Equations and interval computations for some fractals

Lincong Fang?, Dominique Michelucci®, Sebti Foufou®®

“School of Information, Zhejiang University of Finance & Economics, Hangzhou 310018, China
PLE21 UMRG6306, CNRS, Arts et Métiers, Université Bourgogne Franche-Comté, F-21000 Dijon, France
“New York University of Abu Dhabi, Computer Science, P.O. Box 129188, Abu Dhabi, UAE

Abstract

Very few characteristic functions, or equations, are reported so far for fractals. Such functions, called Rvachev functions in function-
based modeling, are zero on the boundary, negative for inside points and positive for outside points. This paper proposes Rvachev
functions for some classical fractals. These functions are convergent series, which are bounded with interval arithmetic and interval
analysis in finite time. This permits to extend the RSS (Recursive Space Subdivision) method, which is classical in Computer
Graphics and Interval Analysis, to fractal geometric sets. The newly proposed fractal functions can also be composed with classical
Rvachev functions today routinely used in CSG (Constructive Solid Geometry) trees of Computer Graphics or function-based

modeling.

Keywords: Function-based modeling, function representation, fractal, interval arithmetic

1. Introduction

Function-based modeling [1-4] is well studied in Computer
Aided Design (CAD) and Computer Graphics (CG). It is a gen-
eralization of the Constructive Solid Geometry (CSG) represen-
tation in which not only primitives, but also composed objects
(e.g. with set operations) are represented with characteristic
functions. A characteristic function has value zero for points
on the boundary, and takes values of opposite signs for inside
and outside points. In this paper, we use the convention that the
function is negative inside and positive outside the geometric
set.

Algebraic objects such as spheres, quadrics, and tori, are repre-
sented with polynomial functions (e.g. f(x,y,z) = (x — ce)? +
- cy)2 +(z—c,)?—r* < 0 for a ball of known radius r centered
at a given point (cy, ¢y, ¢;)) or with signed distance functions
[5] (e.g. for the polygon). The generalization to other smooth
functions such as trigonometric functions or exponential is also
possible.

An arbitrary complex solid is defined using a single continuous
real-valued function, the zero set of which is the boundary of
the object (it is called a surface). For example, let A and B be
two objects in RY, d > 0, represented with functions f4 and
JfB. The simplest approach to formalise set operation between
A and B is to represent A N B with the function fsnp(p) =
max(f4(p), f(p)), p € R?, and A U B with the function
faus(p) = min(f4(p), fa(p)). The complement of the object
A is represented with the function f_4(p) = —f4(p). For affine
invertible transforms 7' (translations, rotations, scalings), the
function fr(4) for T(A) is frea)(p) = f4(T~"(p)). Rvachev pro-
posed other functions, now known as R-functions, or Rvachev
functions, to realize set operations between solids [1, 6].

Preprint submitted to Fractals

Functions representing objects must be computable, i.e. they
can be approximated within a prescribed accuracy [7]. Only
continuous functions are computable [7], in the sense of ’com-
putable numbers” or computable analysis. A real number is
computable if by definition it is possible to produce a set of
nested intervals converging to it. A function f is computable
if for all computable numbers x, f(x) is computable. There-
fore, only continuous functions are computable. The equality
of two computable numbers is non decidable. The non equal-
ity of two computable numbers is decidable (compute two thin
enough intervals for each, eventually disjoint). For example,
the sign function, -1 for negative, O for 0, 1 for positive is non
computable, more precisely the computation does not halt for 0.

An advantage of the function-based modeling is that the bound-
ary is extracted from an approximation or a cover, computed
with a prescribed accuracy threshold. The topology of this ap-
proximation may not be equal to the topology of the exact ob-
ject, which is anyway non computable (since, for example, the
number of connected components is not a continuous function;
moreover for fractals it may be infinite).

Interval arithmetic and analysis provide methods to compute a
guaranteed and sharp enclosure of the values of smooth (i.e.
differentiable) functions over an interval, or a box (a box is a
vector of intervals) [2, 8, 9]. In Sec. 2.2, this feature is used by
the classical RSS (Recursive Space Subdivision) method.

Fractals are widely used in geometric modeling to represent
natural shapes [10, 11] or artifacts, e.g. the antenna of some cel-
lular phones is a 2D Menger sponge, see Fig. 6. Finding equa-
tions for fractals could bridge geometric modeling and fractals
and therefore ease fractals’ integration in geometric modelers.
Moreover, it might provide a feasible way for 3D printing of
fractal objects. However, for fractal objects, these equations or

May 22, 2018

Rvachev functions are not differentiable, and sometimes even
not continuous.

It is possible to extend interval computations to non smooth
functions, i.e. functions which are nowhere or almost nowhere
differentiable, and to non continuous functions. We call them
fractal functions, because they appear in the function-based
shape modeling of fractal objects.

In this paper, we propose functions, actually convergent series,
of some classical fractal objects [10—12]. These functions are
differentiable nowhere or almost nowhere, though they are usu-
ally continuous in some sense (Lipschitz [13], Holder [14], etc).
These series can be enclosed within intervals [2, 7, 8], some-
times tightly, in finite time. These proposed fractal functions
will give another way to account for fractals into the function-
based modeling framework, and extend the scope of the RSS
method, which may also generate new interesting and challeng-
ing geometric problems.

