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Abstract. Image segmentation is the process of partitioning the image
into regions of interest in order to provide a meaningful representation
of information. Nowadays, segmentation has become a necessity in many
practical medical imaging methods as locating tumors and diseases. Hid-
den Markov Random Field model is one of several techniques used in
image segmentation. It provides an elegant way to model the segmen-
tation process. This modeling leads to the minimization of an objective
function. Conjugate Gradient algorithm (CG) is one of the best known
optimization techniques. This paper proposes the use of the nonlinear
Conjugate Gradient algorithm (CG) for image segmentation, in com-
bination with the Hidden Markov Random Field modelization. Since
derivatives are not available for this expression, finite differences are used
in the CG algorithm to approximate the first derivative. The approach
is evaluated using a number of publicly available images, where ground
truth is known. The Dice Coefficient is used as an objective criterion to
measure the quality of segmentation. The results show that the proposed
CG approach compares favorably with other variants of Hidden Markov
Random Field segmentation algorithms.
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1 Introduction

Automatic segmentation of medical images has become a crucial task due to
the huge amount of data produced by imaging devices. Many popular tools
as FSL [42] and Freesurfer [11] are dedicated to this aim. There are several
techniques to achieve the segmentation. We can broadly classify them into
thresholding methods [21,28,43], clustering methods [7,31,39], edge detection
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methods [5,30,35], region-growing methods [22,34], watersheds methods [3,24],
model-based methods [6,20,25,38] and Hidden Markov Random Field methods
[1,14,14–19,29,42]. Threshold-based methods are the simplest ones that require
only one pass through the pixels. They begin with the creation of an image
histogram. Then, thresholds are used to separate the different image classes.
For example, to segment an image into two classes, foreground and background,
one threshold is necessary. The disadvantage of threshold-based techniques is
the sensitivity to noise. Region-based methods assemble neighboring pixels of
the image in non-overlapping regions according to some homogeneity criterion
(gray level, color, texture, shape and model). We distinguish two categories,
region-growing methods and split-merge methods. They are effective when the
neighboring pixels within one region have similar characteristics. In model-based
segmentation, a model is built for a specific anatomic structure by incorporat-
ing prior information on shape, location and orientation. The presence of noise
degrades the segmentation quality. Therefore, noise removal phase is generally an
essential prior. Hidden Markov Random Field (HMRF) [12] provides an elegant
way to model the segmentation problem. It is based on the MAP (Maximum A
Posteriori) criterion [40]. MAP estimation leads to the minimization of an objec-
tive function [37]. Therefore, optimization techniques are necessary to compute
a solution. Conjugate Gradient algorithm [26,33,36] is one of the most popular
optimization methods.

This paper presents an unsupervised segmentation method based on the com-
bination of Hidden Markov Random Field model and Conjugate Gradient algo-
rithm. This method referred to as HMRF-CG, does not require preprocessing,
feature extraction, training and learning. Brain MR image segmentation has
attracted a particular attention in medical imaging. Thus, our tests focus on
BrainWeb1 [8] and IBSR2 images where the ground truth is known. Segmenta-
tion quality is evaluated using Dice Coefficient (DC) [9] criterion. DC measures
how much the segmentation result is close to the ground truth. This paper is
organized as follows. We begin by introducing the concept of Hidden Markov
Field in Sect. 2. Section 3 is devoted to the well known Conjugate Gradient algo-
rithm. Section 4 is dedicated to the experimental results and Sect. 5 concludes
the paper.

2 Hidden Markov Random Field (HMRF)

Let S = {s1, s2, . . . , sM} be the sites, pixels or positions set. Both image to
segment and segmented image are formed of M sites. Each site s ∈ S has a
neighborhood set Vs(S) (see an example in Fig. 1).

A neighborhood system V (S) has the following properties:
{∀s ∈ S, s /∈ Vs(S)

∀{s, t} ∈ S, s ∈ Vt(S) ⇔ t ∈ Vs(S) (1)

1 http://www.bic.mni.mcgill.ca/brainweb/.
2 https://www.nitrc.org/projects/ibsr.

http://www.bic.mni.mcgill.ca/brainweb/
https://www.nitrc.org/projects/ibsr
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Fig. 1. An example of a lattice S, n is the set of sites neighboring s.

A r-order neighborhood system V r(S) is defined by the following formula:

V r
s (S) = {t ∈ S| distance(s, t)2 ≤ r ∧ s �= t} (2)

where distance(s, t) is the Euclidean distance between pixels s and t. This dis-
tance depends only on the pixel position i.e., it is not related to the pixel value
(see examples in Fig. 2). For volumetric data sets, as slices acquired by scanners,
a 3D neighborhood system is used.
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Fig. 2. First, second, fourth and fifth order neighborhood system of the site s.

