
Extending CSG with Projections: Towards Formally Certified Geometric Modeling

George Tzoumasa,∗, Dominique Micheluccia, Sebti Foufoub

aCNRS UMR 5158, LE2I
University of Burgundy, France

bQatar University, Qatar

Abstract

We extend traditional Constructive Solid Geometry (CSG) trees to support the projection operator. Existing algorithms
in the literature prove various topological properties of CSG sets. Our extension readily allows these algorithms to
work on a greater variety of sets, in particular parametric sets, which are extensively used in CAD/CAM systems.
Constructive Solid Geometry allows for algebraic representation which makes it easy for certification tools to apply.
A geometric primitive may be defined in terms of a characteristic function, which can be seen as the zero-set of a
corresponding system along with inequality constraints. To handle projections, we exploit the Disjunctive Normal Form,
since projection distributes over union. To handle intersections, we transform them into disjoint unions. Each point
in the projected space is mapped to a contributing primitive in the original space. This way we are able to perform
gradient computations on the boundary of the projected set through equivalent gradient computations in the original
space. By traversing the final expression tree, we are able to automatically generate a set of equations and inequalities
that express either the geometric solid or the conditions to be tested for computing various topological properties, such
as homotopy equivalence. We conclude by presenting our prototype implementation and several examples.

Keywords: geometric modeling, constructive solid geometry, projection, homotopy equivalence, topological properties,
formal methods, constraint solving, disjunctive normal form

1. Introduction

Constructive Solid Geometry was one of the first rep-
resentation schemes in Computer Aided Design and Man-
ufacturing (CAD/CAM) [1, 2, 3]. However, dealing with
complex scenes efficiently can be costly, since a rigorous
mathematical description is obtained. As a result, other
representations have been preferred such as Boundary Rep-
resentations (Brep) or Selective Geometric Complex (SGC)
[4, 5]. Modelers using the latter representations are hy-
brid and procedural, solids are no longer represented by
systems of equations and inequalities. This lack of alge-
braic representation makes geometric models (and model-
ing software) hard to certify.

On the other hand, CSG modeling is quite prevalent
in the video game industry and computer graphics, with
traditional game engines like Quake or Unreal [6] mak-
ing extensive use of it through binary space partitioning
(BSP) [7]. The latter engine has been used by hundreds of
commercial titles [8]. Moreover, it is the preferred method
of some open-source and web-based modelers and there is
recent work for speeding up CSG rendering through late
polygonization [9].

∗Corresponding author
Email addresses: George.Tzoumas@u-bourgogne.fr (George

Tzoumas), Dominique.Michelucci@u-bourgogne.fr (Dominique
Michelucci), sfoufou@qu.edu.qa (Sebti Foufou)

In CSG, solids are represented as Boolean construc-
tions via regularized1 set operators (union, intersection,
difference). CSG representations are essentially binary ex-
pression trees where non-terminal nodes represent opera-
tors and terminal nodes typically represent primitive solids
(like spheres, cones, cuboids). By traversing the expres-
sion tree, one may derive an algebraic representation of the
solid, in the form of a system of equations and inequali-
ties. The set of Boolean operations is quite restrictive for
practical use.

In this paper we extend the descriptive power of clas-
sical CSG by introducing the projection operator. This
immediately allows us to deal with a greater variety of ob-
jects, i.e., objects defined as projections of other objects or
parametric objects, including those defined by extrusions
and sweeps. We do so by describing the projected ob-
jects as classical CSG expressions in the projected (lower-
dimension) space. We show that our method can be used
to extend existing algorithms in the literature that com-
pute various properties of CSG sets like connectivity and
topology [10, 11]. Moreover, since (extended) CSG de-
rives an algebraic representation of the geometric models,
it provides an elegant way for certification tools to apply.

In hardware design, formal verification is a significant
part of the design process [12]. The infamous Pentium

1A regularized set is equal to the closure of its interior.

Preprint submitted to Elsevier March 11, 2015

bug and more recently, the TSX Haswell bug are only a
few cases of misdesigns. We naturally raise the question:
What about misdesigns in CAD?

Current certification methods which are relevant to
our applications include computer algebra methods, model
checkers or proof assistants like PVS [13] or Coq [14] (Coq
was recently used to check the proof of the four color the-
orem and the proof of the Feit-Thompson theorem for the
classification of simple groups) and last but not least, in-
terval analysis. The latter has been used to prove the
Kepler conjecture by Hales [15]. Under a more algebraic-
geometric context, in CSG modeling, it suffices to prove
the correctness of an underlying interval solver, instead of
proving all the procedures currently used in today’s pro-
cedural modeling. See [16] for an example where interval
analysis is being used, relying on the properties of the
tensorial Bernstein basis, to certify critical software that
prevents collisions in air traffic.

Other methods for certified computing are exact al-
gebraic algorithms which can typically be combined with
interval arithmetic for efficiency. See [17] for an applica-
tion regarding exact boundary computation on low degree
sculptured solids and [18] for accurate BRep generation
from a CSG expression. Exact algebraic algorithms have
also become popular in the Computational Geometry area
[19]. All these efforts aim to redefine modern computing,
through efficient algebraic algorithms allowing us to step
further from the inexact floating-point arithmetic of the
80s. We believe our work is a small step in this direction,
in particular towards formally certified geometric model-
ing.

Almost no literature exists regarding projections in
CSG. There is some discussion in [20], where it is men-
tioned that projections are non-trivial to handle and the
author deals only with the projection of unions, since pro-
jections propagate over unions. In this paper we show how
to deal with intersections, by transforming intersections
into disjoint unions.

A geometric primitive in Rd is represented as a mani-
fold f in (d+1)-space (x1, . . . , xd, s) where s is the charac-
teristic variable of the manifold. This way, the geometric
primitive consists of interior points where the s-coordinate
is negative and of exterior points where the s-coordinate
is positive. The case s = 0 corresponds (in general) to
the boundary of the object. Thus the geometric primitive
is essentially a solid in d dimensions. Through relation
f(x; s) = 0, x ∈ Rd, s is implicitly defined by a character-
istic function. For example, manifold

f(x, y, s) = x2 + y2 − 1− s = 0

describes the unit disk as a paraboloid in 3-space. For
every point (x̂, ŷ) inside the unit disk, there exists ŝ ≤ 0
such that f(x̂, ŷ, ŝ) = x̂2 + ŷ2 − 1− ŝ = 0. See Fig. 1, for
a contour graph with respect to s. Due to the regularized
set condition, we consider inequalities s ≤ 0 or s ≥ 0
instead of their strict counterparts. This modeling via the

Figure 1: Contour graph of s = x2 + y2 − 1

characteristic variable is in accordance with the classical
representation as a finite Boolean combination of semi-
algebraic or semi-analytic sets of the form F (x) ≤ 0,
where F : Rd → R. However in our approach, the use of
characteristic variables proves more convenient.

