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Abstract :

The amount of data needed to describe both volume and suface d 3D objects is often huge and
produces Iottlenecks at every step of anadysis. Thus, extracting relevant information in this case
demands heawy and complex processing techniques. A preprocessing phase is dramatically required :
data must be synthesized to accelerate analysis procedue by providing context-dependen
measurements. Paameters set shoud notbe rigid, asit can beradically different from one gplicaion
another.

The method we propose in this mper congsts in transforming awy digitized 3D sdid — taking
into account its inne points — into Ellipsadal Skeleton (or E-skeleton). Based on bnay shape
decompostion into a unionof simple sub-shapes paadgm, it dso gathers relevant information about
the geomery and any aher set of values that seemsinteresting, dependng on the study context. Each
sub-shape and its paamders set is more generically viewed asa feaure, which is assumed to be non-
decomposadle ata gvensemartic level This semantic zoom capability for object description permits a
hierarchical approach, i.e. ascale of vison control. Low semantic zoom allows crude approxi mation for
fast pre-classificationwhile high semantic zoom highlights finer detailsfor precise comparison.

From this preprocessing stage, taks such as object recognition and object analysis are made
possible and intuitive via feature comparison. Any batleneck is removed, ensuring fast daa processing.
At last, the ganeric structure d the E-skeleton allows not only future improvement but aso practica
waysto add features to the E-skeletonrepertoire.

Keywords : E-skeleton, Patern Recogrition, Data Andyss, Object-to-object Distance, Feature
Comparison.
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1. INTRODUCTION.

Shape recogntion piocess va
decompostionis awidely investigated technique.
As being rich and complex, mary issues are yet
to be explored Primitives relevancy remains
crucial : they should carry not only the objec
geometry but also any type of information neaded
for analysis context. Progressive recogrition wit
semantic zoom may aso accelerates the
recogntion piocess ly early separating dojects
that reveals themselves too different even for a
low decomposition step.  Moreower, the
representation method should dlow generic
measurements tedniques for fuzzy clustering
and adjustalde pattern matching.

1.1. Previous WorKks.

Shape recogntion in digital image pirocessing
covers gpplications ranging from robatic visionto
medical imaging for tissue recogntion and
pathdogy detection. Mary tedhniques have been
investigated, based onidertified principles.

Description algorithms are divided into tw
classes, whether they rely on external [5][7][15]or
internal expression of objects. Former ones are
based on the contours (B-spline, pdygors...),
and latter ones e area descriptor mehods
(skeletons, shape  decompasition).  Such
descriptors can be structural, like skeletons
[26][28][29][30], or scalar [24][25].

Shape deeomposition is a pwerful technique
as it adhieves dita redwction by imposing a
particular organization on i [8][20][27]. Pixel-
scaled information is organized into larger
models, which provide multiscale cgpabilities [31]
as long as the sze of the clusters is variable.
Some theories even sugest that such
decompostion is present in human percepti
[22].

The model we piopose in this paper
combines all agects of internal description-based
algorithms as it uses bath sructua —i.e.
geometric — and scalar — i.e. by extracting

relevant parameters in subclasses — descriptions
in an hierarchical fashion thanks to semanticdly
zoomake shape decompostion goproach.

2. FROM 3D SOLID TO E-
SKELETON.

We have dereloped the ellipsoidal skel et
model [1][2] (or E-skeleton) to produce a shape
decompostion of a 3D solid that integates both
geometry and internal parameters. Its semantic
zoom caabilities povide a wide variety of
representation dependng on the accuracy of
vision. Paamders extracted duing the E-
skeleton corstruction pocess can be analyzed
separately or combined to compute a dstance
between objects asit will be discussed in Section
3.

2.1. Principleof the Ellipsoidal Skeleton.

E-skeleton computdion of a 3D objed is a
fast pre-processing stage, taking on inpu a 3D
point set extracted from various modalities such
as CT-scan sdslices or MRI  images. It
auomatically produces an analyticd hierarchica
representation of 3D solids, “solid” meaning that
inner points are taken into account in the process.