A clique c is a subset of S where all sites are neighbors to each other. For a
non single-site clique, we have:

∀{s, t} ∈ c, s �= t ⇒ (t ∈ Vs(S) ∧ s ∈ Vt(S)) (3)

A p-order clique noted Cp contains p sites i.e. p is the cardinal of the clique
(see an example in Fig. 3).

V 2
s (S)

a b c
d s e
f g h

C1 : {s}
C2 : {s, a}, {s, b}, {s, c}, {s, d}, {s, e}, {s, f}, {s, g}, {s, h}
C3 : {s, a, b}, {s, b, c}, {s, c, e}, {s, e, h}, {s, h, g}, {s, g, f},

{s, f, d}, {s, d, a}, {s, d, b}, {s, b, e}, {s, e, g}, {s, g, d}
C4 : {s, d, a, b}, {s, b, c, e}, {s, e, h, g}, {s, g, f, d}

Fig. 3. Cliques associated to the second order neighborhood system for the site s.
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Let y = (y1, y2, . . ., yM ) be the pixels values of the image to segment and
x = (x1, x2, . . ., xM ) be the pixels classes of the segmented image. yi and xi

are respectively pixel value and class of the site si. The image to segment y
and the segmented image x are seen respectively as a realization of Markov
Random families Y = (Y1, Y2, . . ., YM ) and X = (X1,X2, . . .,XM ). The families
of Random variables {Ys}s∈S and {Xs}s∈S take their values respectively in the
gray level space Ey = {0, . . . , 255} and the discrete space Ex = {1, . . .,K}. K is
the number of classes or homogeneous regions in the image. Configurations set
of the image to segment y and the segmented image are respectively Ωy = EM

y

and Ωx = EM
x . Figure 4 shows an example of segmentation into three classes.

The image to segment

The segmented image

Fig. 4. An example of segmentation using FSL tool.

The segmentation of the image y consists of looking for a realization x of X.
HMRF models this problem by maximizing the probability P [X = x | Y = y].

x∗ = arg
x∈Ωx

max {P [X = x | Y = y]} (4)

⎧⎪⎨
⎪⎩

P [X = x|Y = y] = A exp (−Ψ(x, y))
Ψ(x, y) =

∑
s∈S

[
ln(σxs

) + (ys−μxs )
2

2σ2
xs

]
+ B

T

∑
c2={s,t} (1 − 2δ(xs, xt))

A is a positive constant

where B is a constant, T is a control parameter called temperature, δ is a
Kronecker’s delta and μxs

, σxs
are respectively the mean and standard devi-

ation of the class xs. When B > 0, the most likely segmentation corresponds
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to the constitution of large homogeneous regions. The size of these regions is
controlled by the B value.

Maximizing the probability P [X = x | Y = y] is equivalent to minimizing
the function Ψ(x, y).

x∗ = arg
x∈Ωx

min {Ψ(x, y)} (5)

The computation of the exact segmentation x∗ is practically impossible [12].
Therefore optimization techniques are necessary to compute an approximate
solution x̂.

Let μ = (μ1, . . . , μj , . . . , μK) be the means and σ = (σ1, . . . , σj , . . . , σK)
be the standard deviations of the K classes in the segmented image x =
(x1, . . . , xs, . . . , xM ) i.e.,⎧⎪⎪⎨

⎪⎪⎩
μj = 1

|Sj |
∑

s∈Sj
ys

σj =
√

1
|Sj |

∑
s∈Sj

(ys − μj)2

Sj = {s | xs = j}
(6)

In our approach, we will minimize Ψ(μ) defined below instead of minimizing
Ψ(x, y). We can always compute x through μ by classifying ys into the nearest
mean μj i.e., xs = j if the nearest mean to ys is μj . Thus instead of looking for
x∗, we look for μ∗. The configuration set of μ is Ωμ = [0 . . . 255]K .