We consider each node of the expression tree separately
in order to compute a contributing primitive for each point
in the set. That is in the case of projections, every point
is associated with a point in the higher dimension space.
The tree is traversed and a set of simple subsystems with
inequality constraints is generated. We denote this set as
F(x; s), where s is the characteristic variable. Individual
equations are still denoted as f(x; s).

A geometric set is described in Disjunctive Normal
Form (DNF) as a union of intersections of primitives (Sec. 2).
Having the union operator at the top level has the advan-
tage that projections distribute over unions (Sec. 3). Such
canonical forms are also considered in other algorithms
dealing with CSG representations [21].

The paper is organized as follows. Section 2 presents
the computation of the DNF for CSG operators. Section
3 deals with projections and parametric objects showing
how to obtain a classical CSG expression in the lower-
dimension space. Section 4 deals with gradient compu-
tations in the projected space, that allow us to compute
topological properties. Section 5 presents several applica-
tions of our approach. Our reference implementation is
presented in section 6 and finally, in section 7 we conclude
with discussion and future extensions.

2. Constructive Solid Geometry operations

2.1. Disjunctive Normal Form

A CSG formula can be converted to DNF by applying
De Morgan’s laws and by distributing ∩ over ∪ as follows.
Let A,B be geometric primitives. Let P,Qi be geometric
sets defined by an expression tree.

1. A and ¬A are in DNF.

2

2. A ∪B and A ∩B are in DNF.

3. ¬(Q1 ∪Q2) = ¬Q1 ∩ ¬Q2

4. ¬(Q1 ∩Q2) = ¬Q1 ∪ ¬Q2

5. P ∩ (Q1 ∪ Q2 ∪ . . . ∪ Qn) = (P ∩ Q1) ∪ (P ∩ Q2) ∪
. . . ∪ (P ∩Qn)

We also merge consecutive binary operators of the same
kind as follows:

6. (Q1 ∩Q2) ∩Q3 = Q1 ∩Q2 ∩Q3

7. (Q1 ∪Q2) ∪Q3 = Q1 ∪Q2 ∪Q3

By applying the above rules we end up having an ex-
pression tree where the topmost operator is ∪ and each
operand sub-expression contains only the ∩ operator ap-
plied to either a primitive or its complement. Note that
conversion to DNF may result in an exponential explosion
of the formula (e.g., the DNF of (A1∪B1)∩· · ·∩(An∪Bn)
has 2n terms). On the other hand, classical methods like
propagation of bounding boxes [22, 23] can discard use-
less DNF clauses and reduce the number of nodes in the
expression tree.

2.2. Complement

The simplest operation is the complement. If for prim-
itive A: f(x; s) = 0 then ¬A : f(x;−s) = 0.

Remark 1. It is important that the complement is still
represented by points from the manifold.

Recall that we require the characteristic variable to
be defined for all points in Rd. As a counter-example,
consider f(x, y, s) = x2 + y2 − 1 + s2 = 0. Points outside
the unit disk, like (2, 2) are not represented at all, since
f(2, 2, s) = 0 cannot be satisfied for s ∈ R.

2.3. Intersection and dominant sets

Let P = A1 ∩ . . .∩An be an intersection of primitives.
We have to impose the constraint that point x belongs
to all Ai, i = 1 . . . n at the same time. This is achieved
by setting the characteristic variable s of the set to be
s = max(s1, . . . , sn) (cf. Fig. 2). In order to represent
max, we consider the union of all possible cases for max,
i.e., s = s1 and ∀j : s1 ≥ sj or s = s2 and ∀j : s2 ≥ sj ,
and so on.

Definition 1. Let A,Bi be geometric sets and sA and
sBi

their characteristic variables at point x. We say that
A dominates B1, . . . , Bn and denote A|B1, . . . , Bn for all
x ∈ Rd where 0 ≥ sA ≥ sBi , i = 1, . . . n. In this case A is
a dominant set over each Bi.

The notion of dominant set allows us to express inter-
sections as unions. Note that operator | has lower prece-
dence than the comma in the above notation. Conse-
quences of the above definition are the following proper-
ties:

(i) A ∩B = A|B ∪ B|A (see Fig. 2 and 3)

(ii) (A|B)|C = A|B,C = A|C,B

Figure 2: Contour graph for the intersection of two disks, where
s = max(s1, s2)

sA

sB

sB ≤ 0
sA ≤ 0

sA

sB

0 ≥ sA ≥ sB

0 ≥ sB ≥ sA

Figure 3: Plot of the characteristic variables for A∩B = A|B ∪ B|A

(iii) A|(B|C) ∪ A|(C|B) = A|B,C
(iv) A ∩B ∩ C = (A|B,C) ∪ (B|C,A) ∪ (C|A,B)
(v) ¬(A|B) = ¬A ∪ ¬B ∪ B|A

Finally, the difference A \B is handled trivially via inter-
section: A \B = A ∩ ¬B.

2.4. Union

Let P = A1 ∪ . . . ∪ An be a union of primitives. Since
the formula is in DNF form, it suffices to consider each
primitive separately, that is Ai : fi(x; si), i = 1 . . . n.
Note that a point x may not be uniquely associated with a
primitive, since it may belong to the intersection of many
primitives, i.e., the unions may not be disjoint. In our con-
text (for topological property computation) this does not
cause any problems. In the case where one requires dis-
joint unions, we can impose the uniqueness constraint by
satisfying ∀j : si ≤ sj , where sj refers to the characteristic
variable of each object in the considered union. We choose
the characteristic variable of the set to be min(s1, . . . , sn)
and this way we obtain similar properties as those in the
case of intersections.

3. Projection

The first non-trivial operation which concerns sets that
cannot be described with CSG primitives is projection. Let

3

A : F(x; s) where x = (x1, . . . , xd), then the projection of
A with respect to xi is denoted as πi(A). Let

xi = (x1, . . . , xi−1, xi+1, . . . , xd).

Then πi(A) = Fπ(xi; s). Projections with respect to more
than one dimension are denoted with commas, e.g.

πi,j(A) = Fπ(xi,j; s) = πj(πi(A)).

When the particular dimension is not of importance we
may simply write π2(A) = π(π(A)). An interesting prop-
erty of the projection is that it distributes over ∪:

π(Q1 ∪Q2 ∪ . . . ∪Qn) = π(Q1) ∪ π(Q2) ∪ . . . ∪ π(Qn).

A naive way to deal with projections is to just “for-
get” coordinate xi. Doing so however, may result in a
k-dimensional (k ≥ 1) set of values for xi and s, such that
F(x; s) is satisfied. This may slow down an interval solver
(used to find a cover of the set for example) since an infi-
nite set of solutions will have to be covered. We remedy
this problem by introducing extra constraints so as to limit
the range of the characteristic variable to a 0-dimensional
set of values for every projected point.

