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Résumé
Today all CADCAM geometric modellers provide tools for geometric modelling with constraints. His-
torically, geometric constraints in 3D were represented with equations, and basic problems and systems
were solved with some variant of Newton’s method, or with the Locus Intersection Method. This ar-
ticle proposes to replace equations with procedures. The modeller calls the solver, which can call every
procedures of the modeller. In turn, procedures can call the solver for sub-problems. This approach
makes possible things which were impossible, and it eases the specification of CADCAM constraints on
composite shapes with heterogenous formats. Computing precise values for derivatives is still possible.
Using tools for debugging and decomposing systems into sub-systems or for exploiting sparsity is still
possible. Using state-of-the-art numerical solvers and taking advantage of sparsity is still possible. This
article presents advantages, inconveniences, arising issues and implementation of this approach.

This article proposes to represent constraints with
procedures, instead of equations, each time it is pos-
sible. §1 introduces the topic. §2.1 presents existing
methods for solving geometric constraints. §2.2 pre-
sents existing methods for debugging, decomposing
and exploiting sparsity of systems of equations. §2.3
presents existing procedures callable by the solver. §3
presents pros, cons, arising issues of this approach.
§3.1 presents advantages, 3.2 presents inconveniences,
3.3 presents issues. §4 presents an implementation. §5
concludes.

1. Introduction

This section presents the big picture. Today, all geo-
metric modellers provide tools for geometric modelling
with constraints [HJA05]. §2.1 presents standard me-
thods for solving geometric constraints. §2.2 presents
standard methods for the qualitative study of geome-
tric constraints. Most of the time, basic (irreducible)
systems of 3D constraints are translated into systems
on non linear equations, which are solved with some
iterative numerical method, like a variant of Newton’s
method.

This article proposes to replace equations with pro-
cedures, provided by geometric modellers. We use the
word "procedure" to avoid the ambiguity of the word
"function", both used in Computer Science and in Ma-
thematics. Procedures (§2.3) input known values (e.g.,
vectors of numeric values), and return values : they
compute mathematical functions.

The first and strongest argument for replacing equa-
tions with procedures is that procedures are definiti-
vely much more convenient and powerful than equa-
tions. Geometric modellers on the market provide effi-
cient procedures for generating shapes, and for inter-
rogating shapes and sets of shapes (called assemblies,
or scenes). For instance, a typical interrogating proce-
dure computes in an efficient way the point of a given
shape S the closest (or the furthest) to a given point
p. This procedure may use GPU or clever accelerating
data structures : octrees, BSP trees, kd-trees. Suppose
now that S is unknown, because its generating para-
meters are unknown. Suppose also that a point X is
in S if S(X,Y ) = 0 for some system S. To find the
point X of S closest to p, we can solve the optimiza-
tion problem : min ||X − p||2, S(X,Y ) = 0, or we can
solve the related Lagrangian system and select the re-
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levant root. In practice, if a Newton-like solver is used,
it should start close enough from the expected root.
However, there is a better method. When a numerical
iterative solver is used, it provides (approximate) nu-
merical values for unknown variables (actually modi-
fiable) X and Y at each step. At initialization, X0, Y 0

are read on the sketch. Thus, after all, it is possible
to use procedures of the modeller even when S is unk-
nown (actually, known but modifiable). It would be
clumsy to not use these procedures.

A second argument for replacing equations with pro-
cedures is that equations are not available in some
cases. It is true for shapes like subdivision surfaces
and fractals, which have no equation but are results
of procedures. This is true when dealing with free-
form surfaces which are often obtained tediously from
fairly sophisticated modelling functions (e.g. sweep,
loft, blend). This is true when specifying constraints
on mechanical quantities such as the Von Mises stress
which results from a complex Finite Element simula-
tion. Another shape optimization example is the shape
of a turbine blade : it is the result of a complex optimi-
zation process which aims at finding the best compro-
mise between notably its aerodynamic and mechanical
performances.

Representing constraints with procedures instead of
equations has many advantages §3.1 and few inconve-
niences §3.2. §3.3 answers positively to the question :
is it still possible to use previous standard methods
for debugging, decomposing and solving with this re-
presentation of constraints ?

2. Standard methods for geometric
constraints

This section summarizes standard methods for sol-
ving geometric constraints and for the qualitative
study of constraints [HJA05]. Constraints are repre-
sented with equations.

2.1. Solving geometric constraints

In classical 2D Euclidean geometric problems sol-
vable with ruler and compass like the emblematic
Appolonius’s problem, and 3D problems in Mon-
ge’s descriptive geometry, geometric constraints are
incidences, tangencies, distances or angles involving
points, lines, circles or conics in 2D, and also planes,
spheres or quadrics in 3D (no composite objects !).
These problems are straightforwardly translated into
systems of polynomial equations [DH00].

Polynomial systems are well known. Many solving
methods are available.

Geometric solvers, or constructive solvers, decom-
pose the system of geometric constraints into basic

sub-problems, solve them, and assemble solutions. In
2D, the decomposition can be done using rules acti-
vated by the inference engine of some expert system
[RSV89, VSR92], or with some graph-based bottom-
up or top-down method [JTNM06], or with the witness
method [MF09]. There is often a formula for solving
basic sub-problems (e.g., triangles defined modulo iso-
metry (DMI) by three constraints, quadrilaterals DMI
by five constraints, hexagons DMI by six constraints).
In 3D, basic sub-problems are much more numerous
and difficult, thus other solving methods are needed.

Many basic spatial problems are solvable with
the Locus Intersection Method (LIM) : the prin-
ciple is to remove one constraint, so the solu-
tion set becomes a curve, which is followed or
sampled until the removed constraint is satis-
fied [GHY04, FS08, IMS11, ISM14, IMS15]. Geome-
tric solvers, or constructive solvers, and LIM need not
only equations, but geometric constraints.