We summarize the contributions of this paper as follows: it
gives equations (i.e. a characteristic function which is nega-
tive for inside points and positive for outside points) for some
classical fractals; it shows that exactly one contractant mapping
is sufficient in the IFS (Iterated Function System). These func-
tions can be bounded with intervals computations. They can be
composed with other classical Rvachev functions [1, 15].

The rest of the paper is organized as follows: we first introduce
the background in Sec. 2. Sec. 3 gives some examples of fractal
functions, which define fractal shapes, and can be enclosed with
interval arithmetics. The fractal functions permit to cover the
fractal object or its boundary with the RSS method. Arising
questions are discussed in Sec. 4.

2. Background

This section presents methods for computing a cover of a fractal
inside a box. We recall the classical representations of fractals
in Section 2.1. Implicit equations of classical fractals are rarely
reported, though the parametric equation of some fractal curves
is known [16]. Methods for tracing strange attractors like Julia
sets or Hénon attractor were proposed [17-20]. Methods were
presented for ray casting surfaces defined by fractal combina-
tions of procedural noise functions [21-23].

Sec. 2.2 presents the classical RSS method, which can be used
when a Rvachev function is available and is computable with
interval analysis. This method also applies for objects defined
with CSG trees.

In Sec. 2.3, the fractal is defined by an IFS and no Rvachev
function is available. This section presents a branch and bound
method for computing the distance of a given point to a fractal
defined by an IFS: the latter can be used to compute a cover of
the fractal.

In Sec. 2.4, we consider the case when no Rvachev function is
available and the fractal is the attractor of orbits which does not

Fractal Complexity
Sierpiniski’s napkin | O(k)
Sierpiniski’s carpet | O(k)

Levy fractal 02k
Koch curve 0(4%)
Pythagoras fractal | O(5%)

Table 1: Evaluation cost of approximations of R-functions [24] relatively to &,
the recursion depth.

diverge to infinity, for some given computable map f. Exam-
ples are Julia sets, and the Hénon strange attractor [18]. This
section presents a graph-based method for computing a cover
of the fractal.

The conclusion to be learned from this work is that it is sim-
pler and easier to compute a cover of a fractal object when a
Rvachev function is available.

2.1. Classical representations of fractals

Fractals can be approximated with an union of simple geomet-
ric primitives (triangles in the example of the Sierpinski trian-
gle), or with a CSG tree, but with a small recursion depth [24].
Traversing this CSG tree straightforwardly produces a Rvachev
function. But the evaluation cost of this naive Rvachev function
increases, sometimes exponentially, with the recursion depth,
which limits the depth to a small constant. Such Rvachev func-
tions for some classical fractals are proposed in [24], their eval-
uation cost is given in Table 1. Though this approach is suffi-
cient for visualisation purposes, it does not solve the challeng-
ing problem tackled here. In this paper, we will define Rvachev
functions with constant size but with infinite recursive depth,
i.e. convergent series, and we will use interval analysis to bound
them in finite time.

Some fractals are defined as the attractor of an IFS. Rice [25]
proposes a method to compute a bounding box of this kind
of fractals. Barnsley [10] proposes the chaos game to sample
them. We are not aware of any method to compute a Rvachev
function of a fractal defined by an IFS.

Some fractals are defined as attractors of non divergent orbits,
for a given function, like the Hénon strange attractor, or Julia
sets (or the related Fatou sets). Michelucci et al. [19], and Paiva
et al. [20] proposed graph-based methods to compute a cover of
such fractals. This method is presented in Sect. 2.4.

Some fractals have a combinatorial definition, with a finite au-
tomata (for instance the von Koch curve, or the dragon curve),
or with exotic numeration systems [16, 26, 27].

A Rvachev function is advantageous, because it avoids to de-
sign special algorithms to deal with fractals: the RSS algorithm
can manage them, and they can be combined easily with other
Rvachev shapes (a shape is Rvacheyv if its Rvachev function is
available). Examples of Rvachev functions for some classical
fractals are given in next sections.

2.2. The RSS method and Rvachev function

This section recalls the classical method [28] used to compute
a cover of a geometric set A, inside a given box B, when a
Rvachev function f4 is known, and is computable with interval
analysis. In 2D, to cover the object inside a box B = (X,Y),
where X and Y are two intervals, the method computes an in-
terval Z = [u,v] enclosing f(X, Y), with some interval compu-
tation [28]. If v is negative, then the box (X, Y) is completely
inside the object: it is added to the cover. If u is positive, then
the box (X, Y) is completely outside. Otherwise, u < 0 < v,
and nothing can be said because the interval [u, v] may overes-
timate the exact range. If the box is small enough, so that no
more subdivision can be done, the conservative choice is to in-
sert the box in the cover. Otherwise the box is subdivided, and
the sub-boxes are recursively evaluated. This recursive sub-
division of 2D space is a classical method used to tessellate
objects, perform volume computations, etc., within the frame-
work of function-based modeling. For instance, the marching
cube method computes the boundary of an object at the voxel
level. Fryazinov et al. [3] and Martin et al. [28] compared sev-
eral interval computations for this algorithm. They considered
only differentiable polynomial functions.

2.3. Branch and bound method and IFS

In this section, the fractal F is defined as the attractor of an IFS
and no Rvachev function is available.