One way to consistently generate additional constraints
is to choose the smallest value of the characteristic vari-
able, among all possible values of coordinates x1, . . . , xk
(the coordinates being eliminated). That is π1,...,k(A) is
the set of points x1...k ∈ Rd−k such that ∃ x1, . . . , xk where
x ∈ Rd ∩A and s is minimal. This way we pick the point
that lies “deepest” in the set to map to the projected set.
Note that the use of the term “minimal” in the above is
abusive. We are actually looking for a critical point (with-
out loss of generality), i.e., the derivative of the character-
istic function with respect to s vanishes. Thus, we don’t
have to perform extra computations to ensure that a crit-
ical point is actually a minimum. This is because we are
interested in reducing the solution set to a hopefully 0-
dimensional variety. It is perfectly acceptable for a point
in the interior of the (projected) set to have not necessarily
the smallest value of the characteristic variable, but some
other (critical) value.

Note that coordinates x1, . . . , xk are no longer free vari-
ables, but take a value and become parameters. The min-
imization constraint can be written in terms of an opti-
mization problem with constraints those exactly in F and
the objective function s. Typical approach involves consid-
ering a Lagrangian (i.e., the Fritz John conditions). This
is quite powerful a technique, but it has the disadvantage
that it introduces extra equations and unknowns and our
experiments have shown that after 6 or 7 unknowns solu-
tion times become impractical. Here we make use of differ-
ential calculus and wedge products. For an introduction
to wedge products and their applications in optimization
problems the reader may refer to [24]. The wedge product
vanishes if its operands are linearly dependent. Lagrange
multipliers encapsulate linear dependence, therefore opti-
mization problems may be efficiently transformed to cal-
culus with wedge products.

The leaves of the DNF expression tree contain prim-
itives (or complements of primitives) or dominant sets.
Consequently, to distribute projections, we need to han-
dle projections of primitives and projections of dominant
sets. For the latter, we will define an auxiliary construc-
tion, called join set which we will show that it contributes
to the projection.

Theorem 1 (Projection of geometric primitive). Let A :
f(x; s) be a geometric primitive. When projecting down
k dimensions (eliminating x1 . . . xk), the projection can be
specified by the following additional constraints:

∂f

∂x1
=

∂f

∂x2
= . . . =

∂f

∂xk
= 0.

Proof. 0 = ds ∧ df = ds ∧ (∂f∂x1
dx1 + . . . + ∂f

∂xk
dxk +

∂f
∂xs

dxs) = ∂f
∂x1

ds ∧ dx1 + . . . + ∂f
∂xk

ds ∧ dxk ⇐⇒ ∂f
∂x1

=

. . . = ∂f
∂xk

= 0. An alternative proof is also possible using
Lagrange multipliers.

Note that we assume that there exists some critical
value in the interior of the set (we can guarantee that by
construction), otherwise we would have to consider the
boundary of the set.

Definition 2. Let A,B be geometric sets and sA and sB
their characteristic variables at point x. We define the
join set A ./ B as:

A ./ B := x ∈ Rd : sA = sB ∧ sA ≤ 0.

We define the precedence of the new operators to be:
¬ � , � | � ./ � ∩ � ∪. Observe the similarity with the
join operator from relational algebra. Indeed, we join the
two relations A(x; sA) and B(x; sB) on their characteristic
variable. Since the join operator introduces an equation,
the dimension of the join set drops. See for example Fig. 2.
The dotted line is the join of the two disks. Obviously, this
line is no longer a solid in 2 dimensions.

Definition 3. We denote with Ji1i2...in(f1, f2, . . . , fn) the
following n× n Jacobian determinant:∣∣∣∣∣∣∣∣∣∣

∂f1
∂xi1

∂f1
∂xi2

· · · ∂f1
∂xin

∂f2
∂xi1

∂f2
∂xi2

· · · ∂f2
∂xin

...
...

. . .
...

∂fn
∂xi1

∂fn
∂xi2

· · · ∂fn
∂xin

∣∣∣∣∣∣∣∣∣∣
Lemma 1 (Projection of join sets). Let A : f0(x; s) and
Bi : fi(x; s), i = 1 . . . n be geometric primitives. Then to
describe πk(A ./ B1 ./ · · · ./ Bn) we additionally consider
(i) no constraints when k ≤ n; (ii) Ji0i1...in(f0, f1, . . . , fn) =
0, 1 ≤ i0 < i1 < . . . < in ≤ k, when k > n.

Proof. Basic idea: We shall exploit wedge products to cap-
ture the linear dependence in order to minimize s. Not sur-
prisingly, these operations yield equivalently the Jacobian
determinant.

4

Assume without loss of generality that we are pro-
jecting with respect to x1, x2, . . . , xk. Considering the
wedge product (to find the critical value of s) we have

ds∧df0∧df1∧df2∧· · ·∧dfn = ds∧(
∑k
i=1

∂f0
∂xi

dxi+
∂f0
∂s ds)∧

(
∑k
i=1

∂f1
∂xi

dxi + ∂f1
∂s ds) ∧ · · · ∧ (

∑k
i=1

∂fn
∂xi

dxi + ∂fn
∂s ds) =

εxi0xi1 ...xin
(
∑n
j=0

∂fj
∂xij

dxij)ds∧ dxi0 ∧ · · · ∧ dxin . Symbol ε

is the permutation sign determined by the number of in-
versions in the considered permutation, which appears in
the combinatorial definition of the determinant [25]. Now,
if k ≤ n the wedge product is identically zero, because of
some dxi being equal, due to the pigeonhole principle (we
have a wedge product of n + 1 factors with k choices for
each factor, and we have that dxi ∧ dxi = 0). Otherwise,
if k > n, the wedge product expands to

(
k

n+1

)
coefficients

which should all vanish. These coefficients are precisely
Ji0i1...in(f0, f1, . . . , fn), 1 ≤ i0 < i1 < . . . < in ≤ k.

Since no extra condition is required to describe a pro-
jection of a join with respect to a single variable, we have
that

Corollary 1. π(A ./ B) = A ./ B.

Theorem 2 (Projection of dominant set).

πk(A|B) = πk(A)|B ∪ πk(A ./ B).

Proof. Without loss of generality we assume that we project
with respect to x1, . . . , xk. Since we have a constrained
optimization problem, the critical value can be attained
either when a constraint is active or not.

πk(A|B) = x1...k ∈ Rd−k : ∃ x1, . . . , xk : (x ∈ Rd∩A)∧
(sA is critical) ∧ (sA ≥ sB). This means that sA takes its
critical value on the critical points of π(A) that happen to
satisfy sA ≥ sB , which is precisely πk(A)|B or somewhere
where sA = sB , which is πk(A ./ B). Alternative proofs
are possible using wedge products or Lagrange multipliers
[26].

Care has to be taken here that the set B in the expres-
sion πk(A)|B lies in a lower dimension. That is we consider
points in πk(A) that happen to lie in B. We could denote
B in this case as B/πk(A) but we avoid so due to abuse of
notation. Let [Bm]1:n denote sequence Bm, m = 1 . . . n.
The following theorem comes as a generalization of Theo-
rem 2.

