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Abstract

Classically, geometric constraint solvers use graph-based methods to decompose
systems of geometric constraints. These methods have intrinsic limitations,
which the witness method overcomes; a witness is a solution of a variant of the
system. This paper details the computation of a basis of the vector space of free
infinitesimal motions of a typical witness, and explains how to use this basis
to interrogate the witness for dependence detection. The paper shows that the
witness method detects all kinds of dependences: structural dependences already
detectable by graph-based methods, but also non-structural dependences, due
to known or unknown geometric theorems, which are undetectable by graph-
based methods. It also discusses how to decide about the rigidity of a witness
and how to decompose it.

Keywords: Geometric constraints, constraint solving, constraint
decomposition, dependent and independent constraints, witness configuration,
infinitesimal motions

1. Introduction

Shape modelling based on geometric constraints enables the designer to spec-
ify shapes as a set of geometric entities and their constraints and relationships.
Geometric constraints are specifications of relations (e.g. distances, angles, in-
cidences, tangencies, parallelisms, orthogonalities) between geometric elements
such as points, lines, planes, conics, quadrics, or algebraic curves and surfaces
of higher degree. Various problems in various domains can be formulated as ge-
ometric constraint systems that can be decomposed and solved using geometric
constraint solving techniques. Big clients of geometric constraints are for exam-
ple: robotics (e.g. generalized Stewart platform), molecular chemistry (e.g. the
molecule problem which consists in finding the configurations of a molecule from
interatomic distances), and geometric modelling for CAD-CAM (dimensioning
mechanical parts) and virtual reality (e.g. blending surfaces) [1, 2, 3, 4, 5, 6].
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The Systems of geometric constraints found in industry are increasingly
larger. Decomposing such large systems into smaller subsystems is essential.
Graph-based methods have been extensively used to perform this decomposi-
tion, to plan the resolution of subsystems and to merge their solutions [7, 1].
These methods rely more or less on a combinatorial count of degrees of free-
dom; they use graph flow computations, maximum matching or k-connectedness
properties; they are polynomial time [8, 9, 10, 11].

Graph-based methods work very well for correct systems of constraints, and
they indeed make it possible to solve systems which are intractable otherwise.
These methods are even able to detect simple mistakes in systems of constraints,
namely structural dependences, which may occur when a subset of unknowns
is constrained by too many constraints. However, non-structural dependences,
due to geometric theorems, cannot be detected with pure graph-based methods.
Missing such dependences makes the solver fail to solve the system, and to
give a relevant explanation to the designer. This is a serious drawback as the
probability of existence of such dependences increases with the size of the system
to be solved.

The difficulties in detecting dependences between geometric constraints are
due to the fact that every system of algebraic equations is translatable into a
system of point-line incidences in the projective plane with a size of the same
order of magnitude. Because of this universal property of systems of point-line
incidences [12], detecting dependences between such incidence constraints, or
a superset of these constraints, is as hard as detecting dependences between
algebraic equations; the latter, known in computer algebra as the ideal or rad-
ical membership problem, is decidable, for instance with standard bases (also
known as Gröbner bases), but not practicable. Such seemingly trivial incidence
constraints between flats (points, lines, planes) are essential in real-world prob-
lems, the molecule problem being an exception. Thus there is no reasonable
hope to make pure graph-based methods, or other polynomial time methods
robust against non-structural dependences due to geometric theorems and inci-
dence constraints.

A set of geometric constraints gives a system of algebraic non- linear equa-
tions to solve. For CAD-CAM problems, a witness (a solution of a variant of the
system) is usually available and can be used to check the independence between
the geometric constraints, to decompose them, or to check that a decomposition
proposed by any other method is correct. The concept of witness is defined in
section 2.

The witness method was proposed in [13, 12], it is intended to help the
designer build correct systems of geometric constraints. The current paper
introduces the vector space of the free infinitesimal motions of the witness and
shows how this vector space is computed and used to answer questions such as:
Are the constraints coordinate-independent? Are constraints dependent on, or
independent of each other? Is the witness flexible? Is the witness decomposable?
Is a flexion generic or degenerate? Is the witness typical or not? This paper
proves that the witness method detects all kinds of dependences, including non-
structural dependences, due to known or unknown geometric theorems, which
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can not be detected with graph-based methods. It gives first ideas to detect
atypical witnesses.

The paper is structured as follows. Section 2 presents the principle of the
witness method and discusses the difficulty of finding a witness. Section 3
presents the free infinitesimal motions and how they are computed with rank
considerations. Section 4 explains how to interrogate the witness for testing
flexibility and rigidity. Section 5 presents a witness-based method to decompose
geometric constraint systems. Section 6 deals with typicality issues. Section 7
concludes.

2. The witness method for systems of geometric constraints

Definition 1. A System of geometric constraints is a system of algebraic non-
linear equations F (U,X) = 0 to solve, where U is the vector of parameters and
X is the vector of unknowns. Parameters may be geometric entities such as
distances, angles, and/or non-geometric entities such as weights, forces, costs.
Unknowns are coordinates of points, components of vectors, coefficients of lines
or plane equations, etc. Equations are independent of the used Cartesian coor-
dinate system.

Definition 2. A witness is a solution of a variant of the system to solve. It
is a couple (UW , XW ) such that F (UW , XW ) = 0, where vectors UW and XW

are respectively the numerical values of parameters U , and unknowns X at the
witness. We refer to the unknown/searched configuration as the target (UT , XT ),
where vectors UT and XT are respectively the numerical values of parameters
U , and unknowns X at the target.

Figure 1 shows a target configuration and a possible witness configuration. De-
pending on the set of geometric constraints a witness may be degenerate, typical
or atypical.

Figure 1: A target (left) and a witness (right) configurations in 2D. Constraints are collinear-
ities, and some edge lengths or some angles.

Definition 3. Degeneracy: in 2D, a witness is degenerate if it has 2 equal
vertices, 3 aligned vertices, 4 cocyclic vertices, or 6 vertices on the same conic.
In 3D, a witness is degenerate if it has 4 coplanar vertices, 5 cospherical vertices,
or 10 vertices on the same quadric. A non-degenerate witness is also called a
generic witness.
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Definition 4. Typical witness: a witness is typical if it is generic, or it is de-
generate but all its degeneracies are due to constraints, in which case all possible
witnesses are degenerate.

Definition 5. Atypical witness: a witness is atypical if it contains a degeneracy
and there exist other witnesses without this degeneracy.

The witness method assumes that the witness is typical. Intuitively, a wit-
ness is typical if all its degeneracies, such as collinearity of three vertices or co-
cyclicity of four vertices in 2D, are due directly or indirectly to the constraints,
and not to some numerical accidents. Thus all degeneracies of a typical witness
also occur in the target (under mild assumptions discussed in 6.4). The word
’typical’ is needed, and ’generic’ can not be used instead, since a typical witness
can be degenerate. Typicality is discussed in more details in Section 6.

