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ABSTRACT

Polynomial ranges are commonly used for numerically solving poly-
nomial systems with interval Newton solvers. Often ranges are
computed using the convex hull property of the tensorial Bernstein
basis, which is exponential size in the number n of variables.

In this paper, we consider methods to compute tight bounds for
polynomials in # variables by solving two linear programming prob-
lems over a polytope. We formulate several polytopes based on
the tensorial Bernstein basis, and we formulate a polytope for the
quadratic patch Qp := (xl,...,xn,x%,..., x%,xlxz.,...,xn,lxn) by
projections. This Bernstein polytope has @(nz) hyperplanes. We
give the number of vertices, the number of hyperplanes, and the
volume of each polytope for n = 1,2,3,4, and we compare the
range widths computed with all of them for random n-variate poly-
nomials with n < 10. The Bernstein polytope of polynomial size
gives only marginally worse range bounds compared to the range
bounds obtained with the tensorial Bernstein basis of exponential
size.

Categories and Subject Descriptors

G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations; G.1.6
[Numerical Analysis]: Optimization

Keywords

polynomial ranges, Bernstein polynomials, multivariate polynomi-
als, polytopes

1. INTRODUCTION

Ranges of polynomials and properties of tensorial Bernstein bases
are typically used for numerically solving polynomial systems with
interval Newton solvers. These solvers require tight ranges of the
Newton map N(x) = x — P(x)(P'(m)) ™!, containing multivariate
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polynomials over an n-dimensional domain D with center m. Pop-
ular methods in CAD-CAM for intersecting Bézier or piecewise
algebraic curves and surfaces are examples for them.

In this paper, we consider the problem of computing a tight range,
i.e., a lower bound and an upper bound, of a given multivariate
polynomial p(x), x € [0, 1]" with total degree of at most 2.

Several authors proposed to use properties of the tensorial Bern-
stein basis for computing ranges of polynomials p(x) with x €
[0,1]". The general case X in [a,b] = {x € R" | a; < x; < b;} can
be reduced to the case with x in [0,1]" by scaling the variables
X; = a; +x;(b; — a;). The polynomial is expressed in the tensorial
Bernstein basis, and due to the convex hull property, the smallest
coefficient is a lower bound, and the largest is an upper bound for
the range. This method can be improved, when it is considered
as polytope-based. With polytope-based methods, we denote the
class of methods, which solve for the lower bound and for the up-
per bound with linear programming over a polytope. The polytope
is a bounded, convex set containing the feasible points for the linear
programming problem. Different polytopes of different dimension
can be considered, and the aim of this article is to define and com-
pare them. As far as we know, it is the first article, which discusses
polytopes related to Bernstein polynomials. Polytopes related to
Chebyshev polynomials have been used in the PhD thesis of O.
Beaumont [1].

For conciseness, non-polytope-based methods are not discussed,
and the reader is referred to [8] for a presentation and a comparison
of interval methods for computing ranges of bivariate polynomials.

We consider only quadratic polynomials here. In principle, all
arbitrary degree polynomials can be reduced to quadratic systems
using auxilliary variables and equations, although the performance
implications of this are yet to be analyzed. Large classes of geo-
metric constraint systems are quadratic. Furthermore, it is possible
to extend the polytopes defined in this article to higher degrees.

The paper is organized as follows. Section 2 gives the defini-
tions of tensorial Bernstein bases and introduces the reader to the
complexity issues of range computation. Section 3 presents the
standard convex hull method for computing polynomial ranges and
provides a polytope-based formulation. It is possible to shrink this
polytope, and Section 4 presents the convex hull method based on
this shrinked polytope. Section 5 uses the convex hull of the con-
trol points of the quadratic patch, defined by the canonical basis
functions. All these polytopes have an exponential complexity in
terms of n: both their number of vertices and their number of hyper-
planes is at least exponential in the number 7 of variables. Section
6 presents a polytope with a polynomial number of hyperplanes,
derived from the polytope in Section 5 by projections. Using linear
programming in polynomial time, this polytope permits to com-



pute tight ranges of polynomials, which are sharper than the ones
provided by interval analysis.

