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2Laboratoire LE2I, Université de Bourgogne, Dijon, France

{e guerrout, s ait aoudia, r mahiou}@esi.dz, dominique.michelucci@u-bourgogne.fr

Keywords: Brain image segmentation, Hidden Markov Random Field, The Conjugate Gradient algorithm.

Abstract: Image segmentation is the process of partitioning the image into different regions, meaningful and easier to
analyze. Nowadays, the segmentation became a necessity in many practical medical imaging like locating
tumors and pathologies. The Hidden Markov Random Field model is one of several techniques used in image
segmentation. It provides an elegant way to model the segmentation problem. This modeling leads to the
minimization of an objective function. The Conjugate Gradient algorithm (CG) is one of the most well known
optimization techniques. In this paper we show the combination of Hidden Markov Random Field model and
the Conjugate Gradient algorithm to achieve a good segmentation of brain images.

1 INTRODUCTION

Image segmentation is the process to partition a given
image into different meaningful regions easier to an-
alyze.

Nowadays, the segmentation became a necessity
in many practical medical imaging like locating tu-
mors, pathologies, measure tissue volumes, diagno-
sis, study of anatomical structure, surgery planning,
virtual surgery simulation, intra-surgery navigation,
etc.

There are several techniques to achieve the seg-
mentation process. We can classify them into thresh-
olding methods (Kumar et al., 2007; Natarajan et al.,
2012; Zhao et al., 2015), clustering methods (Pham
et al., 2000; Wu and Leahy, 1993; Chuang et al.,
2006), edge detection methods (Perona and Malik,
1990; Senthilkumaran and Rajesh, 2009; Canny,
1986), region-growing methods (Lin et al., 2012;
Roura et al., 2014), watersheds methods (Benson
et al., 2015; Masoumi et al., 2012), model-based
methods (Chan et al., 2001; Ho et al., 2002; McIn-
erney and Terzopoulos, 1996; Wang et al., 2014) and
Hidden Markov Random Field methods (Zhang et al.,
2001; Held et al., 1997; Panjwani and Healey, 1995).

Threshold-based techniques are based on image
histogram: they find one or more intensity thresholds
to separate the different image classes. If the image
contains n distinctive classes, n−1 thresholds are nec-
essary. For example, to segment the image into two

classes, foreground and background, one threshold is
necessary. The disadvantage of the threshold-based
techniques is that they are very noise sensitive.

Region-based methods assemble neighboring pix-
els of the image in non overlapping regions according
to some homogeneity criterion.

In model-based segmentation, a model is built for
a specific anatomic structure by incorporating a priori
information concerning shape, location, and orienta-
tion. The presence of noise degrades the segmentation
quality. That is why denoising phase is generally an
essential prior.

In classification methods, pixels are classified ac-
cording to some properties or criteria: gray level, tex-
ture or color.

Hidden Markov Random Field (HMRF) (Geman
and Geman, 1984) provides an elegant way to model
the segmentation problem based on the MAP (Maxi-
mum A Posteriori) criterion (Wyatt and Noble, 2003).
The MAP estimation leads to the minimization of an
energy function (Szeliski et al., 2008). Therefore, op-
timization techniques are necessary to compute a so-
lution.

The Conjugate Gradient Algorithm (Møller, 1993;
Powell, 1977; Shewchuk, 1994) is one of the most
popular optimization methods.

This paper presents a segmentation method based
on the combination of Hidden Markov Field model
and Conjugate Gradient algorithm.

Brain MR images segmentation has attracted a



particular attention in medical imaging. Thus our
tests focus on BrainWeb 1 (Cocosco et al., 1997) and
IBSR2 databases where the ground truth is known.

The segmentation quality is evaluated using Dice
Coefficient (DC) (Dice, 1945) criterion. DC mea-
sures how much the segmentation result is close to
the ground truth.

This paper is organized as follows. We begin by
introducing the concept of Hidden Markov Field in
the section 2. A short section 3 is devoted to the well
known Conjugate Gradient algorithm. The section 4
is devoted to the experimental results. Finally, section
5 concludes the paper.