The branch and bound method makes it possible to use the RSS
method in this case. The branch and bound method computes
intervals enclosing the unsigned (non negative) distance from
a given point p to F. Typically, the interval width decreases at
each iteration of the algorithm, which stops when a tight enough
interval is reached. This method can be used to compute the
(unsigned) distance from a box B with center p to F. Let r =
[, 7"] be the radius of the smallest ball B(p, r) enclosing the
box B. The value r is represented with an interval to account
for inaccuracy (for example when r = V2). Letd = [d™,d"]
be an interval enclosing the unsigned distance from p to F: d
is computed with the branch and bound algorithm. Then an
interval enclosing the distance from B to F is

d(B, F) € [max(0,d™ —r*),d* + r*]. 1)
We explain now the branch and bound method for computing
an interval of the distance from a given point p to the fractal F.
F is the attractor of a given IFS F = {fj,..., f,}. The maps

fi,..., fn, are contractant, usually affine, transformations. Let
p € (0, 1) be the contracting factor of 7, thus

Yie[l,n],Yx, Yy, Ifi(x) = il < pllx—yll.

The fractal F is non empty: it contains at least the fixed points
of the transformations f;.

We recall the definition of Hutchinson’s operator:

H:X— H(X) = U:l:lﬁ(X),

where X is any compact set. The fixed point of H is the attractor
of the IFS ¥, i.e. the fractal F. Computationally convenient
sets X are unions of balls, possibly overlapping: the image of a
ball B(c,r) by amap f; € ¥ is included in the ball B(f;(c), rxp),
the center of which is f;(c), and the radius of which is r X p. We
assume a ball B(C, R) enclosing F is known: C is its center, and
R its radius [25, 29].

For convenience, we re-define H as follows: for a ball B(c, r),
H(B(c,) == UL, B(fi(c), r X p)

and for an union of balls, the image by H is the union of
the images of balls by H. The underlying approximation in
this redefinition is conservative. Define U° := {B(C,R)} and
UM .= H(U*). Each U* is an union of n* balls, all with radii
R x p*. Each U* is a cover of the fractal F. Moreover this cover
is fair: U* N F is never empty. As point sets, U¥! ¢ U*, and
F = lim_,o U,

A virtual tree of balls can be associated in a natural way to the
set of balls in U*, k € N: the root is the bounding ball B(C, R)
in U°, and each ball B(c, r) has n sons B(f:(c), p X r). U¥ is the
union of balls at depth k in the tree.

An e-cover of F is a cover by a set of balls the radii of which
are all smaller or equal to €. The Hausdorff distance between F
and an e-cover of F is at most €. Let k be the integer:
log(e/R)

logp

so U* is an e-cover of F. The distance to F of a given point p
is (up to €) the distance of p to the union of balls U*.

Rxpks's::»k:{)

This gives a method to compute a fair e-cover U*.

This also suggests a first, naive and brute force method to com-
pute (an interval of) the distance of p to F: generate all n* balls
of U* and compute which one is the closest to p. It is clearly
exponential time O(n*). The branch and bound principle [8, 17]
speeds up this first naive method. Suppose some greedy method
finds a ball in the e-cover, thus with radius smaller than €, and
the distance of this ball to p is at most 7. Then it is useless
to compute H(B(c, r)), HH(B(c,r))), etc., i.e. the subtree of
B(c, r), as soon as the distance from p to B(c, r) is greater than
n: the ball B(c,r) is too far, and its sons in the tree are even
further away.

Regarding the greedy method, for a given ball B, it only consid-
ers the closest ball to p amongst fi(B),..., f,(B). It may give
a non optimal result, but it quickly provides an upper bound of
the distance.

In practice, the branch and bound method [8, 17] is much faster
than the naive method computing U* with k defined in Equation
2. However, it remains slower than the interval analysis method
presented in Sec. 2.2. But, to apply the latter, an equation of the
fractal is needed.

2.4. Attractors of non divergent orbits

In this section, no IFS and no Rvachev function is avail-
able. Nonetheless, interval analysis permits to compute in
a reliable way covers of fractals like the Julia sets or the
Hénon attractor [18-20] which are attractors of orbits O(p) =
{p, f(p), f(f(p)),...} that are not diverging. For example, for
Hénon attractor, the function f is defined as:

f:(xy) € R? - f(x,y)=(1 +y—ax2,bx)€IR2,

where a and b are parameters, a = 1.4 and b = 0.3 for the
famous Hénon strange attractor. For Julia sets, f(z) = z° + c,
where ¢ € C is a parameter.

The method operates as follows: assume, for simplicity, that a
bounding box of the attractor is known. This bounding box is
partitioned into a set C of square or rectangular cells C;, with
i = 1,...n%. Each cell C in C is associated to a vertex ¢ in
a graph G, and each time there is a point p € C such that
f(p) € C’, ie. interval analysis detects that f(C) N C’ is not
empty, an arc ¢ — ¢’ is added to the graph G. Then the strongly
connected components of the graph G are computed, with Tar-
jan’s method [30]. So each vertex c is associated its strongly
connected component scc(c). A vertex ¢ in G, corresponding to
acell C € C, is transient if there is no arc ¢ — c¢ in the graph G,
and ¢ belongs to a strongly connected component which con-
tains only the vertex c itself, i.e. scc(c) = {c}. In other words,
if ¢ is transient, no orbit for f starting in the cell C can re-
turn to C. Thus transient cells contain no point of the attractor.
Non transient cells cover the attractor. In comparison, the orbit
method often gives wrong results [18-20] typically near repul-
sive points of the fractal, which cause “leaks”.