Theorem 3 (Projection of dominant sets, generalized).
πk(A|[Bm]1:n) =

πk(A)|[Bm]1:n
n⋃
i=1

πk(A ./ Bi)|[Bm]1:nm 6=i
n⋃

i,j=1
i<j

πk(A ./ Bi ./ Bj)|[Bm]1:nm 6=i,m6=j

⋃
· · ·⋃
πk(A ./ B1 ./ · · · ./ Bn)

v

v′

Figure 4: Left: Simplicial complex homotopy equivalent to the light-
gray shaded object; Right: v is a star, while v′ is not a star

3.1. Projection and parametric sets

The way join sets were defined allows us to express
the intersection of manifolds: a join is performed on the
common variables, hence the common variable is implicitly
eliminated. The idea is therefore to use joins to eliminate
the parameters, as illustrated in Sec. 5. For example X :
x − cos(t) = 0, Y : y − sin(t) = 0. Now X ./ Y expresses
points (x, y) that lie on the unit circle. This way, the
join variable t is implicitly eliminated, because we project
with respect to t, due to the join operator being applied.
Lemma 1 shows that projection of joins may be trivial if
the number of variables projected is less than the number
of terms in the join expression. Here X ./ Y has 2 terms
therefore, the resulting subspace consists of x and y only.

More generically, given a parametric solid G in Rd de-
fined by Xi = fi(x; t1, . . . , td), i = 1 . . . d, we can repre-
sent this set as the join of the defining manifolds. That
is G = X1 ./ X2 .// Xd. Assume that td is the
characteristic variable. Now projection in the first d − 1
dimensions eliminates the corresponding variables, and we
have from Lemma 1 that πd−1(X1 .// Xd) = X1 ./
X2 .// Xd, since k = d − 1 < d. See Sec. 5 for
examples.

4. Homotopy equivalence, star test and gradient

We shall adapt the algorithm of [10] to work with CSG
sets extended with projection. The algorithm is called HIA
(Homotopy via Interval type Analysis) and it works by
computing a contractible cover of an initial set S and gen-
erating an abstract simplicial complex homotopy equiva-
lent to S (Fig. 4 left). The basic predicate of the algorithm
is the star test, which provides a sufficient condition of con-
tractability. For completeness, we recall the corresponding
definitions.

A point v is a star for a subset X of an Euclidean set
if X contains all the line segments connecting any of its
points and v (cf. Fig. 4 right). We call X star-shaped
or v-star-shaped. If X and Y are two v-star-shaped sets,
then X ∩ Y and X ∪ Y are also v-star-shaped. A topo-
logical space X which is homotopy-equivalent to a point
is contractible, therefore a star-shaped set is contractible.
The following sufficient condition for contractability can
be checked with interval analysis.

5

Proposition 1. Let f : Rn → R be a C1 function, D be
a convex set and S = {x ∈ D ⊂ Rn|f(x) ≤ 0}. If there
exists v in S such that

{x ∈ D|f(x) = 0 ∧∇f(x) · (x− v) ≤ 0} = ∅

then S is star-shaped.

Observe that the equation ∇f(x) · (x − v) = 0 ex-
presses the tangent plane at the boundary point x, since
it is satisfied for all points perpendicular to the normal
vector. Taking into account the characteristic function,
the boundary of a primitive is f(x; 0) = 0, therefore the
star condition is written as ∇f(x; 0) · (x− v) ≤ 0. We set
F (x) := f(x; 0). Now we may rewrite ∇F (x) · (x−v) ≤ 0.

For primitive f(x; s), the boundary of the projection
is given from f(x; 0) and ∂f

∂xi
(x; 0) = 0. We define F (x) =

f(x; 0). Now we have F (x) = ∂F
∂xi

(x) = 0. The latter

equation implies a relation xi = G(xi) and by substitu-
tion in the first one we obtain R(xi) = 0 (recall that xi

denotes vector (x1, x2, . . . , x
i−1, xi+1, . . . , xn)). The pro-

cess is similar when more variables are eliminated. When
the functions are multivariate polynomials, R(xi) is pre-
cisely the resultant of the polynomial and its derivative
with respect to variable xi (this particular resultant is a
multiple of the discriminant).

Lemma 2. Given F (x) = 0 and ∂F
∂xi

= 0, i = 1 . . . k. Then
there exist functions yi so that xi = yi(x̃), i = 1 . . . k where
x ∈ Rd and x̃ = (xk+1, xk+2, . . . , xd). Therefore we may
write F (x) = F (y1, y2, . . . , yk, xk+1, xk+2, . . . , xd).

Proof. Basic idea: We take a pair of the given equations
that has not been considered so far, and eliminate a vari-
able using the implicit function theorem.

We have F (x) = 0 and F ′(x) = ∂F
∂x1

(x) = 0. Sub-
tracting the two equalities yields an implicit equation in
x1, . . . , xd. For readability purposes we denote the comma
separated list xi, xi+1, . . . , xj with xi...j . From the im-
plicit function theorem we have x1 = g1(x2...d). Replacing
x1 in F yields F

(
g1(x2...d), x2...d

)
= 0. We also obtain

∂F
∂xi

(
g1(x2...d), x2...d

)
= 0, i = 2 . . . k. Now we apply the

same process to F
(
g1(x2...d), x2...d

)
and ∂F

∂x2

(
g1(x2...d), x2...d

)
which will yield

F
(
g1
(
g2(x3...d), x3...d

)
, g2
(
x3...d

)
, x3...d

)
= 0

∂F
∂x3

(
g1
(
g2(x3...d), x3...d

)
, g2
(
x3...d

)
, x3...d

)
= 0

and so on until we arrive atR(x̃) = F
(
g1
(
g2
(
· · · gk(x̃) · · ·

)
,

. . .
)
, g2
(
· · ·
)
, . . . , gk, x(k+1)...d

)
= 0. Therefore

yi(x̃) = gi

(
gi+1

(
· · · gk(x̃) · · ·

)
, . . .

)
, i = 1 . . . k.

Figure 5: Tangent of projection of primitive

Theorem 4. Let R(x̃) = 0 be the boundary of the projec-
tion of primitive f(x; s) = 0 with respect to x1, x2, . . . , xk,
where x ∈ Rd and x̃ = (xk+1, xk+2, . . . , xd). Then

∇R(x̃) · (ũ− x̃) = ∇F (x) · (u− x),

where F (x) = f(x; 0).