2.1.1. Hierarchica Structure.

Geometrical substructures of the D solid
are piogressively detected (see Section 2.1.3),
according to two intuitivecriteria :

* a well-differentiated shape, relatively to
the overall structure and the scale of
vision, indcates that this substructure is a
potential candidae ;

* the volume or mass of the substructure
determines its rark in the dktection
process.

2.1.2. Decomposition According to Physical
Parameters.

For arny detected substructures, plysical
parameters are extracted va  Principal
Component Analysis (PCA) on the sub-cloud o



points (see Figure 1). As inner points are taken
into account, features such as local centerso
gravuty or axis of inertia remain robust (see
Seaction 4.1) and relevant to characterize matter
dispersion [23].

Secondary Axis
Of Inertia

Main Axisof Inertia

Center of Gravit (CG)

grtiary Axisof Inertia

Discrete 3D Object with Inner Points

Primitive is Positioned According to Main Axis of
Inertia.

Figure 1

2.1.3. Dynamic Clustering.

The first structure being the entire 3D pant
cloud describing the object, itis then divided into
two sub-clouds. The splitting is dore by using a
plane orthogonal to the main axis of inertia
containing the center of gravity (sedigure 2). A
balancing process is performed afterward, using
dynamic clustering (of k-mears clustering)
method [16] :

Repeat
For Each existing class C;
Compute its Center of Gravity G;
EndForEach

For Each point of the whole 3D point cloud
Assign point to the class with closer G;
EndForEach
Until {Gg, ..., Gn.1} remains unchanged

The Dynamic Clustering Method, Usedto Partition the
3D Point Cloud in Geometrically Rdevant Subclasss.

Algorithm 1

Figure 2 illustrates Algorithm 1 :

A Cloud of Pointsis Split in Two Parts, re-Balanced
with Dynamic Clustering and New Primitivesare
Adjusted. Such Adjustment Ensures Steadiness an
Optimal Intraclass Vari ance Minimization.

Figure 2

A new iteration is cdne according to a
sgitting criterion that defines which sub-cloud is
the best candidate. For instarce, Figure 4 shows
the piogressive refinement of the lower part of
the object, as it exhibits a more complex
geometry inthis area.

Strongly differentiated dasses -
representing substructures — are produced thanks
to the dynamic clustering. The splitting criterion

consdsts in  sdecting the class whose
decompostion will ensure minimal intraclass
variance. The intracdass variance is then

optimally lowered at each new dividing step,
while interclass variance is meximized, as it is
statedin Equetion 1 :

\Y/

total = Vintraclass+ Eqbatlon 1

Vinterclass

where Viqa 1S @ constant value representing the
variance dong the man ais of inertia of the
initial point cloud

The refining algorithm is the following :



While (Vintra > Vinreshold) OF (#classes < #threshold)
For Each existing class C;
Computation of inertia matrix of C;
Computation of intraclass variance V; of C;
Rough Splitting of C; into C’; and C”;
“Fake” Dynamic Clustering on all classes
Computation of intraclass variances V’; and
V7,
EndForEach
Effective Split of class with smallest ViV
Vv
Effective Dynamic Clustering on all classes
Computation of ne  Vinra

Endwhile

Algorithm 2

where VitV jsthe splitting criterion.
Vi

2.1.4. Semantic Zoom.

Each herarchical leved is defined by the
number of primitives used to represent the object
This numbe is incemented & each new
detection, produdng asemairtic level

1

Hierarchical Tree: Semantic L evels Stored Histori cally
during the Automatic Decomposition Pr ocess.

Figure 3

Both hierarchical and analytical [9] nature
of thistree dlow the selection of a representaion
according to the preferred accuracy.

Three Semantic Levels (SL) of a femur produced by E-
skeleton.

Figure4

2.2. Feaure Extraction.

Features can be integrated as externa
functions (see Secti 3.1). A feature is
represented ty a coupe of functions (g ; fq)
where:

* g isthe extraction fundion for the given
parameter, eg. inertia matrix
computation, mean dersity calculation
...etc. Argument for g is the raw subclass
point cloud

» fqisthe distance function associated with
the paameter (see Equetion 4), e.q.
ewlidean distance for 3D coordinates,
differencefor meansdengty ...etc.

