6: Ci = {(1− t) · s + t · p|0 ≤ t ≤ 1,p ∈ Ci}
7: Compute the tangent cone Ti of Ci

8: if ∂C ( C ∩Ci and TC ∩ Ti 6= ∅ then
9: if TC > Ti then

10: Subdivide C into {Cj}
11: else
12: Subdivide Ci into {Cj}
13: Remove Ci from S
14: end if
15: for all {Cj = P (t)} do
16: if not {(1− t) · s + t · p|0 ≤ t ≤ 1,p ∈

∂Cj} ⊂ S then
17: return FALSE
18: else if Cj ∩B 6= ∅ then
19: tmin = min{t|P (t) ∈ B}
20: tmax = max{t|P (t) ∈ B}
21: Push P (t), tmin − ε ≤ t ≤ tmax + ε

into S
22: end if
23: end for
24: break
25: end if
26: end for
27: end while
28: return TRUE

and it will fail the test. A first solution is to manage
adjacency relations, like the BReps; a second solutions
is to make the patch overlap, or to split the patch in two
overlapping patches. When one of these cases occur,
we return an error code.

6. EXPERIMENTAL RESULTS
In our implementation, if the star test of a studied box
returns FAIL or UNKNOWN, we subdivide the stud-
ied box along the longest edge at a random position.
Furthermore, if a subdivided box fulfills a ε condition,
we halt the subdivided procedure and restart the test. A
maximum number for repeating is set to halt the whole
procedure. In this case, we treat it as a case of failure
and return an error code.

We have applied the above tests to generate the path-
connected components for various geometric patches
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Figure 7 A patch forms a ring when two boundary curves
coincide.

using our methods. The results are illustrated in Fig-
ures 8, 9, and 10. In all these examples, we show the
contour of the patch, the uv-domain, the C.I.A. de-
compositions using the proposed methods. Figure 8
shows a Bézier patch representing the number 6 whose
control polygon is not self-intersecting, this patch con-
tains multiple points, but no critical points, it is not
regular. Figures 8(c) and 8(d) give two different re-
sults of the star test after 232 and 896 trials (calls to
the star test procedure), the studied box covers only
part of the patch where it is self-overlapping. Figure
9 shows a Bézier patch whose control polygon is self-
intersecting, Figures 9(c) and 9(d) give two different
results of the star test after 552 and 945 trials. Figure
10 shows a Bézier patch which contains a critical curve
and multiple points, it is not a regular patch. Figures
10(c) and 10(d) give two different results of the star
test after 63 and 75 trials. Example such as the patch in
Figure 1 fails the star test, since the point P (1, 1) can
only be seen from the points on the critical curve.

In Figure 11, we give some examples of the star test
of CSG shapes containing Bézier patch as one of the
primitives. Figure 11(c) gives a CSG shape which is
the union of a patch and a disk, and the star test after
265 trials. Figure 11(d) gives a CSG shape which is the
difference of a patch and a disk, and the star test after
4690 trials.

7. CONCLUSION
The emptiness test and the star test are fundamental for
the C.I.A. and the H.I.A. algorithms. In this paper, we
studied the tests for parametric patches. A parametric
patch is the image of a function defined on the paramet-
ric domain; however, the boundary of the patch does
not have to be the image of the boundary of the domain
which makes the tests non-trivial. To perform the tests
for Bézier patches, we use the convex hull property, the

variation diminishing property, and the de Casteljau al-
gorithm. A general parametric patch does not possess
such elegant properties, thus we will have to investigate
other new ways to implement the tests.

Moreover, several other challenging problems remain
to be studied. The star test of the complement set for
a given patch is necessary for a general CSG shape,
which is non-trivial when there are multiple points
and/or critical points. Implementation of the tests
for spline patches, and other more general paramet-
ric patches shall be considered. Also, it will be of
great value to extend the tests to 3D shapes. Follow-
ing all these results, more complicated geometric sets
will be taken into consideration, such as shapes formed
by sweeping, Minkowski sum, etc.
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