2.1. Generating a witness: how difficult is it?

The sketch interactively provided by the user is assumed to be a typical
witness, e.g. points which must be aligned or coplanar in the target are aligned
or coplanar in the sketch, and only the generic angles and distances in the sketch
need to be corrected by the solver. When no witness is available it is possible
to automatize its computation by considering U , the vector of parameters, as
unknowns, and by solving the very under-constrained F (U,X) = 0 system. Here
are two examples of witness computations in 2D and in 3D.

• Find in 2D a triangle specified by its 3 lengths, and contains an incircle (an
inscribed circle tangent to the 3 sides of the triangle). To find a witness
the user (or the solver) starts from any circle, choose any 3 distinct points
on the circle, and then trace the tangent lines at these points. The witness
is the triangle defined by these tangents and their intersection points. If
the three points are rationale the witness is rational, e.g. for the circle
x2+y2 = 1 the rational points are ((1− t2)/(1+ t2), 2t/(1+ t2)) for t ∈ Q.

• Find the 3D lines tangent to 4 given spheres (the 4P1L problem [14]). To
find the witness choose any line, choose any 4 centers for the spheres, then
compute the radius for the spheres: they are the distances between the
line and the centres. This witness is rational. Again parameters in the
target system become unknowns in the system characterizing witnesses,
and their values are deduced by propagation. This also holds for all prob-
lems (the 6P or octahedral problem, and the 5P1L problem) mentioned
in Hoffmann and Yuan’s paper: it is easy to find a rational witness and
the values of parameters in the target system are deduced by propagation.
We conjecture that it holds for all problems soluble with the locus method
by Gao, Hoffmann and Yang [15].

Finding the witness may be quite hard for some systems, but to our experience
such systems are not relevant to CAD-CAM. Here is a summary of some cases
where the difficulty is known.
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Solving the molecule problem (given some interatomic distances, find the
configuration of the molecule) is difficult [16, 17, 18], since it means solving an
algebraic system, but finding a witness is completely trivial: it is enough to
generate random points in 2D or in 3D according to the nature of the problem.
This easiness suggests that finding a witness remains easy even when some
incidence constraints are added.

After Steinitz’s theorem [19], each 3D Eulerian polyhedron (satisfying Euler
formula V − E + F = 2) is realizable with a 3D convex polytope with integer
coordinates only. A constructive proof of Steinitz’s theorem relies on the Tutte
barycentric embedding of the planar graph of the polyhedron in the plane, then
brings this embedding in 3D; it provides a cubic time algorithm [19]. This gives
a cubic time method for computing a generic witness of Eulerian polyhedra. It
is worth mentioning that, in contrast, 4D polytopes are not all realizable with
integer coordinates only [19], and that all algebraic numbers are necessary for
realizing 4D polytopes.

Much less seems to be known for 3D polyhedra with non-zero genus (i.e.
with through holes). Finally, after the universality theorem, constrained ar-
rangements (constrained configurations where geometric constrains are only in-
cidences without any parameter) can be arbitrarily difficult to solve. Anyway,
in spite of their aesthetic appeal, or the fact that some of them have known
complexity, these problems are not relevant to geometric constraints in CAD-
CAM.

2.2. Principle of the witness method

When a system is correct, the numeric solver in use can reliably solve it in
a numerically stable way. A numerical solver can reliably compute a root in
RN , as the intersection point between the N hypersurfaces described by the
N equations of the system, only when the hypersurfaces cut transversely, i.e.
when the tangent hyperplanes at the root cut transversely: it means that the
N normal vectors to the tangent hyperplanes are linearly independent, i.e. the
Jacobian has full rank at the solution point.

The witness method basically computes the Jacobian structure at the wit-
ness; it detects subsets of hypersurfaces which do not cut transversely, i.e. sub-
sets of equations having dependent gradient vectors. We think that transver-
sality is definitely the good criterion. It has very convenient features.

• Transversality of the witness (thus of the target) is decidable in polynomial
time, it requires only standard tools of linear algebra.

• Transversality guarantees the convergence of the numerical solver in some
neighborhood of the root (for the witness, and thus for target). Then
classical methods from interval analysis compute such a neighborhood (a
box, that is a vector of intervals), and provide guarantees.

• Transversality also guarantees that the root (the witness, or the target)
is stable against small perturbations of the values of parameters U in
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the system F (U,X) = 0, more precisely it guarantees that the root is
locally an implicit, continuous, and differentiable function of parameters
U ; interval analysis can compute and guarantee such a neighborhood for
U and X.

• When the equations are transversal at the witness, but there is no root
for the parameter values of the target, there is certainly something wrong
with these parameters (e.g. a triangular inequality is violated).

• Finally, transversality is stable against the variations in the formulation
of constraints. There are numerous ways to translate constraints into
equations, and to choose unknowns. For instance, distances may be pos-
sible unknowns or parameters in a first solver, and they may be forbidden
in a second solver which requires to square all distances to accept them
as unknowns or parameters; this second choice makes sense for rational
witnesses (when all vertices have rational coordinates) which are very fre-
quent. This choice avoids square roots of rational numbers, so that all
unknowns and parameters have rational values, which are exactly rep-
resentable. Similarly, an angle θ can be represented by several kinds of
variables: simply a variable θ, but also more algebraically cθ = cos θ, or
sθ = sin θ, or tθ = tan θ, or Cθ = cos2 θ, or Sθ = sin2 θ, or Tθ = tan2 θ. But
for all these ways of formulating constraints or choosing unknowns, the
mapping between two distinct formulations is locally (i.e. in the neigh-
borhood of the witness, and thus in the neighborhood of the target) a
diffeomorphism, that is a bijective, continuous and differentiable map-
ping. Transversality is preserved by diffeomorphisms, thus it is preserved
through variations in the translation of constraints into equations, there-
fore results of the witness method are easily reproducible, and this paper
does not need to be unduly precise about the translation of constraints
into equations since, as far as the witness is concerned, all reasonable
formulations are equivalent.

The witness is not assumed to lie in a neighborhood of the target; for instance,
the target and the witness can lie on two distinct connected components of the
real solution set of F (U,X) = 0.

2.3. Inaccuracy issue, and rational witnesses

With the witness method, problems related to geometric constraints will be
reduced to computing the rank of a set of vectors, or deciding if vectors are
independent or not. These vectors have known numerical coordinates. When
vectors are independent, approximate computations are sufficient to reliably
prove their independence, for instance with interval arithmetics, assuming of
course that intervals are sharp enough.