Proof. Since we project with respect to x1, x2, . . . , xk we
have ∂F

∂xi
= 0, i = 1 . . . k. It follows from Lem. 2 that

there exist functions yi so that xi = yi(x̃), i = 1 . . . k.
We have that R(x̃) = F (y1, y2, . . . , yk, xk+1, xk+2, . . . , xd).
We trivially set xi = yi(x̃), i = (k + 1) . . . d so that we
may now write R(x̃) = F (y(x̃)). Now from the chain

rule we have ∂R
∂xi

=
∑d
j=1

∂F
∂yj

∂yj
∂xi

, i = (k + 1) . . . d. We

also have that ∂F
∂yj

= 0, j = 1 . . . k (by hypothesis due to

projection, seeing F as a function in y instead of x) and

that
∂yj
∂xi

equals
∂yj
∂xi

, when j ≤ k, or 0, when j > k ∧ j 6= i

or 1, when j = i. This yields in the end ∂R
∂xi

= ∂F
∂yi

.

Finally, ∇R(x̃) · (ũ − x̃) =
∑d
i=k+1

∂R
∂xi

(x̃)(ui − xi) + 0 =∑d
i=k+1

∂F
∂yi

(y)(ui − yi) +
∑k
i=1

∂F
∂yi

(y)(ui − yi) =

∇F (ỹ) · (u− y) ≡ ∇F (x̃) · (u− x).

The geometric interpretation of Thm. 4 is that the tan-
gent plane at a point of the boundary in the projected
space, is equal to the projection of the tangent plane in
the original space (Fig. 5). As such, in order to compute
the star test on the projection of a primitive, it suffices to
compute the star test in the original space (before projec-
tion). Therefore, no computation of the implicit relation
R is required, and the test can be evaluated using only
the known relation f . The following lemma comes as a
generalization of Lem. 2.

Lemma 3. Given Fi(x) = 0, i = 0 . . . n. Then there exist
functions yi so that xi = yi(x̃), i = 1 . . . k ≤ n where x ∈

6

Rd and x̃ = (xk+1, xk+2, . . . , xd). Therefore we may write
R(x̃) = F (y1, y2, . . . , yk, xk+1, xk+2, . . . , xd).

Proof. This is a generalization of Lem. 2. We have F0(x) =
F1(x) = 0. Subtracting the two equalities yields an im-
plicit equation R0(x) = 0. From the implicit function
theorem we have x1 = g1(x2...d). Now we replace x1 in
Fi, i = 0 . . . n and get Fi

(
g1(x2...d), x2...d

)
= 0, i = 0 . . . n.

Now we apply the same process to F0 and F2 and get
R1(x2...d) = 0, x2 = g2(x3...d) and

Fi

(
g1
(
g2(x3...d), x3...d

)
, g2(x3...d), x3...d

)
= 0, i = 0 . . . n.

Finally we obtain R(x̃) = Fi(g1(g2(· · · gk(x̃) · · ·), . . .),
g2(· · ·), . . . , gk, xk+1, xk+2, . . . , xd) = 0, i = 0 . . . n. There-
fore

yi(x̃) = gi(gi+1(· · · gk(x̃) · · ·), . . .), i = 1 . . . k.

Note that in the end F0(x̃) ≡ F1(x̃) ≡ . . . ≡ Fk(x̃). In-
stead of 0 . . . k we can apply the same elimination process
to any (k+1)-subset of the (n+1) equations. We have also
assumed generic enough functions, i.e., no two functions
are identically the same.

Theorem 5. Let R(x̃) = 0 be the boundary of the pro-
jection of primitive πk(A ./ B1 ./ · · · ./ Bn) with respect
to x1, x2, . . . , xk, where x ∈ Rd, x̃ = (xk+1, xk+2, . . . , xd)
and k ≤ n, d − k ≥ 2. Let fi(x; s) be the characteris-
tic functions and Fi(x) = fi(x; 0). Then the value S of
the star test S = ∇R(x̃) · (ũ − x̃) is the (k + 1)-th coor-
dinate of the solution vector w of system (J|[−1])w = a,
where J the (k + 1)× k Jacobian matrix of F0, F1, . . . , Fk
with respect to (x1, . . . , xk), (J|[−1]) is J augmented with
column (−1,−1, . . . ,−1)T , w = (w1, w2, . . . , wk, S)T and
a = (a0, a1, . . . , ak)T with

aj = −
d∑

i=k+1

∂Fj
xj

(ui − xi), j = 0 . . . k.

Proof. From Lem. 3 we have that

R(x̃) = Fm
(
y1(x̃), y2(x̃), . . . , yk(x̃), xk+1, xk+2, . . . , xd

)
,

m = 0 . . . n. We trivially define

yi(x̃) := xi, i = (k + 1) . . . d,

so that we may write R(x̃) = Fm(y(x̃)). Applying the

chain rule we obtain ∂R
∂xi

=
∑d
j=1

∂Fm

∂yj

∂yj
∂xi

. Now, as in the

proof of Thm. 4,
∂yj
∂xi

equals 0 when j > k, j 6= i and 1

when j = i. Therefore ∂R
∂xi

=
∑k
j=1

∂Fm

∂yj

∂yj
∂xi

+ ∂Fm

∂yi
. We

have that S = ∇R(x̃) · (ũ− x̃)⇔
∑d
i=k+1

∂Fm

∂yi
(ui − xi) +∑d

i=k+1

∑k
j=1

∂Fm

∂yj

∂yj
∂xi

(ui − xi) − S = 0, m = 0 . . . k. We

set am := −
∑d
i=k+1

∂Fm

∂yi
(ui−yi) (recall that xi = yi when

i > k) and rewrite (swapping sums):

k∑
j=1

∂Fm
∂yj

d∑
i=k+1

∂yj
∂xi

(ui − xi)− S = am.

Now we set wj :=
∑d
i=k+1

∂yj
∂xi

(ui − xi), j = 1 . . . k and
wk+1 := S which allows us to rewrite (J|[−1])w = a,
where J, the (k+ 1)× k Jacobian matrix of F0, F1, . . . , Fk
with respect to (x1, . . . , xk) is augmented with column
(−1,−1, . . . ,−1)T .

Note that the Jacobian can be defined using any (k+1)-
subset of the (n+1) functions. We have also assumed that
d ≥ k+ 2, so that the dimension of the space after projec-
tion is at least 2 and the notion of a tangent hyperplane
makes sense.

Lemma 4. The geometric interpretation of Thm. 5 is that
the tangent plane at the projected space, is equal to the
projection of the intersection of the tangent planes in the
original space, for k+1 primitives participating in the join
(cf. Fig. 6).

Proof. A tangent plane in the original space is given as
∇Fm(u − x) = 0 (with m = 0 . . . k). The intersection of
all k + 1 tangent planes is an over-constrained system in
the first k dimensions. Equation in line m is∑d

i=1
∂Fm

∂xi
(ui − xi) = 0 ⇔∑k

i=1
∂Fm

∂xi
(ui − xi) +

∑d
i=k+1

∂Fm

∂xi
(ui − xi) = 0 ⇔

k∑
i=1

∂Fm
∂xi

(ui − xi) = am, (1)

with am defined as in Thm. 5.
The tangent plane at the projected space is obtained

when the star test (Thm. 5) evaluates to zero. Replacing
S = 0 in Thm. 5 we obtain the following system:

k∑
i=1

∂Fm
∂xi

wi = am, (2)

with m = 0 . . . k. It is obvious now that systems (1) and
(2) are equivalent.

