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Abstract :
The amount of data needed to describe both volume and surface of 3D objects is often huge and

produces bottlenecks at every step of analysis. Thus, extracting relevant information in this case
demands heavy and complex processing techniques. A preprocessing phase is dramatically required :
data must be synthesized to accelerate analysis procedure by providing context-dependen
measurements. Parameters set should not be rigid, as it can be radically different from one application to
another.

The method we propose in this paper consists in  transforming any digi tized 3D solid – taking
into account its inner points – into Ell ipsoidal Skeleton (or E-skeleton). Based on binary shape
decomposition into a union of simple sub-shapes paradigm, it also gathers relevant information about
the geometry and any other set of values that seems interesting, depending on the study context. Each
sub-shape and its parameters set is more generically viewed as a feature, which is assumed to be non-
decomposable at a given semantic level. This semantic zoom capability for object description permits a
hierarchical approach, i.e. a scale of vision control. Low semantic zoom allows crude approximation for
fast pre-classification while high semantic zoom highlights finer details for precise comparison.

From this preprocessing stage, tasks such as object recognition and object analysis are made
possible and intuitive via feature comparison. Any bottleneck is removed, ensuring fast data processing.
At last, the generic structure of the E-skeleton allows not only future improvement but also practical
ways to add features to the E-skeleton repertoire.

Keywords : E-skeleton, Pattern Recognition, Data Analysis, Object-to-object Distance, Feature
Comparison.
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1. INTRODUCTION.

Shape recognition process via
decomposition is a widely investigated technique.
As being rich and complex, many issues are yet
to be explored. Primitives relevancy remains
crucial : they should carry not only the objec
geometry but also any type of information needed
for analysis context. Progressive recognition wit
semantic zoom may also accelerates the
recognition process by early separating objects
that reveals themselves too different even for a
low decomposition step. Moreover, the
representation method should allow generic
measurements techniques for fuzzy clustering
and adjustable pattern matching.

1.1. Previous Works.

Shape recognition in digital image processing
covers applications ranging from robotic vision to
medical imaging for tissue recognition and
pathology detection. Many techniques have been
investigated, based on identif ied principles.

Description algorithms are divided into tw
classes, whether they rely on external [5][7][15]or
internal expression of objects. Former ones are
based on the contours (B-spline, polygons…),
and latter ones use area descriptor methods
(skeletons, shape decomposition). Such
descriptors can be structural, like skeletons
[26][28][29][30], or scalar [24][25].

Shape decomposition is a powerful technique
as it achieves data reduction by imposing a
particular organization on i [8][20][27]. Pixel-
scaled information is organized into larger
models, which provide multiscale capabi lities [31]
as long as the size of the clusters is variable.
Some theories even suggest that such
decomposition is present in human percepti
[22].

The model we propose in this paper
combines all aspects of internal description-based
algorithms as it uses both structural – i.e.
geometric – and scalar – i.e. by extracting

relevant parameters in subclasses – descriptions
in an hierarchical fashion thanks to semantically
zoomable shape decomposition approach.

2. FROM 3D SOLID TO E-
SKELETON.

We have developed the ellipsoidal skelet
model [1][2] (or E-skeleton) to produce a shape
decomposition of a 3D solid that integrates both
geometry and internal parameters. Its semantic
zoom capabil ities provide a wide variety of
representation depending on the accuracy of
vision. Parameters extracted during the E-
skeleton construction process can be analyzed
separately or combined to compute a distance
between objects as it will be discussed in Section
3.

2.1. Principle of the Ellipsoidal Skeleton.

E-skeleton computation of a 3D object is a
fast pre-processing stage, taking on input a 3D
point set extracted from various modalities such
as CT-scan slices or MRI images. It
automatically produces an analytical hierarchica
representation of 3D solids, “solid” meaning that
inner points are taken into account in the process.

2.1.1. Hierarchical Structure.

Geometrical substructures of the 3D solid
are progressively detected (see Section 2.1.3),
according to two intuitive criteria :

• a well-differentiated shape, relatively to
the overall structure and the scale of
vision, indicates that this substructure is a
potential candidate ;

• the volume or mass of the substructure
determines its rank in the detection
process.

2.1.2. Decomposition Accord ing to Physical
Parameters.

For any detected substructures, physical
parameters are extracted via Principal
Component Analysis (PCA) on the sub-cloud o



points (see Figure 1). As inner points are taken
into account, features such as local centers o
gravity or axis of inertia remain robust (see
Section 4.1) and relevant to characterize matter
dispersion [23].