Unfortunately numerical inaccuracy prevents the correct computation of the
rank of dependent vectors; for instance, vectors (1, 2) and (1/

√
5, 2/

√
5) are no

longer proportional after floating-point rounding. To avoid these difficulties,
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this paper assumes, for simplicity, that the witness has rational coordinates,
exactly represented. To avoid square roots of rational numbers, each distance,
cosine or sine is represented by a variable equal to its square [12].

It seems that, for CAD-CAM, numerous problems have rational witnesses.
However, it is fair to mention exceptions. An exception is provided by regular
platonic solids: e.g. up to scaling, the regular dodecahedron and icosahedron
have only finite set of witnesses, e.g. the convex usual embedding, and the
symmetrical concave star shaped one; no realization is rational. Converting
the metric constraints (equality of edges lengths) into projective ones yields
constrained arrangements with no rational realization: a 2D example is the
pentagonal star, equivalent to the regular pentagon [12].

2.4. Forerunners of the witness approach

The principle of the witness approach is not new:

• Classical artificial intelligence uses reasoning on examples for proving or
guessing properties.

• In computer algebra, the cylindrical algebraic decomposition by Collins
represents each 2D region, where a set of polynomials and all their deriva-
tives have constant signs, by a typical point in this region: this point is a
witness.

• The rigidity theory probabilistically decides the rigidity of graphs in any
dimension in polynomial time using a typical example, called a structure
or a framework: this is a witness.

• In computer algebra, algebraic identities or the nullity of a black box poly-
nomial are tested probabilistically in polynomial time: e.g. a multivariate
polynomial f(x) is identically zero if it vanishes for a random point x (e.g.
Schwartz-Zippel theorem, [20, 21]). This random point is a witness.

• Even in geometric constraint solving, the sketch interactively provided by
the designer is already used by solvers, as an initial approximation of the
root for iterative numerical methods, such as Newton-Raphson iteration,
homotopy (or continuation), and gradient descent.

2.5. Particular considerations for the witness

The witness approach only considers the tangent hyperplanes: when they
are dependent, it cannot decide if the witness (UW , XW ) is an isolated root of a
well-constrained system F (U,X) = 0, or if the witness lies on a curve, a surface,
etc. In other words, it cannot compute the dimension1 of the solution set of
F (U,X) = 0 through XW . Here are two examples of systems with exactly the
same degenerate Jacobian, but having two zero sets of different dimensions. The

1The dimension is 0 for a discrete set, 1 for a curve, 2 for a surface, etc.
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first system is y = (x− 3)2 − y = 0, the witness is (3, 0), the Jacobian has rank
1, the witness is the only root, thus the dimension of the solution set is 0. The
second system is y = xy = 0, a witness is also (3, 0), the Jacobian has rank 1,
but the line y = 0 is solution, so the dimension of the solution set is 1. For the
second system, the witness cannot be the origin (0, 0), because this is a critical
point of the curve xy = 0.

2.5.1. Managing parameters

There are two ways to manage parameters: (i) Parameters are replaced by
their values at the witness, so the only remaining symbols are the names of the
unknowns. (ii) Parameters are considered as unknowns and for each u ∈ U an
equation u−uW = 0 is added, where uW is the numerical value of the parameter
u in the witness. For conciseness, this paper uses the first way; since parameters
are eliminated, the system F (U,X) = 0 can be rewritten F (X) = 0 whenever
it is convenient.

2.5.2. Critical points

Definition 6. A point p on an hypersurface f(x) = 0, f : Rn → R is a crit-

ical point iff the gradient vector at p vanishes: f ′(p) =
−→
0 , i.e. the tangent

hyperplane is undefined. A non-critical point is a regular point.

An example of a critical point is the apex (0, 0, 0) of the cone: x2 + y2 − z2 =
0. The witness approach considers hyperplanes through the witness which are
tangent to hypersurfaces corresponding to equations. Thus the witness must be
a regular point for each hypersurface.

A critical point can occur in a system of geometric constraints if the distance
between two vertices of the configuration is constrained to be 0: (xA − xB)

2 +
(yA − yB)

2 + (zA − zB)
2 = 0. The latter constraint is not generic, and is for-

bidden by the genericity hypothesis of parameters. In the context of geometric
constraints, it seems to be the only way to create a critical point.

It is easy to compute the gradient vector at the witness, and to check that
the witness is a regular point for every hypersurface.

2.5.3. Determinant polynomial equations

Not all polynomial equations are given by an explicit list of coefficients and
monomials. Sometimes polynomials are determinants of a square matrix [22, 23].
Computing such a determinant polynomial symbolically is exponential time (an
n× n determinant has n! factors). Fortunately, for the witness approach there
is no need to apply this symbolic definition. We only compute the determinant
and its derivatives at a given point: the witness. This can be done in polynomial
time by exploiting the multilinearity of the determinant:

∂

∂x
det(M) =

n∑
i=1

det [C1, . . . C
′
i . . . Cn]
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where Ci is the i
th column of the matrix M and C ′

i its derivative with respect to
x. Computing the determinant of a square matrix with only numerical entries
is cubic time.

3. Free infinitesimal motions of a typical witness

Definition 7. Free infinitesimal motions are motions that can be applied to
transform a constrained configuration without violating the constraints [16].
They are usually classified into two types: (i) infinitesimal displacements, namely
translations, rotations and their compositions, which never deform the configu-
ration; (ii) infinitesimal flexions (sometimes called deformations).

Proposition 1. A typical witness is rigid if it only admits infinitesimal dis-
placements. It is flexible if it admits an infinitesimal flexion. i.e. the system of
geometric constraints does not determine completely the geometric configuration.

Generic flexions deform the configuration. Degenerate flexions do not; they only
occur with atypical witnesses. An example of an atypical witness is a triangle
with collinear vertices, where the collinearity is not due to the constraints. The
set of atypical witnesses has measure zero, in the set of possible witnesses. Thus
they are dismissed from now on, until Section 6 which discusses typicality issues.

Assume that a typical witness (UW , XW ) is known, i.e. F (UW , XW ) = 0. In
a nutshell, the main idea of the witness method is to compute the vector space
of the free infinitesimal motions Ẋ of the witness, such that the perturbed
witness XW + ϵẊ, where ϵ is an infinitesimally small number, still fulfils the
constraints: F (UW , XW + ϵẊ) = 0. Taylor expansion gives F (UW , XW + ϵẊ) =
F (UW , XW )+ϵF ′(UW , XW )Ẋt+O(ϵ2). Thus, for F (UW , XW+ϵẊ) to be O(ϵ2),
infinitesimally small compared to the perturbation ϵ, the term F ′(UW , XW )Ẋt

must vanish: the vector space of the free motions is the kernel of the Jacobian
matrix F ′(UW , XW ) at the witness.