Computer Algebra [Kon92] solves exactly polyno-
mial systems, with Groebner bases, or Wu-Ritt’s me-
thod, etc. The cost of Computer Algebra is at least
exponential, so only small non linear systems are trac-
table. Computer Algebra is used in pedagogical Dyna-
mical Geometry softwares. It is rarely used in CAD-
CAM [Kon92]. Computer Algebra relies on symbolic
expressions of polynomial equations. Computer Alge-
bra can simplify or solve non polynomial equations
(i.e., using transcendental functions) but not in a gua-
ranteed way.

Interval analysis [Jau01] can isolate each regular
root in a given initial box. It is used in Robotics to
prove that some mechanisms are correct : they can
not get stuck or broken. Interval analysis needs equa-
tions to contain the wrapping effect.

Homotopic methods [SWI05, DH00] find all real or
complex roots of polynomial systems, and its cost per
root is polynomial time. Polynomial equations are nee-
ded. Homotopy is popular in Robotics [SWI05]. Ho-
motopy can also be used as a variant of the damped
Newton method, which belongs to the next class of
numerical iterative methods ; in this case, equations
can be replaced with procedures.

Many numerical iterative methods are frequently
used to solve systems of non linear equations
(possibly non polynomial) : Newton or Newton-
Raphson, damped Newton or homotopy, and op-
timizers : Levenberg-Marquardt (LM) [GCG99a],
Broyden-Fletcher-Goldfarb-Shanno’s method (BFGS)
or limited memory BFGS (lm-BFGS), Hooke-Jeeves
(HJ), Nelder-Mead’s simplex (NMS) or Torczon’s sim-
plex (TS) method. For solving F (X) = 0, opti-
mizers typically minimize the norm of the residu
||F (X)||22. An interest of generalized Newton solvers
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(using Least-Square solving)) and of optimizers is that
they can solve over-constrained problems. The lat-
ter occurs, for example, for computing the intersec-
tion point of three circles or three 2D curves. Over-
constrainedness is not always a mistake : it can be
used to avoid spurious roots. Generalized Newton sol-
vers and optimizers can also solve under-constrained
problems.

Numerical iterative methods need a starting point
X0, called the sketch in CADCAM. The sketch is ei-
ther provided by users (engineers or designers) with
some interactive graphical interface, or it is given by a
previous release of a product, or it is the result of some
algorithm. In CADCAM, at each step of a numerical
iterative method, it is possible to visualize the current
state of the figure. It usually makes sense for users,
who can check that the solver does not go a wrong way,
and who can drive the solver. Moreover, many inter-
active tools enable users to detect and fix errors, like
conflicts between constraints. Such debugging tools of
qualitative study of constraints are essential.

Strictly geometric constraints are not sufficient for
CADCAM. Thus, in late nineties, Hoffmann et al
[HJA97], and Joan-Arinyo [JASR99] proposed an hy-
brid solving method. The idea is to combine a 2D geo-
metric solver and an equational solver. The geometric
solver uses the already mentionned constructive ap-
proach. It is unsufficient in 3D, but it can be replaced
with LIM. Thus, at least in principle, this apprach ex-
tends in 3D. This hybrid approach still relies on equa-
tions.

BFGS and lm-BFGS solve unconstrained optimiza-
tion problems. Byrd et al [BLNZ94] propose a variant
for solving constrained optimization problems like :
minG(X) with L ≤ F (X) ≥ U .

2.2. Existing tools for qualitative study

It is essential to provide users tools for debugging
constraints, detecting errors and fixing them, for de-
composing systems into sub-systems, and for exploi-
ting sparsity to speed-up the solving process. This is
the qualitative study of constraints. We mention three
kinds of tools.

Methods in the first kind call the solver. We call
them protocols. Many protocols have been sugges-
ted to detect contradicting, or conflicting subsystems.
Remember that an over-constrained system can be
contradicting or redundant. Here is an example of such
a protocol : start from a figure close to the expected
solution, and account for (i.e., solve) constraints incre-
mentally. Let Ek be the first non satisfied constraint.
Then C = {E1, . . . Ek} is contradicting. Then remove
from C every constraint Ei such that C−Ei is still non

satisfiable. This protocol gives the smallest contradic-
ting subsystem and can be used when equations are
not available. This protocol uses combinatorial pro-
perties of dependent / independent sets of constraints,
which are formalized by Matroid Theory.

The two other kinds of tools do not call the solver.

The second kind is a set of combinatorial (or
structural) methods [Owe91, Ser91, Hen92, JTNM06]
which consider various graphs. For simplicity, this ar-
ticle considers only the sparsity graph [Ser91, Hen92].
It is a bipartite graph linking equations (now pro-
cedural constraints) and unknowns (now modifiable
variables). Combinatorial methods rely on Matching
Theory [LP09]. They compute maximum matching in
the sparsity graph. They detect structurally under-
, over- and well-constrained parts, and structurally
under-, over- and well-constrained parts modulo iso-
metries. In both cases, they decompose into structu-
rally irreducible parts. They still can be used when
constraints are represented with procedures rather
than equations. Consider a procedure computing a
function P : X ∈ Rn → Y = P (X) ∈ Rm. Y = P (X)
is structurally or combinatorially equivalent to m
equations : ei : Yi − Pi(X) = 0, i = 1, . . .m. As usual,
there is a vertex for each ei, for each Yi, i = 1, . . .m,
and for each Xk, k = 1, . . . n. One edge links ei to Yi,
and n edges link ei to X1, . . . Xn. Then structural me-
thods apply. They will detect, for example, the struc-
tural over-constrainedness of the intersection of three
2D parametric curves (of four parametric surfaces in
3D). But combinatorial methods are limited : they de-
tect only structural conflicts. Moreover a combinato-
rial characterization of rigidity (well-constrainedness
modulo isometries) is still unknown for general geo-
metric constraints and its existence is questionable.
The combinatorial characterization of rigidity is the
topic of Rigidity Theory. The latter considers only ge-
neric point-point distances, which is unsufficient for
CADCAM. The next kind of methods overcome these
limitations.