Now we are able to perform the star test on π(A)|B.
First, observe that A ./ B ⊆ π(A), by definition. More-
over π(A)|B appears in an expression paired with A ./ B,
from Thm. 2. Let a = π(A)|B, b = π(B)|A and c =
π(A ./ B) = A ./ B. Now we have π(A∩B) = a∪ b∪ c =
(a \ c)∪ (b \ c)∪ c. The boundary of each set in the union
consists either of the boundary of the projection of a primi-
tive (π(A), π(B)) or of the boundary of A ./ B. Moreover,
we have that if two sets are star-shaped, then their inter-
section and union is star-shaped as well. Therefore Thm. 4
and 5 allow us to compute the gradient and as a result,
the outcome of the star test.

5. Examples

In this section we present some examples of our pro-
posed approach dealing with projections. Note that union
operators pose no problems, since they generate indepen-
dent systems and we can typically handle hundreds of

7

Figure 6: Tangent of projection of join set (subset of the projection
of the intersection of two primitives)

unions independently. Therefore we focus on projections
of intersections which provide the biggest challenge. Cur-
rently our algorithm is not optimized for handling many
levels of projection (note the combinatorial explosion in
Sec. 5.2). However, as mentioned in Sec. 2.1, techniques
like propagation of bounding boxes allow us to detect terms
that do not contribute to the final result and quickly skip
over them. Finally, our examples can be easily converted
to any dimension, however, we restrict to 2D and 3D be-
cause they are easier to visualize and understand.

5.1. Projection of ellipsoid

Consider the ellipsoid from Fig. 5:

f(x, y, z, s) = 2x2 + y2 + 3z2 + 2
√

3xz − 1− s = 0.

Then from Thm. 1 we have

f(x, y, z, s) = 0 ∧ ∂f
∂z = 6z + 2

√
3x = 0 ⇔

x2 + y2 − 1− s = 0 ∧ z = −
√
3
3 x

which is effectively the unit disk.

5.2. Intersection of projections of intersection of primi-
tives

Let E1, E2, E3 be three primitives in Rd, we want to ex-
press the object G defined as G = π(E1∩E2) ∩ π(E1∩E3).
The above expression will be transformed in DNF. We have
that: G = [π(E1|E2)∪π(E2|E1)]∩[π(E1|E3)∪π(E3|E1)] =
[π(E1|E2)∩π(E1|E3)]∪[π(E1|E2)∩π(E3|E1)]∪[π(E2|E1)∩
π(E1|E3)] ∪ [π(E2|E1) ∩ π(E3|E1)] = [π(E1)|E2 ∪ E1 ./
E2]∩ [π(E1)|E3∪E1 ./ E3]∪· · · = [π(E1)|E2∩π(E1)|E3]∪
· · · = [π(E1)|E2, π(E1)|E3)]∪ [π(E1)|E3, π(E1)|E2]∪ · · · =⋃18
i=1 Si. That is G is equal to the union of 18 sets which

in fact can be grouped into five sets depending on the con-
tributing set being π(E1), π(E2), π(E3), E1 ./ E2, E1 ./
E3, as shown in Tab. 1. Note how this expansion of the
formula is independent of the dimension. To visualize the

set contributing set formula

S1 π(E1)|E2, π(E1)|E3

S2 π(E1)|E3, π(E1)|E2

S3 π(E1) π(E1)|E2, E1 ./ E3

S4 π(E1)|E3, E1 ./ E2

S5 π(E1)|E2, π(E3)|E1

S6 π(E1)|E3, π(E2)|E1

S7 π(E2)|E1, π(E1)|E3

S8 π(E2) π(E2)|E1, E1 ./ E3

S9 π(E2)|E1, π(E3)|E1

S10 π(E3)|E1, π(E1)|E2

S11 π(E3) π(E3)|E1, E1 ./ E2

S12 π(E3)|E1, π(E2)|E1

S13 E1 ./ E2|(π(E1)|E3)
S14 E1 ./ E2 E1 ./ E2|E1 ./ E3

S15 E1 ./ E2|(π(E3)|E1)

S16 E1 ./ E3|(π(E1)|E2)
S17 E1 ./ E3 E1 ./ E3|E1 ./ E2

S18 E1 ./ E3|(π(E2)|E1)

Table 1: DNF expression terms and their contributing sets

above, let (x, y, z, r) denote a sphere centered at (x, y, z)

with radius r. If E1 = (0, 0, 0, 1), E2 = (1
2 , 0,

1
2 ,
√

3
2)

and E3 = (− 3
2 , 0,

3
2 ,

3
2) then π(E1 ∩ E2), π(E1 ∩ E3) and

π(E1∩E2)∩π(E1∩E3) are shown in Fig. 7 and 8. E1 ./ E2,
π(E1)|E2 and E1 ./ E3 are also visible.

5.3. Parametric annulus in R2

Let X(t, r) = x−(1
2+r) cos t, Y (t, r) = y−(1

2+r) sin t,
R(r, s) = r(r − 1) − s. Equation R(r, s) = 0 restricts
the characteristic variable s, so that s ≤ 0 when r ∈
[0, 1]. Then πr,t(R ./ X ./ Y) is a 2D annulus in the
xy-space, as shown in Fig. 9 left. The parametric con-
struction πr(R ./ X ./ Y) in 3D (xyt-space), before being
projected down with respect to t-axis, is an infinite spi-
ral ribbon along the t-axis (Fig. 9 right). This example
demonstrates an artificial example for the join operator,
which however is not very practical, as we don’t obtain a
solid in every dimension (the ribbon is not a 3D solid – it
unavoidably loses one dimension due to the fact that we
have 2 joins).2 There is an alternative formulation that
gives us a solid, both in 3 and 2 dimensions, which also
allows us to compute the gradient applying Thm. 4. We
set f(x, y, t; s) = (x cos(−t))2 + (y − sin(−t))2 − 1/4 − s.
Now we have a cylindrical spiral in the 3D space (x, y, t)
which projects down to an annulus in 2D (cf. Fig.10). Note
that the minus sign in t has been used merely for illustra-
tion purposes (to force a clockwise drawing order). Visible
space (x, y) has dimension 2 for visualization convenience.
The theory applies to any dimension, though it is non-
trivial to visualize solids in more than three dimensions.

2The join operator is mainly used to describe the projection of
dominant sets, in order to describe the projection of intersections.