An interesting feature of this method is that it can be used it-
eratively: let C be the first set of cells, and let C; be the set of
non transient cells. Then cells in C; can be subdivided again,
and the same algorithm is re-executed, to obtain a thinner cover
C,, etc. Some (2, 3 or 4) iterations yield an exact cover much
thinner than the pictures produced with the orbit method. This
method can be modified to compute periodic points in the at-
tractor [20]. It should also be used with IFS: an arc links ¢ to ¢’
if for some function f; in the IFS, there is a point p € C such
that fi(p) € C’, i.e. €N f7'(C’) is non empty, or equivalently
fx(C) N C’ is non empty.

Once a cover of the fractal is known, it may seem easy to es-
timate the distance of a given point p to the fractal, using the
cover instead, represented with some quadtree or octree data
structure. However, the cover is exact (no part of the attractor
is outside the cover, which is usually tight), but it may happen
that some cells in the cover set are actually empty, i.e. that they
contain no point of the fractal (remark that this problem can not
occur with the branch and bound method Sec.2.3). A possibil-
ity is to make the cover fair: for each cell, compute a periodic
point inside it [20], or prove that it is empty.

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

Figure 1: From top to bottom: the dz, function is the distance to integers, the
odd function dz, (x is inside if | x] is odd), the even function dz,.

Figure 2: The Takagi curve, also called the Blancmange curve. Left subfig-
ure shows the recursive subdivision process. Right subfigure shows the cover
obtained with 12 levels of recursion.

3. Computing enclosures of fractal functions

This section presents functions for some fractals and the meth-
ods to compute their enclosures. To define fractal functions, the
most basic function is the distance to the integers. Let x € R,
the distance function is defined as

dz(x) = min(x — [x], [x] = x), 3

where | x] is the floor of x, and [x] is the ceiling of x. The func-
tion dyz has period 1; it is piecewise linear, continuous, bounded,
i.e. dz(R) = [0, 1/2]. The interval enclosing dz(X) for a given
interval X = [xg, x1] is easily computed. Furthermore, the odd
function dz, and the even function dz, can be defined as fol-
lows:

1

1
dz, (x) = 2dy, (g + Z) -5 @

dz,(x) = —dz, (%) &)
It is obvious that dz, (R) € [-3, 3] and dz,(R) € [-3, 3]. Fig. 1
shows the graph of the functions dz, dz,, and dz,.
3.1. The Takagi function

Let
k

dy (2!
= Y, ©
i=0

o

Figure 3: The fractal object {(x,y) | y = E~(x)}, where E, is the devil’s stair-
case function. Left subfigure shows the recursive subdivision process using
interval evaluation of the function, the right subfigure shows the resulting cover.

then T (x) is the Takagi function (as usual T(x) =
limg—,e Ti(x)). Since dz is bounded, the series converges. The
Takagi function has period 1; it is continuous but not differen-
tiable. It is possible to compute an interval enclosing T, (X) for
a given interval X = [xo, x1] as follows:

Tl = Y 200D 3 &1 0]

i=0 i=n+1

Ei@(?[@,xl]) 0,51 1

+ I+=-+...
P 2i 2n+1 (2)

5 dg(2'[x0, x1]) 1
€ 2 :T+[O’2n+l

1.

i=0

The first part of the right hand side can be computed with inter-
vals, or exactly with rational arithmetic when xy, x| are rational.

Fig. 2 shows the fractal {(x,y) | y = Te(x)}, for x € [0, 1],y €
[0, 1], the recursive subdivision process of the outward rounded
interval arithmetic is shown on the left.

Notably, the Takagi function is Holder continuous, that is

l-a

2
IT(x2) = T(xp)l < Wm - xl”.

We computed the value of the function T at the center of the
considered interval X, and then get the enclosure of 7(X). This
method gives the same subdivision as the naive interval arith-
metic in our implementation.

3.2. The devil’s staircase

The devil’s staircase can be defined [31] as E.,(x) where

2
i=1

Ey(x) =)
The floor function is not continuous, but it can be computed
with interval arithmetic (it is possible to enclose the image of
an interval by the floor function) easily, because it is increasing,
an enclosure of E([xg, X1]) is [Ew(X0), Ex(x1)]. Obviously, the
series converges.

The devil’s staircase function is an example of a function that
is continuous, but not absolutely continuous. It is also called

Figure 4: The graph of the cover of the curve {(x,y) | y—Ci(x) = 0},k =0,...,5,
x €[0,1], and y € [-0.5,0.5].

Cantor’s function: it is constant for values outside the Cantor
set (or Cantor dust). It is not Lipschitz continuous. See Fig. 3
for a graph of the function, traced with the recursive subdivision
method and outward rounded interval arithmetic.

3.3. Distance to Cantor dust

This section presents a function to get the signed distance to
the covers of the 1D Cantor dust (or Cantor set). The signed
distance is positive for a point outside and negative for a point
inside the cover.

The Cantor set is created by repeatedly removing the open mid-
dle third of a set of line segments. Let C; be the obtained set of
the k™ step in this process, then the cover of Cy is the segment,
or interval [0, 1]. The cover Cy is the union of %C;H and of
2 + 1Cyy. The limit of C; when k — oo is the famous Cantor
set.