The third and last kind of tools is the
witness method [MF09] and its variants
[TSM+11, MMS14, HKP17]. The principle of these
methods is as follows : suppose we want to solve
F (U,X) = U − UT = 0, where U are names of
parameters (non modifiable variables), UT is the
value of U (T for target), X are names of unknown
(modifiable) variables. A witness is a couple UW , XW

such that UW and XW are vectors of numerical
values and such that F (UW , XW ) = 0. Moreover it is
assumed that the witness is typical of (or even very
close [HKP17] to) the target, so that the witness and
the target share the same combinatorial properties.
More precisely, the ranks of each minor in the known
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witness Jacobian F ′(UW , XW ) and in the unknown
target Jacobian F ′(UT , XT ) (F ′(UT , XT ) is unknown
because exact values of XT are unknown) are equal.
Under mild assumptions of typicality and exactness
(consider that for the sake of simplicity, there is no
inaccuracy), the witness method detects all depen-
dences between constraints : it is more powerful than
structural methods. In practice, users are in charge
of deciding the typicality : for instance, a flat triangle
(or a flat polyhedron) is not typical of a triangle
(of a polyhedron), and this assumption is not an
issue. The simplifying exactness assumption is not
practicable and is more problematic, but Hao Hu et
al [HKP17] recently proposed tools to account for the
unavoidable numerical inaccuracy, when using the
witness method for modelling free-form curves and
surfaces.

All these tools can still be used when constraints are
represented with procedures rather than equations.
§4.5 explains how the witness method can be used.

2.3. Procedures callable by the solver

In all procedures, variables, also called arguments or
parameters, are names of known values. In equations,
variables are names of unknowns, which have no value.

The simplest procedures compute simple functions
like min(a, b), max(a, b), |a|. Actually, there is no poly-
nomial system for characterizing x = min(a, b) for real
parameters a and b. In other words there is no polyno-
mial system such that its only root is x = min(a, b). In-
deed, there are always spurious roots. The same holds
for x = max(a, b), for x = |a|, for x = sgn(a) where
sgn is the sign of a : sgn(0) := 0 and sgn(a) := |a|/a.
Remark that all these functions are equivalent : any
one is sufficient to define the others.

A geometrical 1D example where these functions are
needed is the signed distance of a ∈ R to the segment
[−1, 1], which is |a| − 1. Another example is when the
smallest (or the greatest) root is needed, for solving
optimization problem which can not be solved by pro-
cedures.

Other simple and convenient procedures compute
transcendental functions exp, log, cos, sin, tan, arctan,
etc. They are needed for helixes or spirals.

The geometric modeller provides many sophistica-
ted procedures, for computing about meshes, surfaces,
NURBS, BRep, CSG, etc, for reverse engineering, for
performing physical simulations, for generating NC
commands, etc.

It is convenient to distinguish generating procedures
and interrogating procedures. Generating procedures
return shapes : data structures for meshes, NURBS,

CSG trees, assemblies, scenes, etc. The degree, the
size, the complexity of a shape (for example, the num-
ber of vertices, edges, triangles of a mesh, and the to-
pology of the mesh) may vary with values of parame-
ters of the generating procedure. Thus the complexity
of a shape may change during solving. Equations do
not have such flexibility.

Interrogating procedures compute shape properties,
like the smallest or the greatest distance between two
given shapes.

3. Pros, cons, issues

3.1. Advantages

It was impossible to constrain sudivision surfaces or
fractals with equation, because they have no equation,
so specific methods were needed for them ; represen-
ting constraints with procedures make that possible,
assuming that the procedures of the modeller apply to
sudivision surfaces and fractals.

It becomes easy to manage and constrain hetero-
geneous geometries, like surface subdivision, meshes,
trimmed NURBS patches, analytical shapes (quadrics,
torii), as shown by the DECO project [GFM+16a],
e.g., to impose some G-continuity constraints along
contiguous surfaces of different kinds like NURBS and
subdivision surfaces.

Using procedures also avoids to uselessly solve op-
timization problems : for instance, computing a shor-
test or a greatest distance is made by a procedure of
a modeller. Thus it also avoids nested optimizations
problems, which are hard to manage.

Another advantage is that it becomes possible to
specify constraints on composite figures because mo-
dellers’s procedures do manage composite figures. A
composite figure is composed of several parts, with
different topological dimensions : points, segments or
pieces of curves, surfaces patches, volumes pieces. A
segment is the simplest composite object. A mesh or
a BRep are composite objects. In passing, classical
geometric problems (like Appolonius’ problem) never
consider composite objects, because there is no more
geometric constructions with ruler and compass. In
CADCAM, composite objects are essential : CAD-
CAM shapes, assemblies and scenes are always com-
posite objects.

We explain now why it is impossible, or difficult,
to specify constraints on composite figures with equa-
tions. If it is straightforward to pose a system of equa-
tions equivalent to : A(X) = 0 and B(X) = 0 (it is
just A(X) = B(X) = 0), it is more problematic to
pose a system of equations equivalent to : A(X) = 0
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Figure 1: Generalization of the Appolonius problem
to three arbitrary objects. The figure shows the first
three iterations of BFGS. They suffice to visually
converge to a solution.

or B(X) = 0, which is needed for computing the dis-
tance of a given point to a composite figure, or equi-
valently, for computing which point of which part of
the composite figure is the closest to the given point.
One may think to ||A(X)|| × ||B(X)|| = 0, but the
risk is high for the iterative solver to be trapped by a
spurious root (a local maximum) or a local minimum.
In comparison, a procedure finds the exact result, and
is faster.

Resorting to procedures avoids inconveniences of
systems of non-linear equations : there is an expo-
nential number of roots but only real roots close to
the sketch are relevant. There is no polynomial sys-
tem characterizing x = min(a, b) where a and b are
real parameters. Idem for x = max(a, b), for x = |a|,
because there are always spurious roots. Worse, for
some geometric problems, there are continuums of de-
generate, spurious roots (e.g., flat solutions instead of
3D solutions), and deflation methods are needed.