2. COMPLEXITY ISSUES

According to a theorem by Gaganov [5], computing an €-accurate
range of a polynomial is NP-hard. A consequence is that there is no
geometric basis for quadratic polynomials providing tight ranges:
the polynomials of such a geometric basis are non-negative for
x € [0,1]", and their sum equals 1 for any x. It is possible to derive
a geometric basis from a simplex enclosing the patch

2 2 n
Qn = (x17"'7xﬂ>'xl7"'7xn7x1x27~"7xn71x71)7 X e [071} .

Assume the smallest simplex enclosing Q, is known. Then the
smallest and greatest coefficient of a quadratic polynomial in the
basis derived from this smallest simplex gives a range of the poly-
nomial. Moreover, this method is polynomial time since there are
only O(nz) coefficients to compute. The obtained range can not
be tight, because it would contradict Gaganov’s theorem, which es-
tablishes the NP-hardness of computing an €-accurate range of a
polynomial.

Linear programming has polynomial time-complexity [9]. In
practice, interior-point methods and simplex methods are polyno-
mial time. In some exceptional situations similar to Klee-Minty,
the number of iterations can be exponential (2"), for both kinds of
methods [2]. The ellipsoid method is polynomial time in the worst
case [9] but it is not competitive in practice. No strongly polyno-
mial algorithm is currently known, and it is still unknown whether
linear programming is strongly polynomial or not.

2.1 Tensorial Bernstein Bases
(d)

i

The d + 1 Bernstein polynomials B
degree-d, univariate polynomials

de) (x) = <d> X(1 —x)d_i

of degree d are a basis for

1

The conversion with the canonical basis (xo,x1 - ,xd)

mapping. Classical formulas [3] are

is a linear

d
O=1= ZBI(.d) (x) i.e., their sum equals 1.
i=0

DEFINITION 1. For each univariate polynomial p(x) of degree
d, there exists an univariate Bernstein representation, i.e., coef-
ficients p; € R so that p(x) =Y, p; Bl(-d> (x) is a linear combination
of the Bernstein basis functions.

The Bernstein basis functions sum to 1, and every Bl(d) () is non-
negative for x € [0,1]. These properties imply that for x € [0,1],

p(x) =Y, pi Bid> (x) is even a convex combination of the coeffi-
cients p;. For a polynomial p(x) over x € [0, 1], its value p(x) lies
in the convex hull of the control points p; € R, which is just the
interval [min p;, max p;]. This enclosure is tight.

DEFINITION 2. For control points p; € R", p(x) describes a
Bézier curve in R", and the curve p(x), x € [0,1] lies inside the
convex hull of its control points p;.

Since x = 0- B (x) + 1/d - B\ (x) + 2/d - BV (x) + ...d/d -
B‘(;” (x), the function graph (x,y = p(x) =Y, p;i Bgd) (x)) for x €
[0, 1], lies in the convex hull of its control points (i/d, p;) € R>.

Fori=1,...,d — 1, the maximum ofBl.d (x) occurs at x =i/d

and equals de)(i/d). Later, this property makes possible some
improvements of the enclosures given by the convex hull of control
points. In the following, we denote the Bernstein polynomials of
degree 2 by BY (x) € [0,1], B (x) € [0,1/2], B (x) € [0,1] for
x € [0,1]. If the degree superscript is omitted, we assume degree 2
implicitly.
For multivariate polynomials, a Bernstein basis can be constructed

using the tensorial product (7BB) of univariate Bernstein basis func-
tions

(BY (1), B (1)) x (B (1), B (12)) ..

For notation, it is convenient to use a multi-index = (Qy,...,0) €
[0:d]".

DEFINITION 3. For a multi-index @ € [0 : d]", the correspond-
ing multivariate Bernstein basis function (of degree d) is de-
fined by Ba(x) := Ba, (x1) - - Ba, (xn). For each multivariate poly-
nomial p of maximum degree d, there exists a multivariate Bern-
stein representation, i.e., coefficients pa € R, a € [0 : d]" so that
p(x) = Laco.qy Pa Bg) (x) is a linear combination of the Bern-
stein basis functions.