2 HIDDEN MARKOV RANDOM
FIELD (HMRF)

Let S = {s1,s2, . . . ,sM} be the sites or positions set.
Both the image to segment and the segmented image
are formed of M sites. Each site s ∈ S has a neighbor-
hood set Vs(S).

A neighborhood system V (S) has the following
properties:{

∀s ∈ S,s /∈Vs(S)
∀{s, t} ∈ S,s ∈Vt(S)⇔ t ∈Vs(S)

(1)

A r-order neighborhood system V r(S) is defined by
the following formula:

V r
s (S) = {t ∈ S| distance(s, t)2 ≤ r2∧ s 6= t} (2)

The distance only depends on the pixel position i.e., it
is not related to the pixel value.

A clique c is a subset of S where all sites are neigh-
bors to each other. For a non single-site clique, we
have:

∀{s, t} ∈ c,s 6= t⇒ (t ∈Vs(S)∧ s ∈Vt(S)) (3)

A p-order clique noted Cp contains p sites i.e. p is the
cardinal of the clique.

Let y = (y1,y2, . . .,yM) be the pixels values of the
image to segment and x=(x1,x2, . . .,xM) be the pixels
classes of the segmented image. yi and xi are respec-
tively pixel value and class of the site si.

The image to segment y and the segmented im-
age x are seen respectively as a realization of a
Markov Random Field Y = (Y1,Y2, . . .,YM) and X =
(X1,X2, . . .,XM). The Markov Random Field is a fam-
ily of random variables.

1http://www.bic.mni.mcgill.ca/brainweb/
2https://www.nitrc.org/projects/ibsr

The random variables {Ys}s∈S take their values in
the gray level space Eobs = {0, . . . ,255} (obs for ob-
served). The random variables {Xs}s∈S take their val-
ues in the discrete space E = {1, . . .,K}. K is the num-
ber of classes or homogeneous regions in the image.
Figure 1 shows an example of image to segment.

y: The image to segment x: The segmented image
Figure 1: An example of segmentation with K = 4.

The segmentation of the image y consists to
seek a realization x of the hidden field X . HMRF
models this problem by maximizing the probability
P [X = x | Y = y].

x∗ = arg
x∈Ω,Ω=EM

max{P[X = x | Y = y]} (4)

From the Bayes rule, we get:

P [X = x | Y = y] =
P [Y = y | X = x]×P [X = x]

P [Y = y]
(5)

Based on the conditional independence we have:

P [Y = y | X = x] = ∏
s∈S

P[Ys = ys | Xs = xs] (6)

By the assumption that P[Ys = ys | Xs = xs] follows
a normal distribution with mean µxs and standard de-
viation σxs , we will have:

P [Ys = ys | Xs = xs] =
1√

2πσ2
xs

exp

(
−(ys−µxs)

2

2σ2
xs

)
(7)

According to equation 6 and 7 we get:

P [Y = y | X = x] = ∏
s∈S

1√
2πσ2

xs

exp

(
−(ys−µxs)

2

2σ2
xs

)
(8)

⇔ P [Y = y | X = x] = Cst1 exp (−Ψ1(x,y)) (9)

where Cst1 = (2π)
−M

2 and M is the image pixel num-
ber.



Ψ1(x,y) =

(
∑
s∈S

[
ln(σxs)+

(ys−µxs)
2

2σ2
xs

])

According to Hammersley-Clifford theorem
(Hammersley and Clifford, 1971) which establishes
the equivalence between Markov field and Gibbs, we
get:

P[X = x] =
exp
(
−U(x)

T

)
∑ξ∈Ω exp

(
−U(ξ)

T

) (10)

where T is a control parameter called temperature.
The energy U(x) is defined by Potts model

(Swendsen and Wang, 1987) as follows:

U(x) = β ∑
c2={s,t}

(1−2δ(xs,xt)) (11)

where β is a constant and δ is the Kronecker’s delta:

δ(a,b) =
{

1 if a = b
0 if a6=b (12)

P [Y = y] is a constant, so pose:

P[Y = y] = Cst2 (13)

By replacing the equations (9), (10) and (13) in
the equation (5), we will have:

P[X = x | Y = y] =
Cst1 exp(−Ψ1(x,y)) exp

(
−U(x)

T

)
Cst2 ∑ξ∈Ω,Ω=EM exp

(
−U(ξ)

T

)
= Cst3 exp(−Ψ(x,y))

where

Cst3 =
Cst1

Cst2 ∑ξ∈Ω,Ω=EM exp
(
−U(ξ)

T

)
Ψ(x,y) = Ψ1(x,y)+

U(x)
T

(14)

Maximizing the probability P[X = x | Y = y] is
equivalent to minimizing the function Ψ(x,y).

x∗ = arg
x∈Ω,Ω=EM

min{Ψ(x,y)} (15)

The computation of the exact segmentation x∗ is
impossible (Geman and Geman, 1984). Therefore op-
timization techniques are necessary to compute an ap-
proximate solution x̂.

Let µ = (µ1, . . . ,µ j, . . . ,µK) be the means and
σ = (σ1, . . . ,σ j, . . . ,σK) be the standard devia-
tions of K classes in the segmented image x =
(x1, . . . ,xs, . . . ,xM) i.e.,

µ j =
1
|S j | ∑s∈S j ys

σ j =
√

1
|S j | ∑s∈S j(ys−µ j)2

S j = {s | xs = j}

(16)

Our way to minimize the function Ψ(x,y) is to
minimize instead the function Ψ(µ). We can always
compute x through µ by classifying ys into the near-
est mean µ j i.e., xs = j if the nearest mean to ys is µ j.
Thus instead of looking for x∗, we look for µ∗.



µ∗ = argµ∈[0...255]K min{Ψ(µ)}

Ψ(µ) = ∑
K
j=1 f (µ j)

f (µ j) = ∑
s∈S j

[ln(σ j)+
(ys−µ j)

2

2σ2
j

]+ U(x)
T

(17)

where U(x) and S j are defined in equations (11) and
(16).

To apply unconstrained optimization techniques,
we redefine the function Ψ(µ) for µ ∈ RK instead of
µ ∈ [0 . . .255]K . For that, the new function Ψ(µ) be-
comes as follows:

Ψ(µ) =

{
∑

K
j=1 f (µ j) if µ ∈ [0 . . .255]K

+∞ otherwise
(18)

3 THE CONJUGATE GRADIENT
(CG) ALGORITHM

In practice, we used the GNU Scientific Library im-
plementation of Polak-Ribière Conjugate Gradient
method (Polak and Ribière, 1969; Grippo and Lucidi,
1997) (gsl multimin fdfminimizer conjugate pr).

To use Conjugate Gradient Algorithm, we need
the first derivative. Since no mathematical expression
is available, it is approximated with finite differences
(Eberly, 2003) as follows:


Ψ
′
(µ) = ( ∂Ψ

∂µ1
, . . . , ∂Ψ

∂µn
)

∂Ψ

∂µi
= Ψ(µ1,...,µi+ε,...,µn)−Ψ(µ1,...,µi−ε,...,µn)

2ε

(19)



The good approximation of the first derivative re-
lies on the choice of the value of the parameter ε.
Through the tests conducted, we have selected 0.01
as the best value.

4 EXPERIMENTAL RESULTS

To evaluate the segmentation quality we have used
Dice Coefficient (Dice, 1945).
Dice Coefficient (DC) measures how much the result
is close to the ground truth. Let the resulting class be
Â and its ground truth be A∗. The Dice Coefficient is
given by the following formula:

DC =
2|Â∩A∗|
|Â∪A∗|

=
2TP

2TP+FP+FN
(20)

where TP stands for true positive, FP for false positive
and FN for false negative. DC equals 1 in the best case
i.e., Â and A∗ are identical and equals 0 in the worst
case i.e., there is an empty intersection between Â and
A∗.

Figure 2: TP, FP and FN.

We have compared the combination method
HMRF-CG to some methods: MRF-Classical
(Yousefi et al., 2012), MRF-ACO-Gossiping (Yousefi
et al., 2012) and MRF-ACO (Salima and Mohamed,
2003).