To define the signed distance function to the Cantor set, we pose
f(x) = dz(x) — % for convenience. f is bounded, i.e. f(x) €

—1 17 Then the signed distance to the cover Cy is defined as

63
K f(3x)
Cuto = mi 52,
which is indeed convergent when k — oo, and Cy(x) is the
signed distance function to the Cantor set.

The RSS method is applied to the set defined by the equation
y — Cr(x) = 0. It is essential that f is bounded, so the series
converges, and it is possible to lower and upper bound the er-
ror at each step. Fig. 4 shows the graph of these functions for
Ci(x),k =0,...,5forx € [0,1], y € [-0.5,0.5]. Fig. 5 shows
the graph of the function Co(x).

3.4. Sierpiriski’s gasket

Sierpiniski’s gasket is another icon of fractals, see Fig. 6. It has
various relatives [32], and its 3D variant is also called Menger’s
sponge. Define a series:

Figure 5: The graph of the signed distance to the Cantor dust Co,. Left: the
recursive subdivision algorithm. Right: the resulting cover.

Figure 6: Sierpinski’s gasket (sometimes called Menger’s sponge). Left: the
recursive subdivision method with outward rounded interval arithmetic. Right:
the corresponding cover.

Se(r,y) = min LO23Y
i=0 3
where f(x,y) = % — min(dz(x), dz(y)). The signed distance to
the union of holes in Sierpifiski’s gasket is S« (x,y). It is the
generalized Rvachev function of the Sierpinski gasket. Since f
is bounded, the series clearly converges. It is then possible to
compute with intervals an enclosure of the signed distance to
the Sierpiniski’s gasket for any point and any box. Fig. 6 shows
the result of the RSS method with outward rounded interval

RS RERNRS

e
TG
R

Figure 7: Sierpifiski’s triangle. Left: the recursive subdivision method with
outward rounded interval arithmetic. Right: the corresponding cover.

®)

3.5. Sierpiniski’s triangle

Fig. 7 shows the Sierpinski’s triangle. Let d,,(x) = x mod 1
and f(x,y) be the signed distance to the tiling of triangles
{6, ¥) | dw(y) < dyu(x)}. The function f(x,y) = dp(y)—dnu(x) can
be used, and it was used, to produce our first figures, e.g. see
Fig. 7, although it uses the non continuous function, i.e. modulo
1. Once a function f is available, the function for the signed dis-
tance to the holes in the Sierpinski’s triangle is S o (x, ¥), where

2ix,2¢
Siry) = min TEE2)

©)

B
B’
AlA
"BC B
AB AB
o] NN

Figure 8: Partition of the plane with vertical stripes A (even) and A’ (odd),
horizontal stripes B (even) and B’ (odd), diagonal stripes C (even) and C’ (odd).
Then the union of these strips gives a tiling with triangles. An advantage of this
definition is that it uses only the basic, continuous function dz,.

A definition for the function f which does not depend on a dis-
continuous function (like the modulo 1 function) can be found.
As shown in Fig. 8, first define functions for stripes, for exam-
ple the odd function (4) is zero for integers x, negative in the
open intervals (1,2), (3,4),...,(2n + 1,2n + 2), and positive in
the open intervals (2, 3), (4,5), ..., (2n,2n + 1). In other words,
dz,(x) is the signed distance functions to stripes 2Z + [1,2].
The function for the complement is the even function (5).
Then define vertical stripes A and A’, horizontal stripes B and
B’, diagonal stripes C and C’ (e.g. considering dz,(x + y),
dz,(x +y)). Then the tiling of triangles can be obtained as
(ANBNCHYUANB' NCO)UA'NBNC)U(A'NnB' NC"), see
Fig. 8.

3.6. Koch flake

A parametric equation was proposed by Allouche et al. [33],
but there is no characteristic function up to now for the best of
our knowledge. This section provides an equation for the von
Koch snowflake. We use d,,,(x) = x mod 1, defined in previous
subsection to define the tiling of triangles shown on the left side
of Fig. 9, where {(x,y) | d,,(x — %) + dm(%) < 1} are the white
triangles, and {(x,y) | d,,(x — %) + dm(f—%) > 1} are the grey
triangles. The vertices of the lattice are Z(1,0) + Z(%, %g) =
(i+1j.L)ijel.

Let

da(x,y) = min min \/(x X)2+ —yij)? - V3/6,
i

where (x;,y;) are the vertices of the lattice, then da(x,y) < 0
defines the disks which are centered at these vertices, as shown
on the right side of Fig. 9. Since da(x,y) is bounded by the
length of the edges of the tiling, the series clearly converges.

Figure 9: Tiling of triangles and the Koch flake with k = 0 for x € [-1,1],
yel[-1,1].

We give two more methods to define da(x,y) in Section 3.6.1
and Section 3.6.2.
Now we define a function
k da(3ix,3!
ﬂwwzmggL%_ﬂ

The limit of Fi(x,y) when & — +co is the expression of the
signed distance to the Koch flake.

(10)

O
()
AN R RPN
o oo o o o
s g
o o o o
o o
o o
RPN
[¢] o o o o
}o [¢) o {}o o o {
o] o]
o

Q

Figure 10: Single Koch flake (upper row) and double Koch flake (lower row) for
x € [-1,1], y € [-1, 1]. Left: the recursive subdivision with outward rounded
interval arithmetic. Right: the corresponding cover.