The convex hull property extends to the TBB, which provides
tight enclosures of multivariate polynomials p(x), x € [0, 1]".

In algebraic geometry, the multivariate polynomials of total de-
gree d are very important.

DEFINITION 4. Let p(X) = Lac(0.q) Pa x0T Xy be a multi-
variate polynomial in X = (x| ...,xs). If there is an @ with o; = d
and pa # 0, we say the multivariate polynomial p has maximum
degree d. In case pa =0 for alla, oty + ...+ 0y > d, we say the

multivariate polynomial p has total degree d.

Note that the vector space of quadratic polynomials in n variables
X1,...,%n (i.e., total degree 2) has dimension 1 +n+ (n+1)n/2 €
O(n?). This is actually the class of polynomials, we work with in
the rest of the paper. But the smallest polynomial space with a TBB,
containing them, is the space of polynomials of maximum degree
d. Unfortunately, this space (and the tensorial Bernstein basis) has
dimension ®((d + 1)"), which is exponential in the number n of
unknowns, even for linear systems (d = 1). It is not a problem in
CAD-CAM, where n is small (e.g., computing the intersection of
three surfaces in 3-space), but the exponential size is a problem
for solving polynomial systems with a large number n of variables
(e.g., computing the coordinates of points with specified distances).

3. CONVEX HULL RANGE

The range of p(x), x € [0,1]" is given by the convex hull of the
control points of p in the TBB

(Bo(x1),B1(x1),B2(x1)) X ... X (Bo(%n), B1(xn), B2 (xn))

This simple method is used for example in [6, 8, 10].

The method expresses the polynomial p in the TBB as p(x) =
Y @ Pa Ba(x), where o is a multi-index. The smallest coefficient
Pa is a lower bound for p(x), x € [0,1]". The greatest coefficient
Ppa is an upper bound for p(x), x € [0, 1]".

This method does not need linear programming but it is worth to
formulate it as a polytope-based method.



For n = 1, one variable x = (x1): The algebraic patch (Ag =
Bo(x1),A = Bj(x1),A2 = Ba(x1)), where x; € [0, 1], is enclosed in
the triangle defined by Ag +A; +A, = 1 and all A; are non-negative.
See Figure 1, left.

Similarly, consider n = 2 and x = (x,x»). The algebraic patch

By := (A == Bi(x1)B;(x2)), (i, j) € {0,1,2}%, x € [0,1)*

is enclosed in the simplex with points (Aqp, ..., A7), which fulfill
0 < Ayj for (i,j) € {0,1,2}* and 1 = ¥; ; Ay

Clearly, max Zi,j pij;\'ij = maxpij, and minZi‘j p,‘j)u,'j = min Pij»
where p;; is the coordinate of basis function B;;(x,x2).

For n =3 and x = (x1,x2,x3), the coordinates of the simplex are
Aiji where (i, j, k) € {0, 1,2}3. Again, all A jx are non-negative and
their sum equals 1.

For arbitrary n, the simplex has 3" vertices, and 3" hyperfaces,
and it is (3" — 1)-dimensional. This method for computing the
range of p(x), x € [0,1]" is exponential time. It is not practicable
for large n due to the exponential number 3" of coefficients in the
tensorial Bernstein basis. Note that the vector space of quadratic
polynomials in n variables xp,...,x, has dimension 1 +n+ (n+
1)n/2 € O(n*), which is much smaller than 3",

This polytope formulation seems to be useless at first glance but
it makes possible a new improvement in the next section.

Notice that 3, contains also polynomials x%xz, x%x%, xlx% that are
not quadratic anymore. It is possible to formulate these properties
explicitly in terms of the p;;. Consider the quadratic polynomial
p(x1,x2). It is written

2 2 .
plrix) =Y Y cijxix)
i=0j=0
in the canonical basis, with ¢12 = ¢31 = ¢ = 0. In matrix notation
p(x1,x2) = (1,x1,x3)C(1,x2,x3)" with the 3 x 3 coefficient matrix
C = (cij)i,j=1..3 with respect to the canonical basis. In the TBB,
px,y)=Y2, ):5:0 pijBi(x1)B(x2) has matrix notation

p(x1,x2) = (Bo(x1), B1(x1), Ba(x1)) P (Bo(x2), Bi(x2), Ba(x2))’

with the 3 x 3 coefficient matrix P = (p;;) with respect to the ten-
sorial Bernstein basis. Moreover,