Pr imitive is Positioned Accord ing to Main Axis of
Iner tia.

Figure 1

2.1.3. Dynamic Cluster ing.

The first structure being the entire 3D point
cloud describing the object, it is then divided into
two sub-clouds. The splitting is done by using a
plane orthogonal to the main axis of inertia
containing the center of gravi ty (see Figure 2). A
balancing process is performed afterward, using
dynamic clustering (of k-means clustering)
method [16] :

Repeat
For Each existing class Ci

Compute its Center of Gravity Gi

EndForEach

For Each point of the whole 3D point cloud
Assign point to the class with closer Gi

EndForEach
Until {G1, …, Gn-1} remains unchanged

The Dynamic Cluster ing Method, Used to Part ition the
3D Point Cloud in Geometr ically Relevant Subclasses.

Algorithm 1

Figure 2 illustrates Algorithm 1 :

A Cloud of Points is Split in Two Parts, re-Balanced
with Dynamic Cluster ing and New Primitives are

Adjusted. Such Adjustment Ensures Steadiness an
Optimal Intraclass Vari ance Minimization.

Figure 2

A new iteration is done, according to a
spli tting criterion that defines which sub-cloud is
the best candidate. For instance, Figure 4 shows
the progressive refinement of the lower part of
the object, as it exhibits a more complex
geometry in this area.

Strongly differentiated classes –
representing substructures – are produced thanks
to the dynamic clustering. The splitting criterion
consists in selecting the class whose
decomposition will ensure minimal intraclass
variance. The intraclass variance is then
optimally lowered at each new dividing step,
while interclass variance is maximized, as it is
stated in Equation 1 :

interclassintraclass VVVtotal += Equation 1

where Vtotal is a constant value representing the
variance along the main axis of inertia of the
initial point cloud.

The refining algorithm is the following :

Discrete 3D Object with Inner Points

Center of Gravit  (CG)

Main Axis of Inertia
(MAI)

Tertiary Axis of Inertia

Secondary Axis
Of  Inertia



While (Vintra > Vthreshold) Or (#classes < #threshold)
For Each existing class Ci

Computation of inertia matrix of Ci

Computation of intraclass variance Vi of Ci

Rough Splitting of Ci into C’i and C’’i
“Fake” Dynamic Clustering on all classes
Computation of intraclass variances V’i and
V’’i

EndForEach

Effective Split of class with smallest 
i

ii

V

VV ''' +

Effective Dynamic Clustering on all classes
Computation of ne Vintra

EndWhile

Algorithm 2

where 
i

ii

V

VV ''' +  is the splitting criterion.

2.1.4. Semantic Zoom.

Each hierarchical level is defined by the
number of primiti ves used to represent the object
This number is incremented at each new
detection, producing a semantic level.

Hierarchical Tree : Semantic Levels Stored Histori cally
dur ing the Automatic Decomposition Pr ocess.

Figure 3

Both hierarchical and analytical [9] nature
of this tree allow the selection of a representation
according to the preferred accuracy.

Three  Semantic Levels (SL) of a femur produced by E-
skeleton.

Figure 4

2.2. Feature Extraction.

Features can be integrated as externa
functions (see Secti 3.1). A feature is
represented by a couple of functions (g ; fd)
where :

• g is the extraction function for the given
parameter, e.g. inertia matrix
computation, mean density calculation
…etc. Argument for g is the raw subclass
point cloud.

• fd is the distance function associated with
the parameter (see Equation 4), e.g.
euclidean distance for 3D coordinates,
difference for means densi ty …etc.

3. ANALYSIS AND RECOGNITION
VIA E-SKELETON.

Once computed, the E-skeleton is ready for
comparison, analysis and pattern matching
purposes. A mathematical framework for E-
skeleton has been developed to ensure flexibi lity.

3.1. Formal Definition of the E-Skeleton.

For a given semantic level n, each 3D objec
is defined via the following vector :
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i αα is the set of parameters attached

to primitive Ei ( { }1,...1 −∈ ni ). Each elemen αj
i is a

vector of Rk, depending on the parameter
dimension. For instance, the mean densi ty is a 1-
dimension parameter while orientation is a 3-
dimension parameter in 3D space, as it contains
the three Euler’s angle values.

To perform measurements between E-
skeletons, users must choose a subset of
parameters for each primitive Ei. Once it has been
done, data is ready to be analyzed through the
Measurement Pipeline.

3.2. The Measurement Pipeline.

For m 3D solids to be compared at a given
semantic level, the measurement pipeline is
organized as follows :

The Measurement Pipeline : Extracted Parameters are
Normalized and Optimally Matched. A Distance Matr ix

is Produced on Output.