A basis of the infinitesimal displacements is computable a priori : it does not
depend on the constraints, but only on the variables. Such a basis is provided be-
low in section 3.1. The following conventions are used to describe the unknowns.
In 2D, a point has coordinates (x, y); a line with equation ax + by + c = 0 is
represented by a vector (a, b, c); a vector is represented by its components (u, v);
this distinction between points and vectors is due to the fact that a translation
(including an infinitesimal translation) modifies the (x, y) of points, but it does
not modify the (u, v) of vectors; similarly translations do not modify the a, b
coefficients of lines, but they modify the c coefficient. Under displacements,
the variables u, v and a, b behave in the same way. Other geometric unknowns
(barycentric coordinates, scalar products, distances, squared distances, angle
cosines or squared cosines, or other trigonometric functions, areas, volumes)
are unchanged by infinitesimal displacements, so the corresponding entries in
all vectors of the basis are 0. This holds also for all non-geometric unknowns
(weights, costs, densities, temperatures. . .).
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3.1. Basis of infinitesimal displacements

It is possible to compute an a priori basis of the infinitesimal displacements.
The top part of Table 1 shows such a basis, in the 2D case, composed of tx
a translation in the x direction, ty a translation in the y direction, and rxy a
rotation around the origin. (xi, yi) are coordinates of a point, (al, bl, cl) are
coordinates of a line (i.e. the line has equation: alx+ bly+ cl = 0), and (uk, vk)
are coordinates of a vector (the difference between two points). Dotted variables
ẋi, ẏi, ȧl, ḃl, ċl, u̇k, and v̇k are used to denote the values of the corresponding
coordinates in the basis of infinitesimal displacements, e.g. the couple (ẋi, ẏi)
represents the infinitesimal translation tx along the x axis of a point (xi, yi), it
is equal to (1, 0) (see the top part of Table 1). The proof of this basis is given
in Section 3.3. Note that the infinitesimal displacements for a point (x, y), a

ẋi ẏi ȧl ḃl ċl u̇k v̇k

tx 1 0 0 0 −al 0 0
ty 0 1 0 0 −bl 0 0
rxy −yi xi −bl al 0 −vk uk

ẋi ẏi żi ȧh ḃh ċh ḋh u̇k v̇k ẇk

tx 1 0 0 0 0 0 −ah 1 0 0
ty 0 1 0 0 0 0 −bh 0 1 0
tz 0 0 1 0 0 0 −ch 0 0 1
rxy −yi xi 0 −bh ah 0 0 −vk uk 0
rxz −zi 0 xi −ch 0 ah 0 −wk 0 uk

ryz 0 −zi yi 0 −ch bh 0 0 −wk vk

Table 1: Bases of free displacements: for points, lines, and vectors in 2D (top), for points,
planes, and vectors in 3D (bottom).

normal (a, b) to a line, and a vector (u, v) are different; e.g. translating a point
modifies it, but translating a vector or a normal does not.

In 3D, a basis of the infinitesimal displacements is tx, ty, tz, rxy, rxz, ryz,
where tz is a translation along z, ryz, rxz, rxy are rotations around the x, y,
and z axes. Corresponding coordinates are given in the bottom part of Table 1
which has as many columns as unknowns.

3.2. Example of structurally under-constrained systems

(x’, y’)

(x, y) (a, b, c)

(a’, b’, c’)

Figure 2: A 2D under-constrained system of geometric constraints.

A simple example in 2D is the typical system of six equations shown in (1)
and represented by Figure 2, with generic parameters δ (a distance) and λ (a
cosine). Point (x, y) lies on two lines (a, b, c) and (a′, b′, c′), with a specified
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x y x′ y′ a b c a′ b′ c′

e′1 a b 0 0 x y 1 0 0 0
e′2 a′ b′ 0 0 0 0 0 x y 1
e′3 2(x − x′) 2(y − y′) 2(x′ − x) 2(y′ − y) 0 0 0 0 0 0
e′4 0 0 0 0 2a 2b 0 0 0 0
e′5 0 0 0 0 0 0 0 2a′ 2b′ 0
e′6 0 0 0 0 a′ b′ 0 a b 0

ẋ ẏ ẋ′ ẏ′ ȧ ḃ ċ ȧ′ ḃ′ ċ′

tx 1 0 1 0 0 0 −a 0 0 −a′

ty 0 1 0 1 0 0 −b 0 0 −b′

rxy −y x −y′ x′ −b a 0 −b′ a′ 0
flexion 0 0 y − y′ x′ − x 0 0 0 0 0 0

Table 2: The Jacobian and a basis of infinitesimal motions: three displacements and a flexion
for the system of equations (1). Variables are replaced by their values at the witness.

angle between them. Moreover the distance between points (x, y) and (x′, y′)
is specified. Table 2 shows the Jacobian and a basis for the set of infinitesi-
mal motions composed of three displacements and one flexion: the point (x′, y′)
can rotate around the point (x, y). The reader can check that the vectors of
infinitesimal motions are orthogonal to the gradient vectors (the derivatives)
e′1, . . . e

′
6. A possible witness of this system is (x = y = 0, x′ = 3, y′ = 4, δ =

5, a = 1, b = 0, a′ = 12/13, b′ = 5/13, and λ = 12/13). To perform computa-
tions, the witness method replaces all variables (x, y, x′, y′, a, b, c, a′, b′, c′) with
their numerical values at the witness in Table 2.

e1 : ax+ by + c = 0

e2 : a′x+ b′y + c′ = 0

e3 : (x− x′)2 + (y − y′)2 − δ2 = 0 (1)

e4 : a2 + b2 − 1 = 0

e5 : a′2 + b′2 − 1 = 0

e6 : aa′ + bb′ − λ = 0

3.3. Proof of the basis of infinitesimal displacements

We only prove the basis for 2D infinitesimal displacements, the proof in 3D is
similar. Let P = (x, y, 1) be a point in homogeneous coordinates. P lies on a line
L = (a, b, c). A displacement represented by a matrix M maps the point P to
the point P ′ = (x′, y′, 1) = PM , and the line L to the line L′ = (a′, b′, c′), where
L′t = M−1Lt (Proof: PLt = 0, then P (MM−1)Lt = 0, then P ′M−1Lt = 0, so
L′t = M−1Lt).

For the infinitesimal translation tx, the matrix M and its inverse M−1 are:

M =

1 0 0
0 1 0
ϵ 0 1

 and M−1 =

 1 0 0
0 1 0
−ϵ 0 1


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and we have:

(x′, y′, 1) = (x, y, 1)M = (x+ ϵ, y, 1)

(a′, b′, c′)t = M−1(a, b, c)t = (a, b,−ϵa+ c)t

thus: ẋ = x′ − x = ϵ, ẏ = y′ − y = 0, ȧ = a′ − a = 0, ḃ = b′ − b = 0,
ċ = c′−c = −ϵa; dividing by ϵ gives tx. Similarly, for the infinitesimal translation
ty along y.