(Bo(x1), Bi(x1), Ba(x1)) = (1, x1, 1) T

and
1 0 0
T=| -2 2 0
1 -2 1

With C = TPT', it follows

c12 = (=2poo +2p10) —2(—2po1 +2p11) + (—2po2 +2p12) =0
c21 = —2(poo — 2p10+ p20) +2(po1 —2p11 +p21) =0
22 = (p20 — 2p10 + p20) — 2(po1 — 2p11 + pat)

+(po2 —2p12+p22) =0

These equations concern the p;;, i.e., the coefficients of the linear
objective function };; Aijpij» and not the polytope ;. Thus they
do not seem to be helpful. For an illustration, consider the polytope
B; in three dimensions or beyond. Then the gradient of the linear
objective function to be minimized or maximized must be horizon-
tal, i.e., only the first two coefficients are non-zero. This would be
interesting if we would be able to compute the projection of the
polytope B, on the horizontal plane.

);u AL ‘ ;\u A1
Figure 1: Left: The patch (By(x),B(x),Bz(x)),x € [0,1] is a
curve. It is enclosed in a triangle (Ag,A;,2;) with 0 < A; and

Ao + A1 + A = 1. Right: The polytope is truncated with the
inequality constraint A; < 1/2.
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Figure 2: Left: Three control points of the parabola
(xiyxii = xlz) Right: Three-by-three control points of the patch
(Xi, %, %ij = XiXj)-

4. SHRINKED CONVEX HULL RANGE

The second method for computing ranges of polynomials uses a
truncated variant of the previous simplex. We call it the shrinked
convex hull. After shrinking, the polytope is not a simplex any-
more.

Forn=1, i.e., one variable x = (x): p(x1) = poBo(x1) +p1B1(x1)
+p2By(x1), and the simplex is the set of points (Ag,A,A,), where
all ; are non-negative and their sum equals 1. This simplex en-
closes the patch (By(x1), B1(x1), B2(x1)) where x; € [0,1]. Note
that By (x1) < 1/2 so A; < 1/2. The previous simplex (Ag,A1,A2),
which is a triangle, can be shrinked to a quadrilateral (Figure 1,
right).

Forn=2and x = (x1,x;) itis By (x1)(Bo(x2) + B1(x2) + B2 (x2))
= Bj(x1) < 1/2. Thus we can add the linear inequality constraint
Ao+t +Ai2 <1/2. Similarly, (Bo(x1) +Bi (x1) +Ba(x1))B1(x2)
=B (x3) <1/2canbe expressed as Ag; +A11 +A2; < 1/2. Finally,
Bi(x1) <1/2,B1(x2) < 1/2 = By(x1)B1(x2) < 1/4, thus we can
add the linear inequality constraint Aj; < 1/4. These three linear
inequality constraints truncate the initial simplex and thus tighten
the range bounds of polynomials.

For n =3 and x = (x1,x,x3), we can shrink the simplex with
seven linear inequality constraints: ¥, Y ;A < 1/2, ;XA <
/2, %Y hijt <1/2, %M < /4,5 Ma < 1/4, XM < 1/4,
and >\.111 < 1/8.

The generalization for arbitrary n is simple. It generates 2" — 1
linear inequality constraints. The volume of the polytope decreases,
which narrows the range bounds of polynomials. The size of the
linear programming problems is still exponential in the number n
of variables.



5.  ENCLOSING oy

The quadratic patch Q, is enclosed in the convex hull of its con-
trol points. We denote the problem variables as follows, x;; for xl-2,
and x;; for x;x; (1 <i< j <n). The representation of Q, has 3"
control points: The control points for x; are 0, 1/2, or 1. The control
points for x;; are 0 for x; = 0 and x; = 1/2, and 1 for x; = 1. Figure
2 shows the control points for the parabola (x;,x;; = x,~2), The patch
(xi,xj,X;; = x;xj) can be represented as the tensor product of three
line segments. Figure 2 shows the nine control points of the patch
(xi,xj, X = xix).