3. ANALYSISAND RECOGNITION
VIA E-SKELETON.

Once computed, the E-skeleton is ready for
comparison, andysis and patern maching
purposes. A mathematical framework for E-
skeleton has beendevd opedto ersure flexibility.

3.1. Formal Definition of the E-Skdeton.

For a given semantic level n, each D objec
is definedvia thefollowing vector :



(@)@ ™ )"™) Equetion 1

where (a/,.a)is the set of parameters attached
to primitive Ei (inf..n-1). Each demen af is a
vector of R depending on the parameter
dimengon. For instance, the mean dendty is a 1
dimenson parameter while orientation is a 3-
dimengon parameter in 3D space as it contains
the threeEuler’s ande values.

To perform measurements between E-
skeletons, usas must choo a subset of
parameters for each primitive E;. Onceit has been
done, data is ready to be analyzed through the
Measuremen Pipeline

3.2. The Measurement Pipdine.

For m 3D solids to be compared at a given
semantic level, the measuement pipeline is
organzed asfollows :

Extracted
DATA;

Extracted
DATA,

Normalization Function fy

fN fN
(DATAy) (DATA,)

Minima Matching between each
(fv (DATA,), fn (DATA.))

Distance Matrix mx m
Mg

The Measurement Pipeline : Extracted Parameters are
Normalizedand Optimally Matched. A Distance Matrix
is Produced on Output.

Figure5

Selected parameters are normalized before
entering into the effective compuation process
(see Setion3.2.1). A best matching stage
(Section 3.2.2) is then peformed beween each
sulclass of ewvery object introduced into the
pipeline. The difference vaues are comhbined into

one, which we call object-to-object dstance (see
Section 3.2.3).

3.2.1. The Normalization Functio fy.

For  specific needs, ay  arbitrary
narmdization function can be integrated into the
pipeline. Allinput dda will be magped through
this function before being used Each parameter
can be weighted, a ranged between [0 ; 1] for
instarce. Identity function is also usful for
comparison purpaoses (see Section 3.3).

3.2.2. Best Matching Process.

For objects O; and O, a semantic level n,
definedrespectively by thefollowing vectors :

Vy = (0@ ")
Vo = (BB (B e B)

where g < p, we cal distance letween O, and O,
thefuncti  d(v,v,) definedas follows:

Equetion 2

Equetion 3
where:
3((@, et ) (B 1By ) =
fdl(a1|’ﬁ1|')+"‘+ qu(aqliﬁqll) Equetion 4

fg1.1 being any distance function matching the
type of parameters in argument (ewclidean
distarce for poaints, difference for densities

...etc.)(see Section 2.2).

d(v,v,) in Equetion 3 is found wing a
classical minimal cog maximum flow tedhnique
inorder to avoid the computation of O(n!) values.
The inpu graph is pioduced by linking every
(@, ...a,) from objec O to every (g/,.4,) and
valuating each link with appropriate function fq1. g
shown in Equation 4. This methodis a particular

case of a more generic method for calculating
distances between graphs[19][18].

3.2.3. TheDistance Matrix M.

On output My contains all distances between
the m inpu objects. It is an mxm symmetrical



matrix, whaose diagorel
d(v,v) =0 for ary v.

is setto zero, as

3.3. Object Comparison.

Obect comparison isbaed on feaure
compaison: the ugr selectsthe relevant features
for the measuement, and possibly an
namdization function. Any new feature can be
created amd integrated into the E-skeleton
repertoire wsing rules describedin Section 2.2.

Paameter Stored with the E-skeleton

v

Sdection by User

v

Relevant Paameter to be Objectsto
Taken into Account Compare

Sk

Measurement
Pipeline

v

Distances

To Compare Objects, User must Sdect Relevant
Parameters to be Measured. TheOutput Distance
Matrix allows Overview of Objectsfor Analysis and
Clustering Capabilities.