For rxy, the rotation around the origin with an infinitesimal angle, the matrix
M and its inverse M−1 are (terms in ϵ2 and higher degrees are ignored):

M =

 1 ϵ 0
−ϵ 1 0
0 0 1

 and M−1 =

1 −ϵ 0
ϵ 1 0
0 0 1


and thus:

(x′, y′, 1) = (x, y, 1)M = (x− ϵy, ϵx+ y, 1)

(a′, b′, c′)t = M−1(a, b, c)t = (a− ϵb, b+ ϵa, c)t

The difference between the identity matrix and the product of the two matrices is
in O(ϵ2), thus negligible compared to ϵ. Thus ẋ = x′−x = −ϵy, ẏ = y′−y = ϵx,
ȧ = a′ − a = −ϵb, ḃ = b′ − b = ϵa, ċ = c′ − c = 0, and dividing by ϵ indeed
gives rxy. Vectors (u, v) are differences between two points, and thus (u̇, v̇)
straightforwardly follows for all infinitesimal displacements.

3.4. Degrees of Displacements (DoD)

In an attempt to make graph-based methods more robust against depen-
dences between constraints Jermann et al define degrees of rigidity [24]. We
prefer to call them: degrees of displacements.

Definition 8. The DoD of a rigid configuration (a set of points, lines, planes)
is the number of equations needed to fix it in a Cartesian coordinate system.

The DoD is difficult to compute with pure graph-based methods. Jermann et
al mainly suggest formulas for big enough configurations and a tabulation for a
finite set of small configurations; moreover the configurations need to be generic:
incidence degeneracies (e.g. collinearities, coplanarities) due to geometric theo-
rems are forbidden. This restriction is to prevent the universality theorem from
confusing the graph-based methods.

The witness method computes straightforwardly the DoD by interrogating
the typical witness, and requires no genericity hypothesis at all: for instance,
the typical witness can contain three collinear points as long as this collinearity
is a consequence of the system of constraints and holds for the target.

The witness method can determine which infinitesimal displacements are
dependent. Let Y be a subset of X, the set of variables which describe the
configuration, and D be a basis of the infinitesimal displacements at the witness.
The DoD of Y is the rank of D[Y ], the subset of D relevant to Y .
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Definition 9. A part Y has full DoD if it has DoD 3 in 2D, or 6 in 3D.

Let us consider the computation of the DoD in the following cases:

• For a line in 2D, Y = {a, b, c}, and D[Y ] = D[a, b, c] the basis of infinites-
imal displacements for the line is extracted from the top part of Table 1
by keeping only variables relevant to the line. It is shown on the top left
part of Table 3. D[Y ] has rank 2. We can even notice the two dependent
translations tx and ty, which is correct as a translation of a line along
another line leaves the translated line globally unchanged.

• For a segment in 3D, Y = {x, y, z, x′, y′, z′}, we just consider D[Y ] in the
witness as it is shown in the top right part of Table 3. In this case D[Y ]
has rank 5; the three translations are independent; the three rotations are
dependent, they have rank 2; which is correct as the rotation around the
line supporting the segment leaves it unchanged.

• For two secant planes in 3D, Y = {a, b, c, d, a′, b′, c′, d′}, we also consider
D[Y ] at the witness as it is shown in the bottom part of Table 3. It has
rank 5; precisely, the three translations have rank 2, the three rotations are
independent. In the same way, we can compute the DoD of two parallel
planes, which is 4. The three translations have rank 2. Thus the DoD of
two planes depends on the configuration (are they secant or parallel); it
cannot be computed reliably with graph-based methods, which have no
way to decide correctly if the two planes are secant or parallel.

• Similarly, the DoD of three collinear points in 3D is 5 (as for a segment),
though the DoD of three non-collinear points is 6. Again, the interrogation
of the typical witness gives the correct answer, while graph-based methods
have no way to decide if the three points are collinear or not. Note that
the three points may be collinear, not because of an explicit collinearity
constraint, but because of a geometric theorem.

ȧ ḃ ċ
tx 0 0 −a
ty 0 0 −b
rxy −b a 0

ẋ ẏ ż ẋ′ ẏ′ ż′

tx 1 0 0 1 0 0
ty 0 1 0 0 1 0
tz 0 0 1 0 0 1
rxy −y x 0 −y′ x′ 0
rxz −z 0 x −z′ 0 x′

ryz 0 −z y 0 −z′ y′

ȧ ḃ ċ ḋ ȧ′ ḃ′ ċ′ ḋ′

tx 0 0 0 −a 0 0 0 −a′

ty 0 0 0 −b 0 0 0 −b′

ty 0 0 0 −c 0 0 0 −c′

rxy −b a 0 0 −b′ a′ 0 0
rxz −c 0 a 0 −c′ 0 a′ 0
ryz 0 −c b 0 0 −c′ b′ 0

Table 3: Bases of infinitesimal displacements, for a line in 2D (top left), for a segment in 3D
(top right), and for two secant or parallel planes in 3D (bottom). Variables are replaced with
their values at the witness.

13



4. Interrogations of a typical witness

4.1. Are constraints coordinate-independent?

Usually correct geometric constraints are coordinate-independent. However,
coordinate-dependent constraints such as xp = 0 are sometimes needed, to pin
the configuration in the plane or in the 3D space, because numerical solvers
expect systems with as many unknowns as equations.

Proposition 2. A constraint is coordinate-dependent if its gradient vector is
not orthogonal to at least one of the vectors in the basis of infinitesimal dis-
placements.

For instance, the constraint xp = 0 is orthogonal to the vectors of the translation
in y and of the rotation around the origin, but not to the vector of the translation
in x. All equations can be tested this way. These tests are only numerical: the
witness and the basis of infinitesimal displacements at the witness are numerical
vectors. In the following sections of this paper the equations are assumed to be
coordinate-independent.

xO yO xA yA

e′1 2 0 −1 0
e′2 0 2 0 −1
e′3 2xA − 2xC 2yA − 2yC 2xO − 2xA 2yO − 2yA

e′4 0 0 xB − xA yB − yC

e′5 2xO − 2xA 2yO − 2yA 2xA − 2xO 2yA − 2yO

˙xO ˙yO ˙xA ˙yA

tx 1 0 1 0
ty 0 1 0 1
rxy −yO xO −yA xA

flexion 0 0 0 0

xB yB xC yC

e′1 −1 0 0 0
e′2 0 −1 0 0
e′3 0 0 2xC − 2xO 2yC − 2yO

e′4 xA − xC yA − yC 2xC − xA − xB 2yC − yA − yB

e′5 0 0 0 0
˙xB ˙yB ˙xC ˙yC

tx 1 0 1 0
ty 0 1 0 1
rxy −yB xB −yC xC

flexion 0 0 yO − yC xC − xO

Table 4: The Jacobian, and a basis of four free infinitesimal motions for the dependent system
given in (2). The fourth motion is a flexion: point C can rotate around O. Variables are
replaced with their values at the witness.