8

Figure 7: Left: π(E1 ∩ E2) in 3D; Right: π(E1 ∩ E3) in 3D

Figure 8: π(E1 ∩ E2) ∩ π(E1 ∩ E3) in 3D

t

r
x

y

O 1

1

Figure 9: Left: πr,t(R ./ X ./ Y) in 2D; Right: Visualization of
πr(R ./ X ./ Y) in 3D

Figure 10: Projection of a 3D cylindrical spiral yields a 2D annulus

6. Implementation

We have implemented the approach presented in this
paper in Python/SAGE [27]. The necessary algebraic sys-
tems to describe the geometric set are automatically gener-
ated and are then passed to Quimper [28] for solving. The
expression tree is described by object constructors. For
example, given spheres A and B, π(A∩B) is expressed as:

x,y,z = SR.var(’x,y,z’)

A = PrimitiveSet((x-3/4)^2+(y-3/4)^2+(z-3/4)^2<2/3,

{x:RIF(-2,2), y:RIF(-2,2), z:RIF(-2,2)})

B = PrimitiveSet((x-1/4)^2+(y-1/4)^2+(z-1/4)^2<1,

{x:RIF(-2,2), y:RIF(-2,2), z:RIF(-2,2)})

G = ProjectionSet(IntersectionSet(A,B), set([z]))

The code consists of definitions and is pretty straight-
forward to read. RIF stands for Real Interval Field, i.e., it
provides a way to denote intervals in SAGE. The output
is the DNF expression:

π(A)|B ∪ π(A ./ B) ∪ π(B)|A ∪ π(B ./ A).

Note that although π(B ./ A) is identical to π(A ./ B)
it still appears in the expression. We hope to allow for
such optimizations in future versions. The four systems
generated are:

(i) f0 = f1 = 2z − 3
2 = 0 and s0 − s1 ≥ 0

(ii) f0 = f1 = s0 − s1 = 0

(iii) f0 = f1 = 2z − 1
2 = 0 and s1 − s0 ≥ 0

(iv) identical to (ii)

with

f0 = 1
16 (4z − 3)2 + 1

16 (4y − 3)2 + 1
16 (4x− 3)2 − s0 − 2

3

f1 = 1
16 (4z − 1)2 + 1

16 (4y − 1)2 + 1
16 (4x− 1)2 − s1 − 1

Finally, the systems are solved with Quimper and the
results are merged and plotted (Fig. 11 left).

As a second example, we present the code for the pro-
jection of the parametric annulus of Sec. 5.3 with respect
to t, r, y.

9

Figure 11: Left: Plot of π(A∩B) in (x, y); Right: Plot of πr,t,y(R ./
X ./ Y)

x,y,t,r,s = SR.var(’x,y,t,r,s’)

R = PrimitiveSet(s-r*(r-1),{r:RIF(0,1),s:RIF(-2,2)},s)

X = PrimitiveSet(x - (1/2*cos(t) + r*cos(t)),

{x:RIF(-2,2),t:RIF(-3.15,3.15),r:RIF(0,1)},None)

Y = PrimitiveSet(y - (1/2*sin(t) + r*sin(t)),

{y:RIF(-2,2),t:RIF(-3.15,3.15),r:RIF(0,1)},None)

G = ProjectionSet(JoinSetMulti([R,X,Y]), set([t,r,y]))

The generated constraints are solved with Quimper and
plotted in Fig. 11 right. The plot is shown as a 2D shape,
however it represents an 1-dimensional object (the projec-
tion along the x-axis). It is evident that the projection
is equal to the x range [− 3

2 ,
3
2]. The y-values shown are

contributing points from the higher dimension, i.e., the
y-values that correspond to critical values of the charac-
teristic variable s. According to Lem. 1, an additional
Jacobian constraint has been taken into account, since the
number of variables projected is greater than or equal to
the number of terms in the join expression:

J =

∣∣∣∣∣∣
0 1− 2r 0

(1/2 + r) sin t − cos t 0
−(1/2 + r) cos t − sin t 1

∣∣∣∣∣∣ = 0

The generated system is:
x− (1/2 + r) cos t = 0
y − (1/2 + r) sin t = 0

s− r(r − 1) = 0
J = 0

With the second formulation, the description of the annu-
lus is much simpler:

x,y,t = SR.var(’x,y,t’)

A = PrimitiveSet((x-cos(t))^2 + (y-sin(t))^2<1/4,

{x:RIF(-1.5,1.5),y:RIF(-1.5,1.5),t:RIF(-3.15,3.15)})

G = ProjectionSet(A,[t,y])

The generated system is (y − sin t)2 + (x− cos t)2 − s− 1/4 = 0
2y − 2 sin t = 0

2(x− cos t) sin t− 2(y − sin t) cos t = 0

The solution set is the same, but we obtain a smaller sys-
tem. We observed that our solver managed to provide
better convergence in the first case with the bigger sys-
tem, in slightly more time. This may be explained by the
fact that more constraints (equations) are taken into ac-
count. Solution strategies of the generated systems are
not our focus in this paper and we plan to study them in
a future work.

7. Conclusion

We have extended classical CSG constructs with the
projection operator. Projections effectively allow us to
model parametric solids and their boolean operations, and
therefore deal with a greater variety of sets than classical
CSG, such as extrusions or sweeps. Each point in the pro-
jection is associated with a point in the original space, a
property that allows us to perform gradient computations
in the projected space by equivalent gradient computations
in the original space. Extending the CSG representation is
essential to extend geometric and topological algorithms.
And since it provides an algebraic representation of the
geometric model, formal methods such as interval analysis
and proof assistants can be applied in order to provide cer-
tification. Moreover, in the domain of computer graphics,
our method could be used to directly deal with projections
in a 3D world. Note that our framework can handle any
analytic function, the only requirement for system genera-
tion is differentiability. Therefore it is not limited to only
closed-form functions or more restricted families such as
polynomial and rational functions.

Although we have made several assumptions regard-
ing the manifolds with respect to the characteristic vari-
able (it should span both interior and exterior parts and
it should have critical points in the studied parts) we have
seen that it is still possible to capture and describe many
sets that arise in practice, especially when they are con-
structed ground-up from simple primitives. In a prelimi-
nary work we studied the simple idea of directly describing
the set with a set of equations and inequalities, possibly
introducing (nested) optimization problems with the aid
of Lagrange multipliers in the case of projections. We
discovered that merely considering a set of semi-algebraic
equations (to be used with some black-box solver) is not
efficient. Consider, for example, n unit disks centered at
(xi, yi), i = 1 . . . n. Construct the (n+ 1)× (n+ 3) system
consisting of the n equations (x−xi)2+(y−y2i)−1−si = 0,
i = 1 . . . n as well as the equation

∏n
i=1 (s− si) = 0. Now

the zero-set of the system with respect to x, y, s, si where
s ≤ 0 describes the union of the n disks. This naive ap-
proach yields an (n+1)×(n+3) system, while the same set
can be expressed by concatenating the solutions of n inde-
pendent equations in 3 variables. Extensive benchmarks
have shown that such an approach is non-practical even
when state-of-the-art solvers like Quimper are considered.
This led us to this paper’s approach which manipulates

10

the expression tree and avoids introducing Lagrange mul-
tipliers.