Figure 6

Distances can have an objective meaning (for
instance volume difference or ange measured
between two sub-shapes), but are rather designed
for classification purpaoses.

3.4. Object Recognition.

Distance letween dojects are uwseful to
classify them afterward. Once a scale of vison
(i.e. the number of classes) and paameters have
been set, the distance matrix can povide pdtern
recognition cgpabilities.

To enhance and accelerate the recognition
process, progressive vision can be sdl. It
basically conssts in comparing E-skeletorns at
low number of classes and progressively refine
them while classifying the dyjects at the same

time. Using this method avoids mistakes in the
clustering resulting from too detail ed E-skel etons,
and allows rapid differentiation even at early
stages of comparisons.

Acquired Object

v

E-skeleton Congtruction

v

Comparison with E-skeleton Library

v

Closest Object from Library

Unknown Objects Can Be Recognized Using an E-
skeleton Library.

Figure 7

4. RESULTSAND APPLICATIONS.

Robustness tests and apgications of the E-
skeleton are presented in thissection.

4.1. E-skeleton Robustness.

For feature analysis and template matching,

the model hasto fulfill thefollowing goals:

* noise resistance, that is to dscretization
error (egecialy for anisotropic spatia
resolution of the digitizing device) and
segmentation error (from the expert) ;

e viewpoint invariance;

* sulsampling-proof, in order to be
independent from digitizationresolution.

Efforts have been made on robustess
experimentation. A large set of 3D solids have
been used, from melical data. The following test
setswe wedare:

» the carpal bones set : five CT-scan exams
of the same pdient, taken in various
positions (rotation and trandation). Each
exam exhbits eight different bones
(campd bones) separately segmented by an
expert ;

» the tooth set : a CT-scan exam of whole
lower and upper jaws. All teeth have been



segmented and identified by an expert
Comparisons can be performed between
hemi-arcade of the same jaw die to
Symetry ;

» the femur set : a CT-scan exam of the
right and left femur of a patent,
auomatically segmented from dendty
threshold using Corpus 2000(see Section
4.3).

We have meadured the classes variation for
increasing number of classes. For this pupose,
we cefine the following indicators :

Ecoc 1S the average variation of the center o

grauty distance from the global center of grauty
of each dyject, for all classes relatively to
reference exam. For each bone, the maximum
variation is taken among the classes available,
and a mean value is calculated over the five
exams.

E.enia 1S the average variation, for all classes,

of the X, Y and Z coadinates of the three vedors
of inertia, measured between an doject and the
corresponding ore in the reference exam. For
each bone, the maximum variation is taken
among the classes available, and a mean value is
calculated over the five exams. The usd
referential is the poper one for each doject, i.e.
the set of the three main axis of inertia wsing the
one-primiti ve decomposition.

The first ind cator measures the average class
position variation, the second indicator exhibits
the clustering variation as the object is translated
androtatedin space.

4.1.1. Noise and Error Resistance.

For this test, we have ugd the carpal bones
set, as it combines segmentation error from the
expert and strong sampling vanation as the
scamer is suect to anisotropy dong the Z axs.
Ratio between the XY resolution and XZ or YZ
resolution is 322 mm in our case, which affects
the object shape as it is rotated throughout the
five exams.

0.35
03 \
0.25

0.2

0.15

0.1

0.05

2 3 4 5

Ecoc from Global Center of Gravity (in mm) according

tothe Number of Classes. Examplefor hamatum. XY to
XZ resolution ratio is 3,22.

Figure 8
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Eirertia (in mm) according to the Number of Classes.
Example for hamatum. XY to XZ resolution ratiois 3,22.

Figure 9

We have also meaaured the average vadue o
¢ and g __throughout all exams and bores

ECOG inertia

which gives usa vanation measured among 40
objects :

.2 /
15 7

2 3 4 5

Average InertiaVector Coordinates Variation (in mm)
accordingtothe Number of Classs. Average Value for
all bones. XY to XZ resolution ratiois 3,22.

Figure 10
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Average Center of Gravity Position Variation from
Global Center of Gravity (in mm) according to the
Number of Classs. Average Value for all bones. XY to
XZ resolution ratio is 3,22.