Figure 5

Selected parameters are normalized before
entering into the effective computation process
(see Section3.2.1). A best matching stage
(Section 3.2.2) is then performed between each
subclass of every object introduced into the
pipeline. The difference values are combined into

one, which we call object-to-object distance (see
Section 3.2.3).

3.2.1. The Normalization Functio fN.

For specific needs, any arbitrary
normalization function can be integrated into the
pipeline. Al l input data will be mapped through
this function before being used. Each parameter
can be weighted, or ranged between [0 ; 1] for
instance. Identi ty function is also useful for
comparison purposes (see Section 3.3).

3.2.2. Best Matching Process.

For objects O1 and O2 at semantic level n,
defined respectively by the following vectors :
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where q ≤ p, we cal distance between O1 and O2,
the functi ),( 21 vvd defined as follows :
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fd1…l being any distance function matching the
type of parameters in argument (euclidean
distance for points, difference for densities
…etc.)(see Section 2.2).

),( 21 vvd  in Equation 3 is found using a
classical minimal cost maximum flow  technique
in order to avoid the computation of O(n!) values.
The input graph is produced by linking every

),...( 1
i

q
i αα  from objec O1 to every ),...( 1

i
q

i ββ  and

valuating each link with appropriate function fd1..q

shown in Equation 4. This method is a particular
case of a more generic method for calculating
distances between graphs [19][18].

3.2.3. The Distance Matr ix Md.

On output Md contains all distances between
the m input objects. It is an m×m symmetrical

Distance Matrix  m× m
Md

Minimal Matching between each
(fN (DATAu), fN (DATAv))

Extracted
DATA1

Extracted
DATAm

fN
(DATA1)

fN
(DATAm)

Normalization Function fN



matrix, whose diagonal is set to zero, as
0),( =vvd  for any v .

3.3. Object Compar ison.

Object comparison is based on feature
comparison : the user selects the relevant features
for the measurement, and possibly an
normalization function. Any new feature can be
created and integrated into the E-skeleton
repertoire using rules described in Section 2.2.

To Compare Objects, User must Select Relevant
Parameters to be Measured. The Output Distance

Matr ix allows Overview of Objects for Analysis and
Cluster ing Capabilities.

Figure 6

Distances can have an objective meaning (for
instance volume difference or angle measured
between two sub-shapes), but are rather designed
for classification purposes.

3.4. Object Recognition.

Distance between objects are useful to
classify them afterward. Once a scale of vision
(i.e. the number of classes) and parameters have
been set, the distance matrix can provide pattern
recognition capabili ties.

To enhance and accelerate the recognition
process, progressive vision can be used. It
basically consists in comparing E-skeletons at
low number of classes and progressively refine
them while classifying the objects at the same

time. Using this method avoids mistakes in the
clustering resulting from too detailed E-skeletons,
and allows rapid differentiation even at early
stages of comparisons.

Unknown Objects Can Be Recognized Using an E-
skeleton Library.

Figure 7

4. RESULTS AND APPLICATIONS.

Robustness tests and applications of the E-
skeleton are presented in this section.

4.1. E-skeleton Robustness.

For feature analysis and template matching,
the model has to fulfill the following goals :

• noise resistance, that is to discretization
error (especially for anisotropic spatia
resolution of the digiti zing device) and
segmentation error (from the expert) ;

• viewpoint invariance ;
• subsampling-proof, in order to be

independent from digitization resolution.

Efforts have been made on robustness
experimentation. A large set of 3D solids have
been used, from medical data. The following test
sets we used are :

• the carpal bones set : five CT-scan exams
of the same patient, taken in various
positions (rotation and translation). Each
exam exhibits eight different bones
(carpal bones) separately segmented by an
expert ;

• the tooth set : a CT-scan exam of whole
lower and upper jaws. Al l teeth have been

Parameter Stored with the E-skeleton

Selection by User

Relevant Parameter to be
Taken into Account

Measurement
Pipeline

Objects to
Compare

Distances

Acquired Object

E-skeleton Construction

Comparison with E-skeleton Library

Closest Object from Library



segmented and identified by an expert
Comparisons can be performed between
hemi-arcade of the same jaw due to
symetry ;

• the femur set : a CT-scan exam of the
right and left femur of a patient,
automatically segmented from densi ty
threshold using Corpus 2000 (see Section
4.3).