The implementation of the proposed approach does
not require the development of a new type of model-
lers, contrarily to the DECO project [GFM+16b].

Another advantage is that the solver can use a large
set of very sophisticated and efficient geometric proce-
dures available in the modeler or in the PDP software.
Few examples of such procedures are the computa-
tions of distances, furthest distances, interpenetration
depths, bounding boxes, volumes, intersections, Boo-
lean operations between solids, blending, filleting, me-
shing, reconstructing, etc. In the classical approach,
constrained distance can only be distances between
simple elements (points, lines or planes), whereas with
procedural constraints, it can be distances between
complex shapes like assemblies. Figure 1 shows the ge-
neralization to three arbitrary objects of Appolonius
problem which consists in finding the circle tangent
to three given circles. Procedural constraints permit
to generalize to three arbitrary objects, solving with
BFGS : dA(x, y)−R = dB(x, y)−R = dC(x, y)−R = 0.
The procedure dA(x, y) computes the distance from
point (x, y) to the object A, whereas x, y and R are

the unknowns. It is possible to generalize using grea-
test distances DA, DB , DC and solving : (dA(x, y) −
R)(DA(x, y) − R) = (dB(x, y) − R)(DB(x, y) − R) =
(dC(x, y)−R)(DC(x, y)−R) = 0.

Integrating a procedural constraints solver into an
existing parametric modeller, such as FreeCAD [Frea]
and FreeSHIP [Freb] for CAD, or Blender [Ble] for
computer graphics, brings several low-cost advantages
such as : (i) improving the functionalities of the mo-
deller, (ii) opening more possibilities for the modeller
in terms of constraint formulation and solving, (iii)
simplifying the solver as well as the modeller in terms
of functionalities and usage.

Next section considers inconveniences of resorting
to procedures.

3.2. Inconveniences

This section discusses inconveniences of represen-
ting constraints with procedures, instead of equations.

A true inconvenience is that Computer Algebra can
no more be used. For example Buchberger’s method
considers equations as rewriting rules : x2 − 2 = 0 is
converted into the rule : x2 → 2. It is no more possible
when equations are not available (assuming they are
polynomial).

Similarly, interval analysis [Jau01] can no more be
used. Interval arithmetic can still be used. However, it
is hard to contain the wrapping effect when equations
are not available. Interval arithmetic can be used only
for initially sharp intervals, e.g., for computing tole-
rances.

To prevent a possible misunderstanding, remark
that procedures of the modeller can still use and
call subdivision solvers [EK01, FM12], typically for
solving geometric sub-problems involving free-form
curves, surfaces and volumes. Basically, procedures
only need to know numerical values of coordinates
of control points, in order to call subdivision solvers.
Subdivision solvers rely on well-known geometric pro-
perties of Bernstein bases and of splines bases, like
the convex hull property and the variation dimini-
shing property. For the same reasons, procedures can
also use interval analysis for solving geometric sub-
problems.

Another inconvenience is due to non analytic func-
tions (splines, NURBS, min,max, |.|, functions using
if-then-else instructions). These functions are non po-
lynomial. They are essential in CADCAM : it is not an
option to not account for non analytic functions. Pro-
cedure compute them in a straightforward way, contra-
rily to equations. But using non analytic functions has
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two consequences. Only the second is indeed an incon-
venience.

First consequence, deciding dependences of non
analytic functions on variables (does Fl(X) depends
on Xc ?) is non decidable. It is decidable in a probabi-
listic way for analytical functions, but slow. Thus the
best solution is that the modeller informs the solver
of the dependences, in other words which entries in
the Jacobian are not structurally zero. Call this in-
formation the sparsity data or the sparsity graph. It
is equivalent to the classical bipartite graph linking
equations (now procedures) and unknowns (now mo-
difiable variables). This graph is used to detect the
structurally over-, under- and well-constrained part,
and the irreducible well-constrained subsystems in the
well-constrained part. Methods in sparse linear alge-
bra also rely on this graph [Kho12]. Today, the inter-
face of some non linear solvers or optimizers does not
account for the sparsity data. Assuming that the spar-
sity data is available, it is still possible (4.5)to exploit
the sparsity of systems of constraints in CADCAM,
i.e., the fact that the results of procedures do not de-
pend on all unknown (actually modifiable) variables.

Second consequence, homotopy solvers which find
all roots of polynomial systems are no more usable,
for two reasons : first, equations are no more available,
and second, even if they were (with DAG), functions
computed by procedures are non analytical, thus non
polynomial, so homotopy theory no more applies. For
example, the fundamental theorem of algebra (a de-
gree d polynomial has d complex roots, i.e., C is an
algebraically closed field) does not apply to piecewise
polynomials.

3.3. Issue : using pre-existing methods ?

The main issue is : is it possible to use standard,
classical methods when equations are replaced with
procedures ? §3.3.1 considers the computation of deri-
vatives. §3.3.2 considers this issue for the qualitative
study. §4 presents an implementation, which shows
that solving with procedures is as fast as solving equa-
tions.

3.3.1. The derivatives computation issue

An apparent inconvenience of prefering procedures
to equations seems that, since the expression of the
left hand side (LHS) of equations is no more available,
it is impossible to compute the symbolic expression
of derivatives (i.e., if f(x) = x2, then f ′(x) = 2x).
It is still possible to numerically compute finite diffe-
rences, but it may be too inaccurate, especially for the
witness methods (which computes ranks of Jacobian
minors). It is still possible to use symbolic differen-
tiation, but the latter has limitations, for if-then-else

instructions, for loops, for recursion, for min,max, |.|,
etc, and is not easy to use. A significant result is that
automatic differentiation, with the arithmetic of dual
numbers [MF09, Fis17], computes precise (with the
accuracy of floating-point arithmetic) values of deri-
vatives at a given point (f ′(3) = 6 if f(x) = x2). For
instance, if a shape depends on, say, a small number
n = 6 of parameters U = (u1, . . . un), a FEM simu-
lation using the dual numbers arithmetic and com-
puting a performance p(u1, u2, . . . un) will automa-
tically compute in the same time (assuming n is a
small constant) p(U) and all derivatives, i.e., the gra-
dient ∇p = (∂p/∂ui(U)), making possible to search
the optimal value U∗ which maximizes the perfor-
mance. Even if the procedure computing the perfor-
mance p(U) generates for some physical FEM simu-
lation some temporary and huge mesh with N � n
3D vertices, e.g., N = 105, or any other huge data
structure, only n dual numbers or infinitesimals are
needed, and not n+ 3N .