For n = 2, the 3% = 9 control points q; are

X1 X2 X1l X2  X12
@] 0 0 0 0 0
©| 0 12 0 0 0
G| 0 1 0 1 0
@|1/2 0 0 0 0
qs | 1/2 1/2 0 0 1/4
@|1/2 1 0 1 1)2
@w| 1 0o 1 0 0
s | 1 12 1 0 1)2
|1 1 1 1 1

We compute properties of these polytopes for n < 4.

n=

1 2 3 4
nb. coordinates 3 6 10 15
nb. vertices 3 9=32 27=3° 81 =34
nb. hyperfaces 3 18 173 46068

1 1 47 375533
volume q 96 645120 4637432217600

0.25 1.0416e-2 7.285e-5 8.098e-8

The convex hull polytope of the 3" control points q; of Q,, is de-
fined by 3" variables A;, i € [1:3"]. It is the set of points Z?;l i,
where all A; are non-negative, and their sum equals 1.

For the range of

2
px) =Y aii+ )
i {Gnli<j}
we determine the vertex of the previous polytope (the convex hull

of the control points of Qy), which minimizes and maximizes the
corresponding linear objective function

Zaixii+ Z bjjxij +Zcixi+d
i {G@Nli<j} i

bjjxix; +Zcixi +d,
i

with variables A;, (X1, ..., X0, X11, .- Xun, X12, - - s Xn—10) = ):?l] Aiqi
and constraints 0 < A;, Z?;l Ai=1.

We do not discuss shrinking this convex hull as it still incor-
porates an exponential number n of variables. But the polytope
inspires the practicable polytope of the next section.

We give the number of hyperfaces of these polytopes for n < 4,
computed with the program /rs by D. Avis. Of course, the number
of hyperfaces is always greater than 3".

6. BERNSTEIN POLYTOPE

The Bernstein polytope P, was introduced in [4]. The quadratic
patch 9y is enclosed in a polytope with a quadratic number of hy-
perplanes.

The projection of the patch Q, to the plane (x;,x;;) is enclosed
in a triangle (or in a quadrilateral), see Figure 3. The projection of
Qu to the subspace (x;,x;,x;;) is enclosed in a tetrahedron (Figure

4). This tetrahedron is optimal, i.e., it can not be shrunk. It is the
convex hull of the projection of Qj, to the subspace (x;,x;,X;;).

0 BQZ() 10 1

Figure 3: Left: The Bernstein polytope encloses the curve
(x,y=x%) for (x,y) € [0,1]*. Its bounding halfspaces are By (x) =
(1—x)?>=y—2x+12>0, Bj(x) = 2x(1 —x) = 2x—2y > 0,
By(x) = x> =y > 0. Right: A fourth constraint (x —1/2)> =
X —x+1/4>0—y—x+1/4>0.

00

Figure 4: The Bernstein polytope enclosing the surface patch
(x,y,z = xy). Then the inequalities of bounding halfspaces are

linearizations of Bgl)(x)Bgl)(y) >0 with i =0,1, j =0,1. For

instance, B(()l)(x)BéU(y) =1-x)(1-y)=1—x—y+xy>0—
l—x—y+z>0.

For small n < 5, Irs can explicitly compute the Bernstein poly-
tope. The following table gives the projective dimension (i.e., the
number of homogeneous coordinates, subtract one for the affine di-
mension), the number of hyperplanes, the number of vertices, and
the volume. An entry "?" denotes that the program was stopped
after considerable time.

n—=
1 2 3 4

Pn
nb. coordinates 3 6 10 15
nb. hyperfaces 3 10 21 36
nb. vertices 3 14 116 1688
volume % & ﬁ ?

0.25 0.016 0.000372




n=
1 2 3 4
P
nb. coordinates 3 6 10 15
nb. hyperfaces 4 12 24 40
nb. vertices 4 28 464 17744
volume 3 a4 . ?
16 120 3440640
0.1875 0.0083 0.000113
P
nb. coordinates 3 6 10 15
nb. hyperfaces 4 13 27 46
nb. vertices 4 26 525 42307
volume % % ? ?
0.1875 0.007096

It is possible to shrink this polytope further by adding linear in-
equality constraints. For instance, the triangle in the plane (x;,x;;)
can be shrunk further by the inequality (x; — 1/2)% = x? —x; +
1/4 >0 — x;; —x; +1/4 > 0 into a quadrilateral. We denote the
resulting polytope by P’,,.