As mentioned, our framework allows modeling extru-
sions and sweeps, since they can be defined as parametric
objects. However, for Minkowski sums things are more dif-
ficult, as we currently know of no way to model a continu-
ous characteristic function (simply considering the sum of
the characteristic variables is not enough). This will be a
topic of future research.

Another interesting problem is to study the comple-
ment of projections, which boils down to dealing with
complements of join sets, as a consequence of De Mor-
gan’s rules. The definition of ¬(A ./ B) raises interesting
questions. For example, let A,B be two spheres. Then
¬(A ./ B) = ¬A ./ ¬B, but there are cases (e.g., when
considering ¬(A ./ ¬B)) where the characteristic variable
does not span both interior and exterior parts. An idea
is to use some other equation F1 − λF2 from the pencil of
two primitives, instead of F1−F2. Regarding projections,
we would like to investigate if it is possible to simplify no-
tation, by expressing the extra equations ∂f

∂xi
= 0 as join

sets. For example if A : f(x; 0) = 0 then we may write
something like A ./ A′xi

. Finally, we can extend Thm. 5
for the case where k > n, although we don’t know if it has
any practical meaning.

Acknowledgment. This work has been funded by NPRP
grant number NPRP 09-906-1-137 from the Qatar Na-
tional Research Fund (a member of The Qatar Founda-
tion). The statements made herein are solely the respon-
sibility of the authors.

References

[1] A. G. Requicha, Representations for rigid solids: Theory, meth-
ods, and systems, ACM Comput. Surv. 12 (4) (1980) 437–464.

[2] A. A. G. Requicha, R. B. Tilove, Mathematical foundations of
constructive solid geometry: General topology of closed regular
sets, Tech. rep., UR Research (United States) (1978).

[3] G. Elber, M.-S. Kim, Rational bisectors of CSG primitives, in:
Symposium on Solid Modeling and Applications, 1999, pp. 159–
166.

[4] J. Rossignac, M. O’Connor, SGC: A dimension-independent
model for pointsets with internal structures and incomplete
boundaries, in: M. Wozny, J. Turner, K. Preiss (Eds.), Geom.
Modeling for Product Engineering, North-Holland, 1989.

[5] J. Rossignac, CSG-BRep Duality and Compression, in: Pro-
ceedings of the Seventh ACM Symposium on Solid Modeling
and Applications, SMA ’02, ACM, New York, NY, USA, 2002,
pp. 59–59.

[6] Epic Games, Inc., Unreal engine, https://www.unrealengine.com
(1998–2014).

[7] Epic Games, Inc., BSP brushes, http://udn.epicgames.com/
Two/BspBrushesTutorial.html.

[8] List of Unreal Engine games, http://en.wikipedia.org/wiki/
List of Unreal Engine games (2014).

[9] S. Steuer, Methods for Polygonalization of a Constructive Solid
Geometry Description in Web-based Rendering Environments,
Diplomarbeit, Ludwig Maximilian University of Munich (2012).
URL http://www.pms.ifi.lmu.de/publikationen/

diplomarbeiten/Sebastian.Steuer/DA_Sebastian.Steuer.pdf

[10] N. Delanoue, L. Jaulin, B. Cottenceau, Guaranteeing the ho-
motopy type of a set defined by nonlinear inequalities, Reliable
computing 13 (5) (2007) 381–398.

[11] N. Delanoue, L. Jaulin, B. Cottenceau, Using interval arith-
metic to prove that a set is path-connected, Theoretical Com-
puter Science, Special issue: Real Numbers and Computers
351 (1) (February 2006) 119–128.

[12] M. H. Zaki, S. Tahar, G. Bois, Formal verification of analog
and mixed signal designs: A survey, Microelectronics Journal
39 (12) (2008) 1395–1404.

[13] S. Owre, J. M. Rushby, N. Shankar, PVS: A prototype verifica-
tion system, in: Proceedings of the 11th International Confer-
ence on Automated Deduction: Automated Deduction, CADE-
11, Springer-Verlag, London, UK, UK, 1992, pp. 748–752.

[14] The Coq development team, The Coq proof assistant reference
manual, LogiCal Project, http://coq.inria.fr (2004).

[15] T. C. Hales, A computer verification of the Kepler conjecture,
Tech. rep., Proceedings of the International Congress of Mathe-
maticians, Vol. III (Beijing, 2002) (Beijing), Higher Ed (2002).

[16] A. Narkawicz, C. Muñoz, Formal verification of conflict detec-
tion algorithms for arbitrary trajectories, Reliable Computing
17 (2012) 209–237.

[17] J. Keyser, S. Krishnan, D. Manocha, Efficient and accurate b-
rep generation of low degree sculptured solids using exact arith-
metic: II - computation, Computer Aided Geometric Design
16 (9) (1999) 861–882. doi:10.1016/S0167-8396(99)00033-3.
URL http://dx.doi.org/10.1016/S0167-8396(99)00033-3

[18] S. Krishnan, D. Manocha, M. Gopi, T. Culver, J. Keyser,
BOOLE: A boundary evaluation system for boolean combi-
nations of sculptured solids, Int. J. Comput. Geometry Appl.
11 (1) (2001) 105–144. doi:10.1142/S0218195901000419.
URL http://dx.doi.org/10.1142/S0218195901000419

[19] C. Li, S. Pion, C. Yap, Recent progress in exact geometric com-
putation, The Journal of Logic and Algebraic Programming
64 (1) (2005) 85 – 111, practical development of exact real num-
ber computation.

[20] N. Tongsiri, Constructive Solid Geometry with Projection: An
Approach to Piano Movers’ Problem (2006).

[21] V. Shapiro, D. L. Vossler, Construction and optimization of
CSG representations, Comp.-Aid. Design 23 (11) (1991) 4–20.

[22] S. Cameron, Approximation hierarchies and s-bounds, in: Sym-
posium on Solid Modeling and Applications, 1991, pp. 129–137.

[23] S. Cameron, C.-K. Yap, Refinement methods for geometric
bounds in constructive solid geometry, ACM Trans. Graph.
11 (1) (1992) 12–39.

[24] F. Zizza, Differential forms for constrained max-min problems:
Eliminating Lagrange multipliers, The College Mathematics
Journal 29 (5) (1998) pp. 387–396.

[25] E. W. Weisstein, Determinant. From MathWorld—A Wolfram
Web Resource (2013).
URL http://mathworld.wolfram.com/Determinant.html

[26] G. Tzoumas, D. Michelucci, S. Foufou, Extending Constructive
Solid Geometry to Projections and Parametric Objects, in: 10th
International Symposium on Tools and Methods of Competitive
Engineering, Budapest, Hungary, 2014, pp. 707–718.

[27] W. Stein, et al., Sage Mathematics Software (Version 5.0.1),
The Sage Development Team, http://www.sagemath.org (2012).

[28] G. Chabert, L. Jaulin, Contractor programming, Artificial In-
telligence 173 (11) (2009) 1079 – 1100.

11