Furthermore, let

T(x,y) = \/§(

= ")lﬁ

(7]

if Fr(x,y) <0
and Fi(x,y) < Fi(T(x,y))
if F(T(x,y)) <0

and Fi(T(x,y)) < Fi(x,y)
0, otherwise

m|<'ml~
(98)

then
Fi(x,y),

Fi(x,y) = {=Fu(T(x,)),

gives a definition of a double Koch flake, which is also a signed
distance function to the boundary of the double Koch flake.
An example of the recursively subdivision process is shown in
Fig. 10. Furthermore, we also show a shaded single Koch flake
and a shaded double Koch flake in Fig. 11.

Figure 11: The Koch flakes with k = 0, 1,2 for x € [-1, 1], y € [-1, 1]. Upper
row: Single Koch flake. Lower row: Double Koch flake.

It suffices to use a specific tuned procedure to evaluate d,,(x)
for intervals. These fractal functions should be inserted as a
DAG (Directed Acyclic Graph) node, so when it is evaluated,
the specific (tuned) procedure is called. Though the method
proposed in previous subsection can be used to get continuous
functions, here we propose methods only using dz(x). Follow-
ing these methods, the Koch flake can be computed using inter-
val arithmetic. In our implementation, we use (1) to compute
the functions in a given box.

3.6.1. 2D affine map
Let

[e>R STEN

M(x,y) =(

L)

and denote (x',y") = M(x,y), (x",y") = M(x + %,y + ?), let

F(5,y) = \J4d2(x) + 1242 (y) — V36,

da(x,y) = min{f(x",)"), f(x",y")} < 0
defines the expected disks on the right side of Fig. 9.

then

3.6.2. 3D affine map

Here we give another method to get the disks by projecting a 3D
lattice to the Oxy plane. We search the isometry which trans-
forms the equilateral lattice in the Oxy plane to the plane P
with equation x + y + z = 1. The integer vertices in P form an
equilateral 2D lattice, see Fig. 12.

In the Oxy plane, the lattice has length o = %6, and is the set of

vertices Z(a, 0) + Z(%a, ﬁa'), see Fig. 12. Implicitly, z = 0 for
points in the Oxy plane.

Now the point (0,0,0) of the Oxy plane is mapped to the
point (1,0,0) in the plane P. The vector (1,0,0) of the Oxy

Figure 12: The lattice on the plane x+y+z = 1. Right: The diamond, circle, and
square points are the projections of the integer vertices of the planes x+y+z = 0,
x+y+z=1,and x +y+ z = 2 respectively. Left: part of the lattice is shown.

Figure 13: The graph of the signed distance to the Koch flake. Left: the recur-
sive subdivision algorithm. Middle: the von Koch curve with k£ = 2. Right: the
resulting von Koch curve.

plane is mapped to the vector (_«/Li’ \%,0) in the plane P.
The vector (0, 1,0) of the Oxy plane is mapped to the vector

(—%, —\/Lg, %g). The vector (0, 0, 1) of the Oxy plane is mapped
to the vector (%, %, \L@). Let M be the 4 x 4 matrix (we use

homogeneous coordinates as usual) of the isometry mapping
the Oxy plane to P. We get:

-1 1

l—ﬁzgl—@l 1 000
5—6\—50_M0100:M'
O—L\FO 0010

o 0 0 1 0001

Thus the matrix M is known. The matrix M permits to compute
the distance to vertices of the equilateral lattice for the point
(x,y): let (x',y,7,1) = M(x,y,0,1), then the distance of
(x,y) to the equilateral lattice da(x,y) (with side length a = \/Tg)

can be computed as dz(x") + dz(y’) + dz(z') for the Manhattan
distance, or as \/d%(x’) + d%(y’) + d%(z’) for the Euclidean dis-

tance, or as max(dz(x'), dz(y’), dz(z")) for L.

Remark: We can consider irrational planes: the cut-and-
project” method intersects a slice around a non rational (hy-
per)plane and a periodic tiling (Z¢ for instance), and projects it
on the (hyper)plane to obtain an aperiodic tiling [34, 35]. Our
method will likely generate an aperiodic fractal tiling.

3.6.3. Signed distance to a single Koch flake

In this section, we give another way to define the Koch flake.
The vertices defined previously are the centers of the Koch

flake. Without loss of generalization, we propose our method
for the Koch flake which is centered at the origin point.

Letd(x,y) = +/x% + y>—r < 0 be a signed distance function to a
disk with radius r = V3/6, which is the biggest disk inside the
Koch flake. Let (p, 6) be the polar coordinate of a point (x, y),
and (x',y") = M(x,y) is a transformation of a point in the plane,
which is
bis 36 1 e 36
M()C, J’) =3 (p Cos (gdZo(;)) - §9p sin (5d20(7)))
Then we give the expression of the signed distance to the Koch
flake as follow
o d(MF(x,
F(x,y) = min M (x,y)) 3(kx V)
Thus, outward rounded interval arithmetic can be used for the
Koch flake. In Fig. 13, a Koch flake is generated using this
method. We compute the function using (1), the recursive sub-
division procedure is also shown.

an

4. Discussion and conclusion

This section formalizes our definition of fractals. First we rely
on some lattice L; the simplest are 7% and 7Z3; we also use the