Similarly in subspaces (x;,x;,%;;), (x; ij)z >0 — x;; — 2%+
xjj > 0 for i < j provides a non-redundant inequality, which trun-
cates the Bernstein polytope. We call the resulting polytope P’ .

7. EMPIRICAL COMPARISON

We measure the average width of the ranges of 100 random poly-
nomials of total degree 2 by linear programming on each of the
polytopes and by an interval arithmetic computation.

As random polynomials, we consider two classes of polynomi-
als. For general polynomials, we choose all coefficients a;, b;j, ¢;, d
equally random from the interval [—100,100] in p(x) = ¥, a;ix? +
Z{(i,j)\i<j} b,-jx,-xj +Y,cixi +d. Note that polynomials, encoun-
tered in practice, are often sparse, i.e., most of the @(nz) coeffi-
cients are zero.

In interval Newton solvers, preconditioning yields to special poly
nomials for the Newton map N(x) = x — P(x)(P'(m))~'. At the
domain center m; = 1/2,i=1,...,n, all derivatives of the polyno-
mials in N(x) vanish. In this class of polynomials, we choose poly-
nomials p(x) = ¥, a;(x; — 1/2)* + Y ij)i<jy bij(xi — 1/2)(xj —
1/2) + ¥, ci(x; — 1/2) +d with coefficients a;, b;j, c¢;, d equally
random from the interval [—100, 100].

Figures 5 and 6 give the average width of the polynomial ranges
with its standard deviation as a function of the number n of vari-
ables. For small n, the differences between range widths of all
methods are small. For large n, the range widths provided by the
Bernstein polytope P, (or one of its variants) are significantly bet-
ter than the ones provided by the standard, centered form evaluation
with interval arithmetic. The standard, centered form of a function
p(x), x € D CR" is given by

p(m) +[p'](D) - (D —m) with the domain center m € D

For notation, we use the interval closure operator [f] for an expres-
sion f in n variables x1, .. .,xn, which can be defined inductively by
the interval evaluation of f. Note that for a quadratic polynomial p,
the derivative expression p’ is linear, and [p](D) encloses its range
tightly [7].

In comparison to the minimum/maximum-bounds of the TBB
coefficients, the range widths provided by the Bernstein polytopes
are only slightly larger (15% for n = 10). Among the TBB poly-
topes, the differences are very small, and could not be detected at

all for the zero center-derivatives polynomials.

In the Bernstein polytope P’, (Figure 3, right) (the triangles
are replaced with quadrilaterals), the widths’ improvements are not
large, the average widths for n = 10 decreased by 6% only. The
running times are also very similar so that the small gain is doubt-
ful. Furthermore, in the Bernstein polytope P”’,, (Figure 4), the
average widths for n = 10 decreased by 11% but the polytope’s
number of hyperplanes roughly doubled. The resulting running
time is more than doubled. Among the Bernstein polytopes, the
inequalities (x; —x_,-)2 > 0 are not worth the cost.

8. CONCLUSION

In this paper, we presented three different polytopes bounding
coefficients with respect to the TBB. The TBB has an exponential
size in the number n of variables. All three polytopes inherit the
exponential size so that all methods for computing ranges based on
them are exponential time as well. Furthermore, we derive a Bern-
stein polytope which is defined by a polynomial number of hyper-
planes (in the number n of variables). We computed the number
of vertices, the number of hyperplanes, and the volume of all poly-
topes as far as possible for small n. An empirical comparison of
the average range widths for random polynomials computed using
these polytopes shows that the Bernstein polytope provides only
slightly worse bounds for n < 10. Although this difference will in-
crease with even larger n, the method using the Bernstein polytope
is the only one with acceptable runtime in practice. For using it, a
linear program solver using a simplex method or an interior-point
method is required.
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