4.2. Are constraints dependent or independent?

Graph-based methods can detect only structural dependences, as in the sys-
tem: f(x, y, z) = g(z) = h(z) = 0 which over-constrains the unknown z. The
interrogation of the witness makes it possible to detect non-structural as well
as structural dependences.
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Figure 3: In 3D, the double banana (left), and three configurations due to Ortuzar (personal
communication). Edges denote specified distances, arrows denote specified angles. No four
vertices are coplanar.

Proposition 3. The constraints are dependent if the gradient vectors of the
equations at the witness, i.e. the Jacobian matrix at the witness, are dependent.
Computing a basis of this Jacobian is enough.

Some simple examples of 3D configurations where the witness method detects
dependences (unlike graph-based methods) are given in Figure 3. The leftmost
configuration is classical, and is known as the double banana. The dependence
in the double banana was already detected by a classical numerical probabilistic
method [16], which the witness method encompasses. The systems of geometric
constraints resulting from Ortuzar’s three configurations are dependent; their
dependence is not structural, graph-based methods can not detect it.
It is possible to tune pure graph-based methods to make them detect the sim-
plest dependences (e.g. [1, 24, 25, 26]). But, the universal theorem turns the
problem of detecting all kinds of dependences into an intractable one.

4.3. Example of non-structural dependence

C

OB A

Figure 4: Example of dependent constraints.

Let us consider an example of dependence detection by witness interroga-
tion. Suppose that we have four 2D points A,B,C, and O with the following
constraints: (i) the distance OA is specified by a parameter u, (ii) O is the
middle of the segment AB, (iii) distances OC and OA are equal, and (iv) AC
and BC are orthogonal (see Figure 4). This last constraint results from the
previous ones, this is due to a geometric theorem: if C lies on the circle with
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diameter AB, then AC and BC are orthogonal.
These constraints result into the system of equations:

e1 : 2xO − xA − xB = 0

e2 : 2yO − yA − yB = 0

e3 : (xC − xO)
2 + (yC − yO)

2 − (xA − xO)
2 − (yA − yO)

2 = 0 (2)

e4 : (xC − xA)(xC − xB) + (yC − yA)(yC − yB) = 0

e5 : (xA − xO)
2 + (yA − yO)

2 − u2 = 0

A possible witness for this system of constraints is: O = (0, 0), A = (−10, 0), B =
(10, 0), C = (6, 8), u = 10. Table 4 displays the Jacobian and a basis of the free
infinitesimal motions: three displacements and a flexion, point C can rotate
around point O. The rank of e′1, . . . e

′
5 computed at the witness is 4, thus

equations are dependent. We point out that this system is structurally well-
constrained as graph-based methods cannot detect the dependence. Table 4 is
divided in two parts only for the sake of presentation.

Every geometric theorem can be used to generate a system of geometric con-
straints which contains non-structural dependences: translating into constraints
the hypotheses and the conclusion (or a negation of the conclusion) of the theo-
rem gives a dependent system. Section 4.7 shows that all kinds of dependences
can be detected, as far as a typical witness is available. However, if the conclu-
sion is denied, and if the conclusion is a collinearity or another incidence (more
generally, a constraint that the witness must fulfil), then no witness can exist
due to the contradiction, and the witness method does not apply.

4.4. Minimal dependent set of constraints

If the constraints are dependent, then the interrogation of the witness per-
mits to find the smallest dependent set of constraints: this information is rel-
evant to the user who can fix the mistake more easily even in a large system
of constraints. This problem reduces to finding the minimal dependent set in a
dependent set of vectors (they are the gradient vectors of the equations at the
witness). We assume that the rank of the dependent set is its cardinal minus
one: the last vector we try to add in the basis reduces to the null vector. In such
a case, the minimal dependent set is unique; to find it, just try to remove each
vector in the dependent set; if the set minus this vector is still dependent, then
remove this vector. The remaining set of vectors is then the minimal dependent
set. This greedy method can be proved with the matroid theory.

4.5. Flexibility test: is the system flexible?

Proposition 4. A system of geometric constraints is flexible iff the basis of
the kernel of the Jacobian at the typical witness (i.e. the basis of infinitesimal
motions) contains vectors outside the vector space generated by the basis of the
infinitesimal displacements.

16



For instance, in the classical configuration of the double banana, the two
bananas can rotate around the axis through their two common vertices; the
corresponding infinitesimal flexion is detected by the method. If the system
is flexible, then the witness method can provide a basis of the infinitesimal
deformations, and the set of maximal rigid subparts.

4.6. Rigidity test: is a part rigid?

A flexible system can contain rigid parts. A part is described by a subset Y
of the unknowns. On Table 1, each variable corresponds to a column, and a
part Y is thus a subset of columns.

Proposition 5. A part Y is rigid iff the vector space M [Y ], the free infinites-
imal displacements in the columns Y , is equal to the vector space D[Y ], the
free infinitesimal displacements in the columns Y . Components of M [Y ] are ob-
tained by taking only the columns Y in the vectors of the basis of M . Similarly,
components of D[Y ] are obtained by taking only the columns Y in the vectors
of the basis of D.

For instance, in the system defined by equations (1) and Table 2, Y =
{x, y, a, b, c, a′, b′, c′} is rigid, but Y ∪ {x′, y′} is flexible: it does not depend
on the basis chosen for M and D. In the system defined by (2) with the Ja-
cobian and a basis of infinitesimal motions shown on Table 4, the part Y =
{xO, yO, xA, yA, xB, yB} is rigid, while Y ∪ {xC}, Y ∪ {yC}, and Y ∪ {xC , yC}
are not rigid. Again the rigidity is independent of the chosen basis.

4.6.1. Are A and B relatively fixed?

A flexible system can fix some pairs of geometric elements (two points, two
lines, one point and one line, etc) relatively to each other. Actually, the previous
section already provides a decision procedure.

Proposition 6. Two geometric elements A and B are relatively fixed by the
(possibly flexible) system if the part Y = A ∪B is rigid.

4.7. All kinds of dependences are detected

This section proves that the witness method detects all dependences in al-
gebraic systems, including non-structural dependences due to known or un-
known geometric theorems. Structural dependences are due to trivial theo-
rems, they are detected as well; an example of a structural dependence is the
over-constrainedness in f(x, y, z) = g(z) = h(z) = 0, where (x, y, z) ∈ R3.
All geometric theorems (Pappus, Pascal, Desargues, their duals, etc.) rele-
vant to geometric constraint solving are algebraically expressed by the fact that
f1(x) = . . . fn(x) = 0 ⇒ g(x) = 0; here the fi(x) = 0 express the hypothesis of
the theorem, and g(x) = 0 is its conclusion.