Thus, after all, it is still possible to compute precise
values (but not symbolic expressions) of derivatives
and gradient vectors when constraints are represented
with procedures.

3.3.2. The qualitative study issue

An issue is : is it still possible to use existing tools
for the qualitative study of systems of constraints ?
The answer is positive : §4.4 explains how to build the
sparsity graph. §4.5 explains how to use the witness
method.

4. Implementation

4.1. The new architecture

The modeller calls the solver. The solver can call
every procedures, either common and simple (but ana-
voidable) procedures like min,max, |.|, cos, arctan, etc,
and also all more sophisticated procedures provided by
the modeller (or by modellers) : procedures for crea-
ting and for interrogating shapes, or non geometric
objects. Symetrically, procedures of the modeller can
call the solver for sub-problems.

Of course, procedures should be correct and
consistent. For instance, arguments of a generating
procedure should be independent.

A technical issue is the need for some book-keeping.
Procedures often return points or vectors in Rn. For
instance the procedure computing a point on a Bézier
curve B(P, d, t) (P is the vector of control points, d
the degree, t the parameter) returns the 3D point, and
its Frénet frame. It is convenient to define procedures
to access each of the fields, each of the coordinates
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(getX, getY, getZ [GFM+16a]). But it is clumsy to
call several times the procedure B for the same va-
lues of its arguments. Some book-keeping takes care
of that [GFM+16a]. Either some memorization (cal-
led memoization in functional programming) is used,
or the solver calls some handle function to enable the
modeller to update the geometric model, before the
solver evaluates procedural constraints with calls to
interrogating procedures of the modeller.

A technical issue [GFM+16a] is that some argu-
ments of procedures have bounds, for example t ∈
[0, 1] for a Bézier curve C(t). Many solutions are pos-
sible when t is outside its range. The procedure which
computes the point C(t) can compute it when t is
outside [0, 1] : indeed it does exist and is well defined.
The procedure can also clamp the value of t inside
[0, 1] (but without modifying the variable t of the sol-
ver). Another solution is that it is the solver which
accounts for bounds on variables. Thus the modeller
must provide these bounds to the solver. Either the
solver clamps t only, or it clamps all the vector ∆X so
that the variable t stays inside [0, 1]. In combination
to all these methods, it is possible to also use the pro-
cedural constraint : (t − 1/2)2 + t2s − 1/4 = 0 where
ts is a new, slack variable of t. We did not try penal-
ties. Byrd et al [BLNZ94] proposed a more sophistica-
ted method to handle bounds constraints, actually to
solve constrained optimization with lm-BFGS.

4.2. Interface modeller-solver interface

The interface, or the communication protocol, bet-
ween the modeller and the solver must permit to bene-
fit from the sparsity of procedural constraints. There
are mainly two kinds of interfaces. The first interface
is used in the DECO project [GFM+16a] : the mo-
deller and the solver use black DAG (Directed Acy-
clic Graphs). This first interface permits to exploit
the sparsity of procedural constraints. However, many
libraries such as GNU GSL or Scipy, which provide
solvers or minimizers, use the second kind of inter-
face, as follows. To solve a system F (U,X) = 0 with
U = UT , the solver typically receives three arrays
F,U,X : F is an array of pointers on procedures com-
puting F (U,X) (equations are : F (U,X) = 0), U is
the array of floating-point values for parameters, X is
the array of initial values for the unknowns X. The
solver can modify X, but not U . Sometimes the sol-
ver accepts an array (of pointers on procedures) F ′ for
computing the gradient vectors ∇Fi. It can also use fi-
nite differences to approximate derivatives. The solver
also receives technical information such as array sizes,
threshold values for termination tests, a maximum
number of iterations, etc. The same kind of interface
applies for constrained or unconstrained minimization

problems. Finally, the solver receives some handle me-
thods, e.g., for drawing pictures of the current figure in
our context ; it can permit users to monitor and drive
the resolution process. Clearly, this second interface is
not sufficient for exploiting sparsity. Another array D
is needed for specifying dependences, i.e., the sparsity
graph : D[c] is the list of all (index of) variables Xk

on which the constraint Fc depends. D can be seen
as a sparse matrice, and its transpose T can be used
instead : T [k] is the list of (index of) constraints de-
pending on Xk. These two arrays are clearly equiva-
lent. They are sufficient to exploit sparsity. They are
already used for that purpose in the interface of many
Sparse Linear Algebra libraries [Saa03], for instance
to compute fill-reducing ordering of unknowns. These
arrays represent the sparsity graph, i.e., the bipartite
graph equations-unknowns used in matching theory
(Dulmage-Mendelsohn decomposition).

4.3. Mathematical conditions

As usual, functions computed by procedures must
be smooth (like a distance function) or smooth almost
everywhere (like the closest point function, i.e., the or-
thogonal projection of a given point on a given shape).

This mathematical condition can sometimes be re-
laxed. For instance Gouaty et al [GFM+16a] computes
constrained gearwheels : the number of teeth must be
an integer. Similarly for the number of steps of a stair-
case. Actually, gearwheels, staircases, steel structures,
wooden carpentry, etc are algorithmic shapes : their
generating algorithms are standardized in technical
documents and can be straightforwardly implemented
in procedures.

As usual, the sketch should be close enough to the
expected root.

The modeller must provide the sparsity data to the
solver, for exploiting sparsity of the system, and for
the qualitative study of the system.