We have measured the classes variation for
increasing number of classes. For this purpose,
we define the following indicators :

CoGε  is the average variation of the center o

gravity distance from the global center of gravity
of each object, for all classes relatively to 
reference exam. For each bone, the maximum
variation is taken among the classes available,
and a mean value is calculated over the five
exams.

inertiaε is the average variation, for all classes,

of the X, Y and Z coordinates of the three vectors
of inertia, measured between an object and the
corresponding one in the reference exam. For
each bone, the maximum variation is taken
among the classes available, and a mean value is
calculated over the five exams. The used
referential is the proper one for each object, i.e.
the set of the three main axis of inertia using the
one-primiti ve decomposition.

The first indicator measures the average class
position variation, the second indicator exhibits
the clustering variation as the object is translated
and rotated in space.

4.1.1. Noise and Error Resistance.

For this test, we have used the carpal bones
set, as it combines segmentation error from the
expert and strong sampling variation as the
scanner is subject to anisotropy along the Z axis.
Ratio between the XY resolution and XZ or YZ
resolution is 3.22 mm in our case, which affects
the object shape as it is rotated throughout the
five exams.

0
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0.1

0.15

0.2

0.25

0.3

0.35

2 3 4 5

CoGε  from Global Center of Gravity (in mm) according

to the Number of Classes. Example for hamatum. XY to
XZ resolution ratio is 3,22.

Figure 8
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Example for hamatum. XY to XZ resolution ratio is 3,22.

Figure 9

We have also measured the average value o

CoGε  and 
inertiaε throughout all exams and bones,

which gives us a variation measured among 40
objects :

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5

Average Inertia Vector Coord inates Vari ation (in mm)
according to the Number of Classes. Average Value for

all bones. XY to XZ resolution ratio is 3,22.

Figure 10
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Average Center of Gravity Position Var iation from
Global Center of Gravity (in mm) accord ing to the

Number of Classes. Average Value for all bones. XY to
XZ resolution ratio is 3,22.

Figure 11

If we suppress the anisotropy along Z axis (by
modifying the z coordinate value of each point so
that XY to XZ ratio becomes 1,0), CoGε  and inertiaε
have no significant variation (i.e. << 1,0 mm)
until a high number of classes is reached. This
behavior exhibits strong resistance to surface
error, as object boundaries in CT-scan exams are
not clearly defined, even for high density tissues.

4.1.2. Viewpoint I nvariance.

For this purpose, we have artificially rotated
objects of all sets described in Section 4.1 and
suppressed the Z anisotropy so that sampling
frequency remains unchanged. E-skeleton shown
no significant variation, even for a great number
of classes (about 15, which is actually never
reached for comparison or recognition purposes).

This behavior is normal, as E-skeleton
algorithm does not rely on the processing order of
points, and that inertia matrix remains invariant
to rotation and translation.

4.1.3. Subsampling Robustness.

For this test, we have progressively lowered
the number of points of each object, and
performed measurements using the carpal bones
set. The following table summarizes the results
we obtained :

0.02 0.01 0.004 0.002 0.001 2
1.2 0.41 0.32 0.1 0.04 3

2.22 0.85 0.72 0.62 0.25 4
3.25 2.8 2.5 2.32 1.0 5
1:20
1938
pts

1:15
2584
pts

1:10
3876
pts

1:5
7753

1:2
19383

#class
es

Distance Values Using both Center of Gravity
Coord inates and Vectors of Iner tia Coordinates.

Subsampling Exhibited no Recognition Issue in the
Bones Classification on this set.

Table 1

Greater distance is obtained from 1:20
subsampling, but this variation was not suff icient
to introduce errors in the classification made in
Section 4.2.

4.2. Object Recognition.

The following tests were performed on the
sets described in Section 4.1 :

• classifying all bones in the carpal bones
set ;

• showing that the two distinct femurs in
the femur set are the same (we suppressed
the symmetry by only using absolut
values) ;

• matching each tooth in the tooth set with
the corresponding tooth in the appropriate
hemi-arcade.