Algebraically, there are two possibilities for an algebraic equation g(x) = 0
to be a consequence of other algebraic equations f1(x) = . . . fn(x) = 0. This
depends on whether g is in the ideal or in the radical of (f1, f2, . . . fn). In both
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cases, the witness interrogation detects some linear dependence in the Jacobian
of the typical witness. These two possibilities are defined by the following two
theorems.

Theorem 1. if g is in the ideal of (f1, f2, . . . fn), then the gradient vector of
g at every common root x of f1, f2, . . . fn is dependent on the gradient vectors
f ′
1(x), . . . f

′
n(x).

Proof. Let F = (f1, f2, . . . fn) be the polynomials of some algebraic system
F (x) = 0. Let g be a polynomial lying in the ideal generated by f1, f2, . . . fn.
Then, by definition, there are polynomials λi such that g = λ1f1 + . . .+ λnfn.
Let x be a root of F ; then x is also a root of g: f1(x) = . . . = fn(x) = 0 ⇒ g(x) =
λ1(x)f1(x) + . . .+ λn(x)fn(x) = 0. After deriving we get g′(x) = λ′

1(x)f1(x) +
λ1(x)f

′
1(x) + . . . λ′

n(x)fn(x) + λn(x)f
′
n(x) = λ1(x)f

′
1(x) + . . . λn(x)f

′
n(x). The

gradient vector of g at x lies in the vector space spanned by the gradient vectors
f ′
1, . . . f

′
n of F (in other words, g′(x) does not cut F ′(x)) transversally. �

Theorem 2. if g is in the radical of (f1, f2, . . . fn), but not in the ideal, then
gradient vectors f ′

1(x), . . . f
′
n(x) are linearly dependent at every common root x.

Proof. The other possibility for the vanishing of g to be a consequence of the
vanishing of f1, . . . fn, is that g lies in the radical generated by (f1, . . . fn), i.e.
there is an integer k ≥ 2 such that gk lies in the ideal generated by (f1, . . . fn).
Here, the fact that g is in the radical of (f1, . . . fn) does not imply that the
gradient vector of g at a root x of (f1, . . . fn) lies in the vector space spanned
by the gradient vectors F ′ of F (e.g. g(x, y) = y, k = 2, f1 = x2 + y2 − 1,
f2 = x2−1, so gk = f1−f2). But it implies that the gradient vectors of f1, . . . fn
at a common root x are linearly dependent: deriving −gk +

∑
λifi = 0 yields

−kgk−1g′ +
∑

λ′
ifi +

∑
λif

′
i = 0. If x is a common root of (f1, . . . fn), it is also

a root of g. Accounting for the fact that k ≥ 2 (i.e. g is in the radical and not
in the ideal), we obtain

∑
λi(x)f

′
i(x) = 0. Thus the f ′

i(x) are dependent. �

5. Decomposition based on a typical witness

When combined with graph-based methods, the witness decision procedures
of section 4 are sufficient to decompose systems of geometric constraints. Actu-
ally it is even possible to rely only on the witness to define a new decomposition
method, such a new method uses the notions of anchors and maximal rigid parts
presented below.

5.1. Anchors: rigid and full DoD parts

Definition 10. An anchor Y ⊂ X is a part which is rigid and has full DoD: the
vector space of its free motions is equal to the vector space of the infinitesimal
displacements; moreover the anchor has minimal cardinality, either in the geo-
metric sense: the anchor is a set of geometric elements (points, lines, planes),
or in the algebraic sense: the anchor is a set of variables.
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Anchors are used as seeds when computing the maximal rigid part containing
an anchor (see Section 5.2). In 2D, a geometric anchor can be two points within
a distance fixed by the system (directly or not), but an anchor cannot be only
one point, e.g. in Figure 5 the set {A,B} is an anchor. An anchor can be a line
and a non-incident point. It can also be made of three secant non-concurrent
lines, etc. In 3D, a geometric anchor can be three points positioned within three
distances fixed by the system. It cannot be a segment as we have seen that the
DoD of a segment in 3D is not 6 but 5. Clearly a configuration contains only a
polynomial number of geometric anchors. Every geometric anchor contains an
algebraic anchor.

An algebraic anchor contains r = 3 variables in 2D, and r = 6 in 3D. There is
a polynomial number O(|X|r) of potential algebraic anchors in the system with
variables X (|X| is the cardinal of X). To find algebraic anchors, just check for
all O(|X|r) potential anchors that they are rigid and have full DoD. We have
no space to mention optimizations, but this is polynomial time anyway.

For example, in 2D, a possible algebraic anchor is the set of variables x1, y1, y2,
iff the distance between the points (x1, y1) and (x2, y2) is directly or indirectly
fixed by the system; this anchor does not use x2. Note that variables in an
algebraic anchor can be assigned null values. Similarly, in 3D, a possible an-
chor is the set of variables x1, y1, z1, y2, z2, z3 if the three distances are fixed
(directly or indirectly) by the system. The previous definition of algebraic an-
chors is geometrically counter intuitive, since it breaks geometric elements into
variables.

5.2. MRPs: maximal rigid parts

Definition 11. A part Y ⊂ X is an MRP iff Y is rigid and there is no Y ′ ⊂ X
such that Y  Y ′ and Y ′ is rigid.

For instance, Y = {x, y, a, b, c, a′, b′, c′} is an MRP for the configuration given
by Figure 2, system (1), and Table 2. We denote MRP(E) the maximal rigid
part that includes E. This definition makes sense only if E is an anchor (i.e. E
is rigid and has full DoD).

B
A

A

B B

A

Figure 5: A 2D rigid system of constraints. Removing a constraint creates a flexible system
with two Maximal Rigid Parts (MRP). In the three figures, the MRP(A,B) is in solid lines.

Figure 5 gives examples of MRPs and their computation: starting from the
rigid configuration on the left subfigure, removing one constraint will give the
MRP that includes the anchor defined by points A and B, so depending on the
position of these points, the MRP (A,B) will be the one in the middle or the
one in the right subfigures.
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If a part Y is rigid and has full DoD, then Y is an anchor, it is contained
in a unique (MRP ) defined by a set of variables R. R is computed using the
following greedy method: initialize R with Y , and for each variable x ∈ X − Y ,
if Y ∪ x is rigid, then insert x in R (the test: if Y ∪ x is rigid, can be replaced
by the test: if R ∪ x is rigid).

The set Ω of all maximal rigid parts is initialized to ∅. For all potential
anchors A, if A is not already included in an MRP in Ω, then insert MRP(A)
in Ω. The number of MRP is polynomial: there is only one MRP per anchor,
and the number of potential anchors is polynomial. Thus this method is poly-
nomial time. Usually the number of MRPs is much smaller than the number
of potential anchors.