It is possible to still use the witness method (4.5).
As usual, the modeller must provide the solver some
metadata : maximal number of iterations, tolerances
for termination test or computations of ranks, a call-
back procedure which displays the current state of the
figure, which algorithm to use for solving, etc.

4.4. Building the sparsity graph

We explain here how the sparsity graph, equivalent
to the standard bipartite graph equation-unknown,
can be constructed. Consider a procedure computing
a function P : X ∈ Rn → Y = P (X) ∈ Rm. Combina-
torially, it is equivalent to m equations : Yi−Pi(X) =
0, i = 1, . . .m.
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4.5. Interface for using the witness method

For the witness method to apply, the modeller (or
any procedure calling the solver) must provide a wit-
ness : either a previous release of the product, or a
computed witness [KMF14]. It is the users who decide
if the witness is typical of the expected solution. Also,
for enabling the witness method to detect rigid sub-
systems, variables must be tagged so that the witness
method can compute a priori a base for infinitesimal
(again, dual numbers appear [Fis17]) rigid body mo-
tions ([Fis17] for dual numbers, [MF09] for the witness
method). Tags give the kind of coordinates of the tag-
ged variable when it is a coordinate ; remember that
values of coordinates depend on the used Cartesian
frame. A tag, i.e., a coordinate can be :

- the x, the y or the z of a point. The x, y, z of the
same point must be linked together in some way, e.g.,
the variable X3 is the x of the point (X3, X4, X5).

- the x, the y or the z of a vector. Indeed, vectors
and points are different because they do not behave
the same under translations. The x, y, z of the same
vector must be linked in some way.

- the a or b or c of a normal vector. Vectors and
normal vectors are different : a vector is the difference
between two points. A normal vector is associated to a
linear form : (x, y, z)t → (a, b, c)(x, y, z)t. Actually, the
a, b, c is the vectorial part of the equation of a plane
(see below). The a, b, c of the same normal vector must
be linked in some way.

- the a or b or c or d of the equation of a plane :
ax + by + cz + d = 0. The a, b, c, d of the same plane
must be linked together.

- a geometric variable which is independent on the
Cartesian frame : radius or length, area, volume, scalar
product.

- finally a variable can be a non geometric variable,
thus independent on the Cartesian frame : energy,
force, cost, etc.

The last two tags can be merged. Tags permit the
witness method to decompose systems into rigid (i.e.,
well-constrained modulo isometry) sub-systems. It is
also possible to tag variables to account for similitudes
but this decomposition is more rare [SS06, SM06].

4.6. Dual numbers

Derivatives are key components in many geometric
computations. This section introduces dual numbers
and shows how they can be used to compute deriva-
tives exactly, with the accuracy of floating-point arith-
metic, even when equations are not available. This ac-
curacy is needed by the witness method.

Dual numbers are best understood with an analogy
with complex numbers (C). For a computer scientist,
writing a C++ library for an arithmetic for dual num-
bers and for complex numbers is almost the same.
A complex number z is a pair of two real numbers
(x ∈ R, y ∈ R). The pair (0, 1) is called i. The part
x of z is its real part, and y its imaginary part.
The addition of two complex numbers z = (x, y) and
z′ = (x′, y′) is defined by

(x, y) + (x′, y′) = (x+ x′, y + y′)

Thus it is consistent to write the pair z = (x, y) as
(x, 0)+(0, y) = x(1, 0)+y(0, 1) = x1+yi. The product
of z and z′ is defined by

(x, y)× (x′, y′) = (xx′ − yy′, xy′ + yx′)

thus i2 = (0, 1) × (0, 1) = (−1, 0) = −1. Actually,
reducing i2 to −1 gives another path to the product
rule :

(x+ yi)× (x′ + y′i) = xx′ + yy′i2 + (xy′ + yx′)i

= (xx′ − yy′) + (xy′ + yx′)i

There is a remarkable isomorphism φC between z ∈ C
and the 2× 2 real matrice

φC(z) =

(
x −y
y x

)
Indeed, φC(z + z′) = φC(z) + φC(z

′) and φC(z × z′) =
φC(z)× φC(z′).

A dual number ressembles a complex number. It is
a pair of two real numbers (x ∈ R, y ∈ R). The pair
(0, 1) is called ε and can be thought as an infinitesimal
number. x is the standart part of the pair (x, y), and
y its infinitesimal or non standard part. The addition
of two dual numbers (x, y) and (x′, y′) is defined by

(x, y) + (x′, y′) = (x+ x′, y + y′)

Thus it is consistent to write the pair z = (x, y) as
(x, 0)+(0, y) = x(1, 0)+y(0, 1) = x1+yε. The product
of z = x+ yε and z′ = x′ + y′ε is defined by

(x, y)× (x′, y′) = (xx′, xy′ + yx′)

thus ε2 = (0, 1)× (0, 1) = (0, 0). Actually, reducing ε2

to 0 gives another path to the product rule :

(x+ yε)× (x′ + y′ε) = xx′ + (xy′ + yx′)ε+ yy′ε2

= xx′ + (xy′ + yx′)ε

This time, the isomorphism φ between the dual num-
ber z = x+ yε and the 2× 2 real matrice φ(x+ yε) is
defined by :

φ(z) =

(
x 0
y x

)
Indeed, φ(z + z′) = φ(z) + φ(z′), φ(z × z′) = φ(z) ×
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φ(z′), thus φ(1/z) = φ(z)−1 and φ(zk) = φ(z)k. Let
us detail the product :

(a+ b ε) × (a′ + b′ ε) = aa′ + (ab′ + ba′) ε
↓ ↓ ↓ ↓(

a 0
b a

)
×

(
a′ 0
b′ a′

)
=

(
aa′ 0
ba′ + ab′ aa′

)
From this isomorphism, we deduce that :

1

a+ b ε
=

1

a
− b

a2
ε when a 6= 0

thus bε has no inverse (the associated matrix is not
invertible). This rule is a special case of :