Table 1 shows the mean DC values of the three
classes: GM (Grey Matter), WM (White Matter) and
CSF (Cerebro Spinal Fluid). The images are obtained
form the IBSR database. The slices used are: 1-
24/18, 1-24/20, 1-24/24, 1-24/26, 1-24/30, 1-24/32
and 1-24/34. The parameters used by HMRF-CG
are: Temperature T = 10 and the initial point µ0 =
(1,5,140,190). The parameters used by the others
methods are given in (Yousefi et al., 2012; Salima and
Mohamed, 2003).

Table 2 shows mean DC values for the three
classes: GM (Grey Matter), WM (White Matter)
and CSF (Cerebro Spinal Fluid) of HMRF-CG and
LGMM (Liu and Zhang, 2013) methods. The images
are chosen from Brainweb databases with Modality=
T1, Slice thickness = 1mm. The slices used are: 85,
88, 90, 95, 97, 100, 104, 106, 110, 121 and 130. The
parameters used by the LGMM method are given in

Table 1: Mean DC values (the best results are given in bold
type).

Methods Dice Coefficient
GM WM CSF Mean

Classical-MRF 0.771 0.828 0.253 0.617
MRF-ACO 0.778 0.827 0.263 0.623
MRF-ACO-Gossiping 0.778 0.827 0.262 0.623
HMRF-CG 0.859 0.855 0.381 0.698

LGMM (Liu and Zhang, 2013). The parameters used
by HMRF-CG are: Temperature T is given in the Ta-
ble 2 and the initial point µ0 = (1,45,110,150). The
first column (N,I) gives the noise and the intensity
non-uniformity.

Table 2: Mean DC values (the best results are in bold type).

(N,I)
HMRF-CG LGMM

Dice Coefficient Dice Coefficient
T GM WM CSF Mean GM WM CSF Mean

(0%,0%) 10 0.970 0.990 0.961 0.974 0.697 0.667 0.751 0.705
(3%,20%) 4 0.940 0.965 0.940 0.949 0.905 0.940 0.897 0.914
(5%,20%) 1 0.918 0.952 0.924 0.931 0.912 0.951 0.893 0.918

Figure 3 shows a sample of images to segment
from IBSR databases.

IBSR 1-24/18 IBSR 1-24/20

IBSR 1-24/24 IBSR 1-24/32

Figure 3: A sample of images to segment from IBSR
database.

Figure 4 shows a sample of segmented images us-
ing HMRF-CG method.

Figure 5 shows a sample of ground truths images
from IBSR database.

Figure 6 shows a sample of images to segment
from Branweb databases and segmented images using
HMRF-CG. The first column (N,I) gives the noise, the
intensity non-uniformity and the temperature.



IBSR 1-24/18 IBSR 1-24/20

IBSR 1-24/24 IBSR 1-24/32

Figure 4: A sample of segmented images using HMRF-CG.

IBSR 1-24/18 IBSR 1-24/20

IBSR 1-24/24 IBSR 1-24/32

Figure 5: A sample of ground truths images from IBSR
database.

5 DISCUSSION AND
CONCLUSION

In this paper, we have described a method which com-
bines Hidden Markov Random Field (HMRF) and
Conjugate Gradient (GC). Segmentation quality mea-
surement by Dice Coefficient was carried out on a
sample of brain medical images from the well known
databases IBSR and Brainweb.

The segmentation quality using HMRF-CG
method depends on the choice of parameters (the ini-
tial point and temperature). This very sensitive task
was conducted by performing numerous tests.

(N,I,T) Image to
segment

Segmented
image

(0%,0%,10)

(3%,20%,4)

(5%,20%,1)

Figure 6: The slices number #97 with different noise and
intensity non-uniformity from Brainweb databases and their
segmentation using HMRF-CG.

From the results obtained, the HMRF-GC method
outperforms the methods tested that are: LGMM,
Classical MRF, MRF-ACO-Gossiping and MRF-
ACO. Tests permit to find good parameters (initial
points and temperature) for HMRF-CG, to achieve
good segmentation results. Nevertheless, a statistical
study is still needed to confirm the choice of parame-
ters.
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