0 8 3 3 3 67 65 64 63 65 54 53 52 53 53

8 0 8 7 7 69 67 66 66 67 54 53 52 54 53

3 8 0 4 4 67 65 64 63 65 53 52 52 52 52

3 7 4 0 1 68 66 65 64 66 53 53 51 53 53

3 7 4 1 0 68 66 65 65 66 53 53 52 53 53

67 69 67 68 68 0 4 5 6 3 68 66 68 68 66

65 67 65 66 66 4 0 6 7 3 66 64 65 65 64

64 66 64 65 65 5 6 0 3 5 68 66 68 67 66

63 66 63 64 65 6 7 3 0 6 67 65 66 66 65

65 67 65 66 66 3 3 5 6 0 67 65 66 66 65

54 54 53 53 53 68 66 68 67 67 0 5 2 3 4

53 53 52 53 53 66 64 66 65 65 5 0 4 3 1

52 52 52 51 52 68 65 68 66 66 2 4 0 2 3

53 54 52 53 53 68 65 67 66 66 3 3 2 0 2

53 53 52 53 53 66 64 66 65 65 4 1 3 2 0

Cluster ing of the hamatum, capitatum an lunatum (5
exams) Resulting from Distance Measurement between
Objects in the carpal bones set. 3 Classes per Object are

Used, and Distance Combines the Position and the
Shape of Each Classes.

Table 2



Table 2 shows only a portion of the entire
distance matrix (see Section 3.2.3). Clustering
has been made successfully using three classes
per object. Less classes does not allow a precise
differentiation of objects. More classes are
useless or can exhibit finer details of object,
resulting in a too precise clustering. Low values
indicates distances between corresponding bones
throughout the five exams (gray background).

For the femur set, we verified that left and
right femur were detected as the same object
even for a great number of classes. The symmetry
can then be determined by using a common
referential for the two objects.

11 21 31 41 15 25 35 45

11 0. 20.1 27.4 27.1 34.9 33.3 26.5 29.4

21 20.1 0. 29.5 30.3 38.6 35.4 24.4 27.6

31 27.4 29.5 0. 3.7 18.9 19.4 28.7 26.

41 27.1 30.3 3.7 0. 18.6 18.7 28.2 26.7

15 34.9 38.6 18.9 18.6 0. 4.4 41.6 40.4

25 33.3 35.4 19.4 18.7 4.4 0. 39.3 36.9

35 26.5 24.4 28.7 28.2 41.6 39.3 0. 8.9

45 29.4 27.6 26. 26.7 40.4 36.9 8.9 0.

Cluster ing of Teeth 1 and 5 Over the Four Hemi-
Arcades. Each Tooth has Only One “ Twin”, as Jaws are

Only Symmetr ical Relatively to the Sagit tal Plane.

Table 3

Note that in Table 3, teeth 11 and 21 seem to
be very distant from one to another (distance
value is 20.1). It is because tooth 21 exhibits a
pathological anatomy in this exam.

For molars, clustering was not so precise as
the shapes are not well-differentiated. Better
results were obtained using progressive vision
method (see Section 3.4).

4.3. The Analysis Editor

Work on the femur set. Parameters (Elongation Factor
Here) Can Be Interactively Chosen and Computed on a
Collection of Arb itrary Objects Transformed into E-

skeletons.

Figure 12

Measuring parameters on E-skeletons allows
quick and precise study of rigid bodies. We have
developed a plug-in for the CIRAD software
Corpus 2000 to interactively choose the desired
parameters. The data is then calculated on the
selected objects, and distance matrix is produced
for classification purposes.

This tool was used for a study on carpal bones
growth for children [17] made by Dr. Françoi
Canovas et al. (Orthopedic Surgery Service,
Lapeyronie Hospital, Montpellier, France) : using
E-skeletons, new data could be extracted and
correlated with both skeletal and chronological
ages. A medical follow-up was set up for growth
monitoring on a population of 25 children.

5. CONCLUSION AND FUTURE
WORK.

We have presented a new generic model for
pattern recognition and analysis. It allows feature
comparison via parameters selection, and
interactive study of 3D objects.

Distance values often lack of intui tive sense
and should not be used “as is” , unless specific



features are intentionally chosen. They should be
used only relatively to other distance values for
classification purposes (including fuzzy
classification). While being sometimes difficult
to understand, they have proven to be efficient
and robust for pattern matching.

We are now working on three directions :

• geometric primiti ves are classic
superquadrics [7], i.e. ranging from
cuboids to cylinders, including spheres
and ellipsoids. These shapes parameters
are being integrated to the feature list. I
seems interesting to extend the primiti ve
repertoire in order to enhance
characterization capabi lities of the E-
skeleton [21] ;

• “close” primitives in terms of feature
should be regrouped (e.g. two cylinder-
shaped classes having the same
orientation can be seen as a single tube) ;

• explore new features to enhance
classification capabili ties and study how
to create “ intui tive” distance values.

E-skeleton has been integrated in the CIRAD
medical imaging software Corpus 2000, available
on SGI (IRIX), HP (HPUX) and PC (win95, 98,
NT) platforms.
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