2D equilateral lattice Z(1,0) + Z(%, ‘/75) for von Koch. We then
define the distance function of point p to L, i.e. to the vertices
of L, called d(p,L). We then define a seed set S, which is a
periodic pattern, copied at each vertex of L. In the simplest
case, the pattern is a disk, so the characteristic function of § is
fs(p) = d(p, L) — r where r is the radius of the disk. Finally, we
use exactly one contractant similitude 7'; let o be its eigenvalue:
|| < 1. We define S = Uf?ZOTi(S). The limit of Sy when &k —
oo is the fractal, actually an infinite and periodic tiling of this
fractal pattern. Note that it is an IFS with only one contractant
transform. To define the characteristic function of S;, we use
the classical property:

d(p, TX(S)) = loI*d(T*(p), S)

(re-using the classical idea routinely used to raytrace CSG
scenes). Thus the characteristic function of Sy is

k . .
fs.(p) = rpzion lor[~'d(T ™" (p), S). (12)

Because the function d(p € R2,S) is bounded below and above,
the terms of (12) converge in a controllable way, so it is possible
to compute quickly and accurately the characteristic function of
the fractal. Finally, note that instead of T*, we can use T, =
f(k) o T* o g(k), which composes T* with some translation and
rotation f(k) and g(k) depending on k, like in (11).

In this paper, fractal functions have the form)}, K(g;"), where

the sum] can be replaced with min or max, and where the
seed or kernel function K is bounded, which ensures conver-
gence and computability (“enclosability”). In passing, note the
analogy with the noise/turbulence Perlin’s function proposed by
Ken Perlin in 1985 to generate procedural 3D textures [36]:

N-1

NOISE(x) = Z

i=0

Noise(b'x)
ai ’

where Noise(x) is the Perlin’s noise [36] or Mandelbrot’s F-
noise function [11], N is typically between 6 and 10, b is
some positive number greater than 1, most commonly it will
be powers of 2. The parameter a controls how rough the final
NOISE(x) function will be. Small values of a, e.g. 1, give very
rough functions, larger values give smoother functions.

We conclude with some remarks or arising issues. In function-
based modeling, expressions are often represented with DAG,
roughly trees with shareable nodes. A leave is a symbol x,
¥, Z, a number or an interval, and nodes are binary operators
(+,—, %, etc) or special functions (cos, sin, etc). To account
for fractal functions, it is convenient to introduce new kind of
nodes, i.e. dy node, or a d(MZ? + T,x € R?) node, where
MZ? + T is the image of the lattice Z¢ after some affine map
x = Mx + T, and some new DAG to store min}’zio K(i, x),

max;2; K(i, x), i, K(i, x), where the expression for K is also

represented with some DAG.

We found our first Rvachev functions by trials and errors. Is
it possible to find by algorithm the Rvachev functions (for in-
stance a signed distance function) for other classical fractals,
like the Julia set [19, 21, 37], or defined by an IFS [10] or
a Controlled IFS (remember that in CIFS, some patterns are
forbidden, like le if Ty is one of the IFS transform), or finite
automata? It is an open question, linked to Number Theory,
Lattice Theory, Automata Theory, Harmonic Analysis.

Is it possible to reconstruct a signed distance function from a
picture? The analogy with harmonic analysis, Fourier trans-
form, may give some insight. Note also the analogy of this
question with procedural 3D textures: the latter are synthetized
with Fourier analysis from 3D pictures e.g. by D. Ghazanfar-
pour and J-M. Dischler [38].

How to contain the wrapping effect (e.g. d,,(x) = x mod 1) for
these interval computations?

For fractal functions f which are not Lipschitz continuous, but
Holder continuous, it seems possible to generalize the centered
evaluation form of interval analysis with an Holder evaluation
form. Remember that a function is (k, &) Holder when |f(b) —
f(a)| < k(b — a)". Thus the issue of computing (k, /) values for
non differentiable functions defined by DAG arises.

This paper shows that non differentiable functions, and even
non continuous functions like the modulo 1 function, are com-
putable (enclosable) in polynomial time with interval arith-
metic. These functions are Rvachev functions of geometric ob-
jects with fractal geometry. This paper provides Rvachev func-
tions for some classical fractals, which were found by trials and
errors. These Rvachev functions permit to extend the classi-
cal RSS method to fractals. We wonder if it is algorithmically
possible to get these functions from a given IFS, or a finite au-
tomaton.

Acknowledgement

The authors would like to thank the anonymous reviewers for
reference [24], for their valuable comments and suggestions
that helped to improve the paper. The work is supported, in
part, by Zhejiang Provincial Natural Science Foundation of
China (LY 18F020023), National Science Foundation of China
(61272300).

References

[1] V. Shapiro, Real functions for representation of rigid solids, Computer
Aided Geometric Design 11 (2) (1994) 153-175.

[2] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, C. Galbraith, Implicit
Curves and Surfaces: Mathematics, Data Structures and Algorithms,
Springer, 2009.

[3] O.Fryazinov, A. Pasko, P. Comninos, Fast reliable interrogation of proce-
durally defined implicit surfaces using extended revised affine arithmetic,
Computers and Graphics 34 (6) (2010) 708-718.

[4] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, Function representation
in geometric modeling: concepts, implementation and applications, The
Visual Computer 11 (8) (1995) 429-446.

[5] D. Storti, C. Finley, M. Ganter, Interval extensions of signed distance
functions: iSDF-reps and reliable membership classification, Journal
of Computing and Information Science in Engineering 10 (2) (2010)
021012.