⎧⎪⎪⎨
⎪⎪⎩

μ∗ = argμ∈Ωµ
min {Ψ(μ)}

Ψ(μ) =
∑K

j=1 f(μj)

f(μj) =
∑

s∈Sj

[ln(σj) + (ys−μj)
2

2σ2
j

] + B
T

∑
c2={s,t} (1 − 2δ(xs, xt))

(7)

where Sj , μj and σj are defined in the Eq. (6).
To apply unconstrained optimization techniques, we redefine the function

Ψ(μ) for μ ∈ R
K instead of μ ∈ [0 . . . 255]K as recommended by [4]. Therefore,

the new function Ψ(μ) becomes as follows:

Ψ(μ) =
K∑

j=1

F (μj) where μj ∈ R (8)

F (μj) =

⎧⎪⎨
⎪⎩

f(0) − uj ∗ 103 if μj < 0
f(μj) if μj ∈ [0 . . . 255]
f(255) + (uj − 255) ∗ 103 if μj > 255

(9)

3 Hidden Markov Random Field and Conjugate Gradient
algorithm (HMRF-CG)

To solve the minimization problem expressed in Eq. 7, we used the nonlinear con-
jugate gradient method. This latter generalizes the conjugate gradient method
to nonlinear optimization. The summary of the algorithm is set out below.
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Let μ0 be the initial point and d0 = −Ψ
′
(μ0) be the first direction search.

Calculate the step size αk that minimizes ϕk(α). It is found by ensuring that
the gradient is orthogonal to the search direction dk.

ϕk(α) = Ψ(μk + αdk) (10)

At the iteration k + 1, calculate μk+1 as follows:

μk+1 = μk + αkdk (11)

Calculate the residual or the steepest direction:

rk+1 = −Ψ
′
(μk+1) (12)

Calculate the search direction dk+1 as follows:

dk+1 = rk+1 + βk+1dk (13)

In conjugate gradient method there are many variants to compute βk+1, for
example:

1. The Fletcher-Reeves conjugate gradient method:

βk+1 =

(
rk+1

)T
rk+1

(rk)T
rk

(14)

2. The Polak-Ribière conjugate gradient method:

βk+1 = max

{(
rk+1

)T (
rk+1 − rk

)
(rk)T

rk
, 0

}
(15)

To use conjugate gradient algorithm, we need the first derivative Ψ
′
(μ) =

(Δ1, . . . ,Δi, . . . ,ΔK). Since no mathematical expression is available, it is
approximated with finite differences [10]. In our tests, we have used a centered
difference approximation to compute the first derivative as follows:

Δi =
Ψ(μ1, . . . , μi + ε, . . . , μn) − Ψ(μ1, . . . , μi − ε, . . . , μn)

2ε
(16)

The good approximation of the first derivative relies on the choice of the
value of the parameter ε. Through the tests conducted, we have selected 0.01
as the best value. In practice, the application is implemented in the cross-
platform Qt creator (C++) under Linux system. We have used the GNU Scien-
tific Library implementation of Polak-Ribière conjugate gradient method [13,32].
The HMRF-CG method is summarized hereafter.

Input:
y the image to segment, K the number of classes, B the constant parameter
of HMRF, T the control parameter of HMRF, μ0 the initial point, ε the
parameter used by the first derivative.
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Initialization:
we define s as the minimizer structure of gsl multimin fdfminimizer type and
we initialize it by: K the size problem, Ψ the function to minimize using the
Eq. 8, Ψ

′
the first derivative of the function to minimize using the Eq. 16, μ0

the start point, gsl multimin fdfminimizer conjugate pr (Polak-Ribière con-
jugate gradient) the minimizer function.
Iterations:
we perform one iteration to update the state of the minimizer using the
function gsl multimin fdfminimizer iterate(s) and after that, we test s for
convergence.
The stopping criterion:
in our case, the minimization procedure should stop when the norm of the
gradient (‖Ψ

′‖) is less than 10−3.
Output:
an approximation μ̂ of μ∗ ∈ R

n, x̂ the segmented image using μ̂.

4 Experimental Results

In this section, we show the effectiveness of HMRF-CG method. To this end,
we will make a comparison with some methods that are: improved k-means and
MRF-ACO-Gossiping [41]. Next, we will show, the robustness of HMRF-CG
method against noise, by doing a comparison with FAST FSL(FMRIBs Auto-
mated Segmentation Tool) and LGMM (Local Gaussian Mixture Model)[23].
To perform a fair and meaningful comparison, we have used a metric known as
Dice Coefficient [9]. Morey et al. [27] used interchangeably Dice coefficient and
Percentage volume overlap. This metric is usable only when the ground truth
segmentation is known (see Sect. 4.1). The image sets and related parameters
are described in Sect. 4.2. Finally, Sect. 4.3 is devoted to the yielded results.