(a+ bε)k = ak + kak−1b ε

If P is a polynomial, then P (xv + ε) where xv is a
floating-point number, gives P (xv) and the derivative
P ′(xv) :

P (xv + ε) = a(xv + ε)3 + b(xv + ε)2 + c(xv + ε) + d
= a(x3v + 3x2v ε) + b(x2v + 2xv ε) + c(xv + ε) + d
= (ax3v + bx2v + cxv + d) + (3ax2v + 2bxv + c) ε
= P (xv) + P ′(xv) ε

It extends to multivariate polynomials : either we
have only one ε and two evaluations are needed :

Q(xv + ε, yv) = Q(xv, yv) +Q′x(xv, yv)ε
Q(xv, yv + ε) = Q(xv, yv) +Q′y(xv, yv)ε

or each variable is attached its own ε and one evalua-
tion suffices :

Q(xv + εx, yv + εy) = Q(xv, yv) +Q′x(xv, yv)εx +

Q′y(xv, yv)εy

Actually, this feature (computing (P (x), P ′(x)) to-
gether) extends to non polynomial functions. The
arithmetic of dual numbers is used to compute f(t)
and its derivative f ′(t) in the same time : here f is
a continuous and derivable function (at least at va-
lue t), and f ′(t) is the value of the derivative of f at
t ∈ R. The idea is to represent the pair (f(t), f ′(t))
with a dual number number f(t) + f ′(t)ε. It is pos-
sible because the arithmetic of dual numbers mimics
the rules for derivatives of sums and products (cau-
tion : the primes in f ′, g′ denote the derivatives) :

(f, f ′) + (g, g′) = (f + g, f ′ + g′)

and

(f, f ′)× (g, g′) = (f × g, f × g′ + f ′ × g)

In a library for complex numbers, we have to de-
fine exp, cos, etc for complex numbers. Idem for dual
numbers. This definition is straightforward : for any

f , f(a+ bε) equals by definition f(a) + bεf ′(a), thus :

exp(a+ bε) = ea + bea ε

cos(a+ bε) = cos(a)− b sin(a) ε

sin(a+ bε) = sin(a) + b cos(a) ε

tan(a+ bε) = tan(a) + b(1 + tan2(a)) ε

The definition of the discontinuous function sgn(a +
bε) is easy :

sign(a+ bε) = sign(a) + (1− sign(a)2)sign(b)

where sgn(v ∈ R) is -1 if v < 0, 1 if v > 0 and 0
if v is zero. Then the definition of the absolute value
follows :

|a+ bε| = sign(a+ bε)× (a+ bε)

The definitions of the min and max of two dual num-
bers could be formulated in a similar way. In passing,
symbolic differentiation (at compile time) can not deal
so nicely with functions |.|,min,max and if-then-else
constructs.

Dual numbers permit to compute the derivative of
D(X) = det(M(X)), for square matrices M(X), even
if entries of M are piecewise polynomials, or algo-
rithms : just replace floating point numbers with dual
numbers and then use any standard numerical method
(Gauss pivot, LUP). There are also formulas.

Lemma : det(I + εM) = 1 + Trace(M) ε, where
M is standard :

det(I + εM) = (1 +M11ε)(1 +M22ε) . . . (1 +Mnnε) +R

= 1 + Trace(M) ε+R

where R represents other perfect matching in I + εM .
But other perfect matching use at least two off-
diagonal entries in I + εM , thus are multiples of ε2,
thus are zero.

When A is invertible, det(M(x+ ε)) = det(A+ εB)
is :

det(A+ εB) = det(A(I + εA−1B))
= det(A) det(I + εA−1B)
= det(A)(1 + Trace(A−1B) ε)

When A is not invertible, we use its SVD : A =
UΣV t (with Σ diagonal and U, V unitary) :

det(A+ εB) = det(UΣV t + εB)
= det(U(ΣV t + εU tB))
= det(U(Σ + εU tBV )V t)
= det(Σ + εU tBV )

equals the product of diagonal entries of Σ + εU tBV .
It is 0 when there are at least two null singular values
in Σ. Otherwise it is

(σ1+k1ε) . . . (σn−1+kn−1ε)(0+knε) = 0+σ1 . . . σn−1kn ε
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The main mathematical difference between complex
numbers and dual numbers is that complex numbers
form a (commutative) field, while dual numbers only
form a commutative ring : they are not a field because
there are non zero divisors of zero (ε and all bε for
b ∈ R).

We conclude this section by showing the relevance
of dual numbers for geometric computations. An alge-
braic construction φ starting from R gives the quater-
nions, which represents 3D rotations. If φ is applied to
R + εR, it gives biquaternions, aka dual quaternions,
which represents both 3D rotations and translations.

4.7. Solving without equations

This section shows the feasibility and the scalability
of solving without equations.

The solver must solve without equations the under-
lying systems E(X) = 0, starting from an initial guess
close enough to the expected root. This proximity was
already needed with classical geometric constraints,
i.e., when equations are available. In practice, users
provide this initial guess with a sketch.

We implemented and tested several solving me-
thods to be used in the proposed approach : New-
ton, Levenberg-Marquardt [GCG99b], lm-BFGS (Li-
mited memory Broyden-Fletcher-Goldfarb-Shanno)
[BGLS06], Hooke-Jeeves, stochastic descent and the
Jaya heuristic [Rao16]. Some methods need gradients.
They are computed with centered finite difference (not
with dual numbers). Methods have been tested on this
geometric problem : let ABC be a given triangle ; let
r be an integer ; place r rows of circles in ABC, with
one circle in the first row, k circles in row k, so that
circles are outwards tangent to their neighbors or to
the sides of ABC. See Figures 2 and 3. For r rows,
there are r(r + 1)/2 circles and 3 times more unk-
nowns : n = 3r(r + 1)/2 as each circle k has unk-
nown center coordinates (xk, yk) and unknown radius
rk. This is a well-constrained problem as the num-
ber of constraints is equal to the number of unknowns
n = 3r(r + 1)/2. It is also irreducible : it has no well-
constrained (nor rigid) subsystem. Though equations
(circle-circle tangencies, or line-circle tangencies) are
available, they are not accessible to the solver : the
solver is only aware of an array of n (pointers on) pro-
cedures E[0, . . . n − 1], and an array of n unknowns
V which are the concatenation of tuples (xk, yk, rk)
for k = 0, . . . n − 1. The initial values for (xk, yk, rk)
are obtained as follows : this problem is easy to solve
when the triangle ABC is equilateral, which gives ba-
rycentric coordinates ak, bk, ck (with ak + bk + ck = 1)
for the center of circle k : (xk, yk) = akA+ bkB+ ckC.
They give an initial guess for X.