Figure1l

If we suppessthe anisotropy dongZ axis (by
modifying the z coordinate value of each point so
that XY to XZ ratio becomes 10), £. . and £

inertia
have no significant variation (i.e. << 1,0 mm)
until a high number of classes is reached. This
behavior exhbits strong esistance to suface
error, as object bowndariesin CT-scan exams are
nat clearly defined, evenfor high density tissues.

4.1.2. Viewpoint | nvariance.

For this pupose, we have artificially rotated
objects of all sets described in Section 4.1 and
suppessal the Z ansotropy so that sampling
frequency remains unchanged. E-skeleton shown
no significant variation, even for a geat number
of classes (abou 15, which is actudly never
reached for comparison or recognition puposes).

This béhavior is normal, as E-skeleton
algorithm does nat rely onthe processing order of
points, and that inertia matrix remains invariant
to rotation and trandation.

4.1.3. Subsampling Robustness.

For this test, we have piogressively lowered
the numbe of points of each doject, and
performed measurements wsing the carpal bones
set. The following table summarizes the results
we obtained :

222 | 0.85 | 0.72 | 0.62 | 0.25 4

325 | 28 25 2.32 1.0 5

1:20 1:15 1:10 1.5 1:2 |#class
1938 | 2584 | 3876 | 7753 | 19383| es
pts pts pts

0.02 | 0.01 | 0.004 | 0.002 | 0.001

N

1.2 041 | 032 | 0.1 0.04 3

Distance ValuesUsing both Center of Gravity
Coordinates and Vectorsof Inertia Coordinates.
Subsampling Exhibited no Recognition | ssue in the
Bones Classification on this set.

Tadbel

Greater dstance is ohbtained from 1:20
subsampling, but this variation was nat sufficient
to introduce errors in the classification made in
Section 4.2.

4.2. Object Recognition.

The following tests were performed on the

sets describedin Section4.1:

» classifying all bones in the carpal bones
set;

» showing that the two distinct femurs in
the femur set are the same (we suppessed
the symmetry by only usng asolut
values) ;

* matching each tooth in the tooth set with
the corresponding tooth in the appropriate

hemi-arcade.
0 8 3 3 3| 67| 65| 64| 63| 65| 54| 53| 52| 53| 53
8 0 8 7 7| 69| 67| 66| 66 67| 54| 53| 52| 54| 53
3 8 0 4 4| 67| 65| 64| 63| 65| 53| 52| 52| 52| 52
3 7 4 0 1| 68| 66| 65| 64| 66| 53| 53| 51| 53| 53
3 7 4 1 0| 68| 66| 65| 65| 66| 53| 53| 52 53| 53

67| 69| 67| 68| 68 68 66 68| 68 66

65| 67| 65| 66| 66 66 64 65| 65| 64

64| 66| 64| 65| 65 68 66 68| 67| 66

63| 66| 63| 64| 65 67 65 66| 66| 65
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65| 67| 65| 66| 66 67 65 66| 66| 65

54| 54| 53| 53| 53| 68| 66| 68| 67| 67

53| 53| 52| 53| 53| 66| 64| 66| 65| 65

52| 52| 52| 51| 52| 68| 65| 68| 66| 66

53| 54| 52| 53| 53| 68| 65| 67| 66| 66
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1
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53| 53| 52| 53| 53| 66| 64| 66| 65| 65

Clugering of the hamatum, capitatum an lunatum (5
exams) Resulting from Distance M easurement between
Objectsin the carpal bonesset. 3 Classesper Object are

Used, and Distance Combines the Position and the
Shape of Each Classes.

Tade?2



Talde 2 shows only a portion of the entire
distance matrix (see Section 3.2.3). Clustering
has been made siccessfully using three classes
per object. Less classes aes nat allow a precise
differentiation of objects. More classes are
useless or can exhibit finer cetaills of object,
resulting in a too precise clustering. Low values
indicates distances between correspondng bores
throughout the five exams (gray background).