4.1 Dice Coefficient Metric

Dice Coefficient (DC) measures how much the result is close to the ground truth.
Let the resulting class be Â and its ground truth be A∗. Dice Coefficient is given
by the following formula:

DC =
2|Â ∩ A∗|
|Â ∪ A∗| (17)

4.2 The Image Sets and Related Parameters

To evaluate the quality of segmentation, we use four volumetric (3D) MR images,
one obtained from IBSR (real image) and the others from BrainWeb (simulated
images). Three components were considered: GM (Grey Matter), WM (White
Matter) and CSF (Cerebro Spinal Fluid). IBSR image has the following charac-
teristics: dimension is 256×256×63, with voxel = 1×3×1 mm and T1-weighted
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modality. The three BrainWeb image sets BrainWeb1, BrainWeb2 and Brain-
Web3 have the following characteristics: dimensions are 181 × 217 × 181, with
voxels = 1 × 1 × 1 mm and T1-weighted modality. They have different levels of
noise and intensity non-uniformity that are respectively: (0%,0%), (3%,20%) and
(5%,20%). In this paper we have retained a subset of slices, which are cited in
[41]. The IBSR slices retained are: 1-24/18, 1-24/20, 1-24/24, 1-24/26, 1-24/30,
1-24/32 and 1-24/34. The BrainWeb slices retained are: 85, 88, 90, 95, 97, 100,
104, 106, 110, 121 and 130.

Table 1 defines some parameters necessary to execute HMRF-CG method.

Table 1. Related parameters to images used in our tests.

Image Constant B Temperature T Initial point µ0

IBSR 1 10 (1, 5, 140, 190)

BrainWeb1 1 10 (4, 45, 110, 149)

BrainWeb2 1 4 (4, 45, 110, 150)

BrainWeb3 1 2 (0, 45, 110, 150)

Table 2. Mean DC values (the best results are given in bold type).

Methods Dice Coefficient

GM WM CSF Mean

K-means 0.500 0.607 0.06 0.390

MRF-ACO-Gossiping 0.778 0.827 0.262 0.623

HMRF-CG 0.859 0.855 0.381 0.698

Table 3. Mean DC values (the best results are in bold type).

Tissue Method Dice Coefficient

BrainWeb1 BrainWeb2 BrainWeb3

GM HMRF-CG 0.970 0.945 0.921

LGMM 0.697 0.905 0.912

FSL FAST 0.727 0.737 0.735

WM HMRF-CG 0.990 0.971 0.954

LGMM 0.667 0.940 0.951

FSL FAST 0.877 0.862 0.860

CSF HMRF-CG 0.961 0.942 0.926

LGMM 0.751 0.897 0.893

FSL FAST 0.635 0.647 0.643
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IBSR 1-24/18

IBSR 1-24/34

Fig. 5. (a) Slices number, (b) slices to segment from IBSR, (c) ground truth slices,
(d) segmented slices using HMRF-CG.

(0%,0%)

(3%,20%)

(5%,20%)

Fig. 6. The slices number #95 of BrainWeb images. (a) Noise and intensity non-
uniformity, (b) slices to segment from BrainWeb images, (c) segmented slices using
HMRF-CG.
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4.3 Results

Table 2 shows the mean DC values using IBSR image. The parameters used by
HMRF-CG are described in Table 1. The parameters used by the other methods
are given in [41].

Table 3 shows the mean DC values using BrainWeb images. The parameters
used by HMRF-CG are described in Table 1. The parameters used by the LGMM
method are given in LGMM [23]. The implementation of LGMM is built upon
the segmentation method [2] of SPM 8 (Statistical Parametric Mapping3), which
is a well known software for MRI analysis. As reported by [23], LGMM has better
results than SPM 8.

Figure 5 shows a sample of slices to segment obtained from IBSR image, their
ground truths and their segmentation using HMRF-CG method.

Figure 6 shows the slices number #95 with different noise and intensity non-
uniformity from BrainWeb images and their segmentation using HMRF-CG.

5 Discussion and Conclusion

In this paper, we have described a method which combines Hidden Markov Ran-
dom Field (HMRF) and Conjugate Gradient (GC). The tests have been carried
out on samples obtained from IBSR and BrainWeb images, the most commonly
used images in the field. For a fair and meaningful comparison of methods,
the segmentation quality is measured using the Dice Coefficient metric. The
results depend on the choice of parameters. This very sensitive task has been
conducted by performing numerous tests. From the results obtained, the HMRF-
GC method outperforms the methods tested that are: LGMM, Classical MRF,
MRF-ACO-Gossiping and MRF-ACO. Tests permit to find good parameters for
HMRF-CG to achieve good segmentation results. To further improve perfor-
mances a preprocessing step can be added to reduce noise and inhomogeneity
using appropriate filters.
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