This problem is artificial but very convenient for
measuring performances, and controlling the beha-
viour and output of algorithms, due to its visual and
intuitive nature. Figure 2 shows Newton iterations for
11 rows, and Figure 3 some Hooke-Jeeves iterations.
Table 1 shows the figures with more rows, and table 2
gathers together the empirical complexities of the tes-
ted algorithms. The empirical complexity for an algo-
rithm is the slope of the curve (very close to a line) of
the log-log diagram (logni, log T (ni)), where ni is the
number of unknowns, T (ni) is the running time of the
algorithm. We tested with 50, 100, 150, 200 rows. lm-
BFGS has the best empirical complexity : O(n1.33).
Then Newton and Levenberg-Marquardt have com-
plexity O(n1.4). Hooke-Jeeves has complexity O(n1.9).
All these complexities are less than O(n2), the size of
a dense Jacobian. To reach them, it is essential to ex-
ploit the sparsity of systems of procedural constraints.
Remember that, for multiplying two dense matrices,
or solving a dense linear system, the complexity of the
famous Strassen method is O(n2.807), and the com-
plexity of the Coppersmith-Winograd algorithm (the
best method known so far, but unused in practice)
is O(n2.376). Even the Hooke-Jeeves method is much
better, and lower than O(n2). Other methods : sto-
chastic gradient, and Jaya either diverge, or converge
with damping but are too slow, so we will not com-
ment their complexity.

4.8. About meta-heuristics

In our experiments, classical and heuristics enhan-
ced solvers such as Jaya and stochastic descent did not
perform well with the test problem. However, turning
to meta-heuristics could be interesting when there is
a huge set of solutions for which users have no a priori
preference, but they can reject a bad solution, even if
it is difficult for them to say why ; or it is too time
consuming to explicit all constraints and preferences.
A similar problem is met in forensic : some witnesses
can not describe faces or persons, though they can re-
cognize them. To solve this forensic issue [SGM09], a
software (like EvoFIT) generates a set of 20 pictures
of random faces ; the witness chooses the faces which
resemble the most the target face. The software com-
bines parts of selected faces, proposing a new set of
20 faces to the witness. After some rounds, a resem-
blant portrait is reached. One may imagine to use the
same method for choosing a solution amongst a huge
set. The modeller generates 20 solutions, for instance
starting from 20 random seeds, improved with some
Newton iterations or some minimization ; users reject
too bad solutions ; maybe they can say which part is
good in some solution and should be kept. The mo-
deller combines selected solutions, as in genetic algo-
rithms, and improves each new combination to satisfy
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r 50 100 150 200 300 400

c 1275 5050 11325 20100 45150 80200
u 3825 15150 33975 60300 135450 240600

Table 1: Number of rows r, circles c and unknowns u
for the test problem.

Figure 2: Solving with Newton (11 rows). Three ite-
rations suffice.

the procedural constraints, with Newton iterations or
a Minimizer. One may expect to find a good solution
after some rounds.

5. Conclusion

This article proposes to represent constraints with
procedures, and it presents the advantages, the few
inconveniences, and an implementation which proves
the feasibility and the scalability of this approach.

For conciseness, we cannot detail some precur-
sing works which inspire us [GFM+16b], [DPD15],
[PFGL08a], [GMMP11], [FGLP14], [PFGL08b],
[LGP+16].

We conclude with future works.

A more precise formalization is needed, to explicit
links with PLM, ontologies, shape analysis, etc.

A straightforward extension of our work is to ma-
nage an hybrid representation for geometric models :
basically a tuple (XT , UT , F ) or in words, a geome-
try and a set of constraints. The geometry XT (T like
target) is a solution of F (U,X) = 0, U − UT = 0, F
is the set of constraints, represented with DAG or the
source of an equivalent program in some script embed-
ded language (Lua, Python, Lisp), U is the vector of

Figure 3: Solving with Hooke-Jeeves (20 rows).

Algorithm Complexity
L-BFGS (m = 10) O(n1.33)
Newton O(n1.4)
Levenberg-Marquardt O(n1.4)
Hooke-Jeeves O(n1.9)

Table 2: n is the number of circles or of unknowns
and constraints (and not the number of rows). This
table gives the empirical complexity (the slope of log-log
diagram) of algorithms for the test problem, exploiting
sparsity.

parameters, UT is the vector of parameters values, X
is the vector of unknown variables. XT , UT is its own
witness. There are many ways to modify and update
the model.

The first way is to modify values of U : U = U∗

instead of U = UT , and X must be updated with
some solving. A possibility is to follow an homotopy
curve with equation : H(t,X) = (1 − t)F (UT , X) +
tF (U∗, X) = 0 from t = 0, X = XT to (hopefully)
t = 1, X = X∗, or to minimize ||H(t,X)|| from t =
0, X = XT to (hopefully) t = 1, X = X∗.

The second way is to specify new geometric elements
and new constraints : this part is well known, since
it is standard to interactively and incrementally add
geometric elements and constraints to the sketch, to
detect and fix errors, and to solve.

The third and last way to modify the model is to
interactively modify the geometryXT . Sometimes it is
much easier for users to interactively move vertices or
faces (or tangent planes) than to change constraints.
Updating U values does not suffice in some cases, and
constraints F must be updated or reverse-engineered :
it is clearly the hard part.
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