[6] Y. D. Fougerolle, A. Gribok, S. Foufou, F. Truchetet, Boolean oper-
ations with implicit and parametric representation of primitives using
r-functions, IEEE Transactions on Visualization & Computer Graphics
11 (5) (2005) 529-539.

[7]1 K. Weihrauch, Computability, Springer, Berlin, 1987.

[8] L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis
with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, 2001.

[9] C. Funfzig, D. Michelucci, S. Foufou, Polytope-based computation of
polynomial ranges, Computer Aided Geometric Design 29 (1) (2012) 18—
29.

[10] M. Barnsley, Fractals everywhere, Academic Press Professional, Inc., San
Diego, CA, USA, 1988.

[11] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freedman and
Co., New York, 1983.

[12] J.L.Ramirez, G. N. Rubiano, B. J. Zlobec, Generating fractal patterns by
using p-circle inversion, Fractals 23 (04) (2015) 1550047.

[13] A. H. Barr, Global and local deformations of solid primitives, ACM SIG-
GRAPH Computer Graphics 18 (3) (1984) 21-30.

[14] L. Evans, Partial differential equations, second edition, Wadsworth &
Brooks/cole Mathematics 19 (1) (2010) 211-223.

[15] V. Shapiro, Semi-analytic geometry with R-functions, Acta Numerica 16
(2007) 239-303.

[16] J.-P. Allouche, J. O. Shallit, Automatic Sequences - Theory, Applications,
Generalizations, Cambridge University Press, 2003.

[17] D. Hepting, P. Prusinkiewicz, D. Saupe, Rendering methods for iter-
ated function systems, Fractals in the Fundamental and Applied Sciences
(1991) 183-224.

[18] D. Michelucci, Reliable representations of strange attractors, in: Scien-
tific Computing, Validated Numerics, Interval Methods, Springer, 2001,
pp- 379-390.

[19] D. Michelucci, S. Foufou, Interval-based tracing of strange attractors,
International Journal of Computational Geometry Applications 16 (01)
(2006) 27-39.

[20] A. Paiva, L. H. de Figueiredo, J. Stolfi, Robust visualization of strange
attractors using affine arithmetic, Computers & Graphics 30 (6) (2006)
1020-1026.

[21] J. C. Hart, D. J. Sandin, L. H. Kauffman, Ray tracing deterministic 3-D
fractals, in: ACM SIGGRAPH Computer Graphics, Vol. 23, 1989, pp.
289-296.

[22] M. N. Gamito, S. C. Maddock, Ray casting implicit fractal surfaces with
reduced affine arithmetic, The Visual Computer 23 (3) (2007) 155-165.

[23]

[24]

(25]

[26]

(27]

(28]

(29]
(30]
(31]
[32]

[33]

(34]

(35]

[36]

(37]

[38]

O. Fryazinov, A. Pasko, Interactive ray shading of FRep objects, in:
WSCG’2008, Communications Papers proceedings, 2008, pp. 145-152.
K. V. Maksymenko-Sheyko, T. I. Sheyko, Mathematical modeling of ge-
ometric fractals using R-functions, Cybernetics and Systems Analysis
48 (4) (2012) 614-620.

J. Rice, Spatial bounding of self-affine iterated function system attractor
sets, in: Proceedings of the Conference on Graphics Interface *96, GI
’96, Canadian Information Processing Society, Toronto, Ont., Canada,
Canada, 1996, pp. 107-115.

V. Berthé, A. Siegel, Tiling associated with beta numeration and substitu-
tion, Integers: Electronic Journal of Combinatorial Number Theory 5 (3)
(2005) A02.

V. Berthé, M. Rigo, Combinatorics, automata and number theory, Vol.
135, Cambridge University Press, 2010.

R. Martin, H. Shou, I. Voiculescu, A. Bowyer, G. Wang, Comparison of
interval methods for plotting algebraic curves, Computer Aided Geomet-
ric Design 19 (7) (2002) 553 — 587.

A. Mishkinis, Extension of algorithmic geometry to fractal structures, Phd
thesis, Université de Bourgogne (Nov. 2013).

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms (3. ed.), MIT Press, 2009.

D. H. Bailey, R. E. Crandall, Random generators and normal numbers,
Experimental Mathematics 11 (4) (2002) 527-546.

T. D. Taylor, Using epsilon hulls to characterize and classify totally dis-
connected Sierpinski relatives, Fractals 23 (02) (2015) 481-216.

J.-P. Allouche, G. Skordev, Von Koch and Thue-Morse revisited, Fractals-
complex Geometry Patterns & Scaling in Nature & Society 15 (4) (2006)
405-409.

N. De Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the
plane. I, in: Indagationes Mathematicae (Proceedings), Vol. 84, Elsevier,
1981, pp. 39-52.

T. T. Le, Local rules for quasiperiodic tilings, NATO ASI Series C Mathe-
matical and Physical Sciences-Advanced Study Institute 489 (1997) 331—
366.

K. Perlin, An image synthesizer, in: ACM SIGGRAPH Computer Graph-
ics, Vol. 19, 1985, pp. 287-296.

J. C. Hart, L. H. Kauffman, D. J. Sandin, Interactive visualization of
quaternion julia sets, in: Proceedings of the st conference on Visual-
ization’90, IEEE Computer Society Press, 1990, pp. 209-218.

D. Ghazanfarpour, J. M. Dischler, Spectral analysis for automatic 3-D
texture generation, Computers & Graphics 19 (3) (1995) 413-422.

10