5.3. The decomposition method

A decomposition method, which relies only on the witness without any com-
bination with graph-based methods, considers the array of the Jacobian and the
basis of free infinitesimal motions, and works as follows: if the configuration is
flexible, the method finds its maximal rigid parts (MRP), if the configuration is
rigid, the method removes each constraint in turn in order to make it flexible,
and then computes the MRPs. Some book-keeping may be needed to avoid
finding the same MRP several times over, but even without book-keeping the
method is polynomial time. Once the decomposition is available, any classical
method can be used to plan the resolution, e.g. the C-tree method [6].

6. Typicality of the witness

6.1. Detecting Degeneracies in the witness

Degeneracies are detectable automatically or by the user’s visual inspection.
The method to detect degeneracies in the witness is straightforward: for in-
stance, to detect collinearities of 3 vertices, it is enough to test the collinearity
of all triples of vertices in the witness. In practice, we dot not search the 6
points on the same conic and the 10 points on the same quadric degeneracies:
the test is terribly costly and useless.

6.2. Atypicality test

The witness method relies on the assumption that the witness is typical. This
section discusses typicality. Examples of 2D atypical witnesses are witnesses
with three collinear points, or four cocyclic points, or six points on the same
conic, etc, when these features are not due to the constraints, and thus do not
occur in the target. In practice, atypical witnesses make the witness method
fail.

Consider the simplest case of a triangle specified by its three lengths in 2D.
In an atypical witness, the three vertices P0, P1, P2 defining this triangle are
collinear. The Jacobian of the atypical witness has rank 2, while the Jacobian
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of the typical witness has rank 3. The collinearity of P0, P1, P2 is expressed by
the vanishing of the polynomial p(XW ) where

p(x) =

∣∣∣∣∣∣
1 x0 y0
1 x1 y1
1 x2 y2

∣∣∣∣∣∣ = x1y2 − x2y1 − x0y2 + x2y0 + x0y1 − x1y0

The gradient vector p′(XW ) of the equation p(x) = 0 at the witness is given
in Table 5. This gradient does not lie in the vector space generated by the

x0 y0 x1 y1 x2 y2
p′ y1 − y2 x2 − x1 y2 − y0 x0 − x2 y0 − y1 x1 − x0

Table 5: The gradient vector of the equation expressing the collinearity of three points Pi =
(xi, yi), i = 0 . . . 2. Variables are replaced by their values in the witness.

gradient vectors of the Jacobian of the system, whatever the witness (except
if P0 = P1 = P2), thus the collinearity is not due to the constraints, but to
the atypicality of the witness. For the very atypical witness with three equal
vertices P0 = P1 = P2, the same test applies and shows that these degeneracies,
for instance p(x) = x0 − x1 = 0, are not due to the constraints but to the
atypicality of the witness.

The atypicality test applies for all degeneracies in the witness, e.g. equality
of two vertices, collinearity of three vertices in 2D or 3D, coplanarity of four
vertices in 3D, cocyclicity of four coplanar points, etc. Each kind of degener-
acy is expressed with a specific coordinate-independent polynomial p(XW ) = 0.
Assume that the Jacobian F ′(XW ) has full rank, i.e. redundant equations have
been removed: if p′(XW ) does not lie in the vector space of F ′(XW ), then the
degeneracy p′(XW ) = 0 is surely due to the witness, and not to the constraints:
the witness is atypical beyond doubt, this follows from the proof in Section
4.7, first case: p does not lie in the ideal of F ; thus the vanishing of p(XW )
is accidental and so the witness is atypical. On the other hand, if p′(XW ) lies
in the vector space of F ′(XW ), then the degeneracy p′(XW ) = 0 is probably
due to the constraints and not to the witness, so the witness is probably typi-
cal. In this case, the confidence and the witness method are only probabilistic.
This probabilistic confidence costs polynomial computational time: determinist
proofs cost at least exponential computational time. Schwartz’ method [20, 21]
uses the same kind of probabilistic argument and features the same asymmetry:
a given polynomial is probably identically zero when it vanishes at a random
value chosen independently of the polynomial, and it is surely not identically
zero when it does not vanish.

6.3. Perturbing the witness to make it typical?

Let XW be the initial witness. Choose a random vector T with unit norm
in the vector space of the free motions of the witness. Possibly replace T with
its component perpendicular to the space of infinitesimal displacements. Then
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A BO

D

O A=B

D

Figure 6: This system, due to C. Jermann [24], is built in order to have two kinds of solutions
– thus two kinds of typical witnesses. Constraints are: points O,A,B are collinear, distances
OA and OB are equal and specified, distances DA and DB are equal and specified. The left
solution is rigid, the right one is flexible.

perturb XW into X = XW + ρT where ρ is a step size similar to the prediction
step of prediction-correction methods. Finally correct X with some Newton-
Raphson iterations until it lands on the solution set to get the new witness.
Apply this prediction-correction steps several times to remove all degeneracies
specific to the atypical witness.

This perturbation method is polynomial time and can be displayed, which
permits users to see the free flexions of the configuration, and it gives them
an opportunity to formulate new constraints. A drawback of the perturbation
scheme is that it is intrinsically a numerical method that uses approximate
computations: starting from a rational witness, the perturbed witness is no
more rational. The possibility to deform an initial atypical witness randomly,
continuously and successfully to make it typical is an open question.

6.4. Solution sets heterogeneous in dimension

Most of the time, degeneracies of a typical witness also occur in the target,
since they are due to the constraints. However, this does not hold in some
very exceptional cases, when the solution set of the system is heterogeneous
in dimensions – like for instance the Whitney umbrella in 3D which contains
one curve and one surface. Fig. 6, due to Christophe Jermann from Nantes
University in France, gives an admittedly very artificial example of such a system
for which both rigid, and flexible solutions are available. When the witness
and the wanted target are not of the same type, though typical, the witness
is not typical of the target. Detecting that a solution set is, exceptionally,
heterogeneous in dimensions is a difficult task.

7. Conclusion

Classical graph-based methods for decomposing systems of equations or con-
straints have intrinsic limitations: they do not detect all dependences between
constraints. This paper proves that the witness method overcomes this limita-
tion if a typical witness is available. It shows how to interrogate the witness,
and how all computations reduce to the polynomial time computation of the
rank or a base of a set of numerical vectors. It proposes a test to detect atypical
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witnesses. The paper provides answers to some essential questions for geometric
constraints, but other questions are still under investigation: e.g. which method
can be used to generate a typical witness? Does it make sense to consider only
rational witnesses? Is it possible to use approximations (i.e. floating-point
coordinates, or intervals) to represent witnesses?
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