For the femur set, we verified that left and
right femur were detected as the same object
evenfor a geat number of classes. The symmetry
can then le deéermined ly usng a common
referential for the two dbjects.

11 [ 21 [ 31 [ 41 [ 15 | 25 | 35 | 45

11 0. 20.1] 27.4] 27.1] 34.9] 33.3] 26.5] 29.4
21 | 201 0.| 29.5] 30.3] 38.6] 35.4| 24.4] 276
31 | 27.4] 295 0. 37| 189] 19.4] 287 26.
41 | 271| 303 37 o.| 186 187 28.2] 26.7
15 | 34.9] 38.6| 18.9] 18.6 0. 44| 416 404
25 | 333 35.4| 194 187 44 0. 39.3] 36.9
35 | 26.5| 24.4] 28.7 282 41.6] 393 o] 89
45 | 204 27.6] 26| 26.7] 40.4| 36.9] 89 0.

Clusgtering of Teeth 1 and 5 Over the Four Hemi-

Arcades. Each Tooth hasOnly One“ Twin”, asJaws are
Only Symmetrical Relatively to the Sagttal Plane.

Tabe3

Notethat in Talde 3, teeth 11and 21seem to
be very distant from one to another (distance
value is 201). It is because tooth 21 exhibits a
pathdogical anatomy in this exam.

For molars, clustering was not so precise as
the shapes are na well-differentiated. Better
results were obtained usng progressive vision
method (see Section 3.4).

4.3. The Analysis Editor
[Sleomeraivons ]

Natwre et datation de examen 1.

Natwre et datation de 'examen 2.

sHo

Factew_d'allongement Différence :
Classe 4 @ 4.115226 0.109515
Classe 2 : 3.322039 0.061055
Classe 3 : 2.766506 0.013157
Classe 1 : 1.773300 0.033832

Factew_d'allongement
Classe 4 : 4.005711
Classe 2 : 3.983114

Classe 3 : 2.779662
Classe 1 : 1.742067

Work on the femur set. Parameters (Elongation Factor
Here) Can Belnteractively Chosen and Computed on a
Collection of Arbitrary Objects Transformedinto E-
skeletons.

Figure12

Meaauring parameters on E-skeletons allows
quick and precise study of rigid bodies. We have
developed a plug-in for the CIRAD software
Corpus 2000to interactively choose the desired
parameters. The dda is then calculated on the
selected dbjects, and distance matrix is produced
for classification purpaoses.

Thistool was wsedfor astudy on carpal bores
growth for children [17] made by Dr. Francoi
Canovas etal. (Orthopedc Sugery Sevice,
Lapeyronie Hospital, Montpdlier, France) : using
E-skeletons, new data could be extracted and
correlated with both skeletal and chronological
ages. A medical follow-up was set upfor growth
monitoring on apopulaion of 25 children.

5. CONCLUSION AND FUTURE
WORK.

We have presented a new gereric model for
pattern recogntion and andysis. It allows feature
comparison Jvia parametes selection, and
interactive study of 3D objects.

Distance \alues often ladk of intuitive sense
and should nat be usd “as is’, uress specific



features are intentionally chosen. They shauld be
used only relatively to aher distance values for

classification puposes

(including fuzy

classification). While being sometimes difficult
to understand, they have pioven to be efficient
and robust for pattern matching.

We are now working onthree directions :

geometric primitives  are  classic
superquadics [7], i.e. rangng from
cuboids to cylinders, including spheres
and ellipsoids. These shgpes @rameters
are being integated to the feature list. |
seems interesting to extend the pimitive
repertoire in  order to enhance
characterization capabilities of the E-
skeleton [21] ;

“close” primitives in terms of feature
should be regouped (e.g. two cylinder-
shaped classes having the same
orientation can be seen asa single tube) ;
explore rew feaures to enhance
classification cagpabilities and study how
to create “intuitive” distance values.

E-skeleton has been integrated in the CIRAD

medical imaging software Corpus 2000 availade
on SGI (IRIX), HP (HPUX) and PC (win95, 98,
NT) platforms.
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