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The simplest geometric constraints are incidences between points and lines in the projec-
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1. Overview

Geometric solvers2 are today a key component of all geometric modelers used

in CAD-CAM (Computer Aided Design, Computer-Aided Manufacturing). They

enable to define the relative location of geometric entities (points, lines, planes,

curves, surfaces) with geometric constraints: distance or angle between geometric

elements, tangency or incidence relations. Typically, a preprocessing step detects

over- and under-constrained systems, and decomposes well-constrained systems into

irreducible components faster and easier to solve. Then some numerical solver is of-

ten used, since the complexity of the irreducible well-constrained systems prevents

using computer algebra3.

The methods for decomposing systems of constraints are typically graph-based.

They detect only the structural dependences between constraints, they do not cap-

ture more subtle dependences due to geometric theorems; dependent (redundant or

contradictory) systems mislead the numerical solver and prevent resolution.
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These dependences do not disappear when users modify their sketch or the

values of length or angle parameters; this phenomenon (which is terribly frustrating

for users) suggests that the dependence is due to a theorem of projective geometry,

such as Desargues, Pappus or Pascal ( 2).

This paper studies the possibility and the difficulty of detecting such de-

pendences with combinatorial methods, in the wake of the Montréal Structural

Topology17 and of the Rigidity Theory15. Due to the difficulty of the problem, we

focus on the detection of dependences in incidence constraints between flats (points,

lines, planes), in particular in the projective plane5,7,18. The seemingly trivial prob-

lem is as follows: a user specifies that some subsets of points are collinear, and that

others are not; is the specification realizable in some projective plane?

The rest of this paper is structured as follows. Section 2 shows that considering

only incidence constraints between points and lines in the projective plane is not an

academic toy problem since all algebraic systems of arbitrary degree in a field K can

be reduced to an equivalent system of point-line incidences in P(K), the projective

plane with coordinates in K ( 2.3). Section 3 describes the compatible matroid

problem: if a system of incidences is realizable, there is a matroid compatible with

the specified incidences; section 3 proves that in 2D and beyond, this problem is

NP-complete. Conversely, some compatible matroids are not realizable: they contain

forbidden configurations, contradicting theorems of projective geometry. Finding a

compatible matroid free of forbidden configurations is the compatible configuration

problem. Section 4 and 5 describe two provers: Hexamys and Pappus, which solve

the compatible configuration problem. Both are half deterministic. It is due to the

non monotony of the compatible configuration problem. Section 6 conjectures that

combinatorial provers can reach full determinism: it argues that the compatible

matroid problem is monotone, and Pappus theorem is captured by some rank 10

matroids. Section 7 concludes.

2. Fundamentals of projective geometry

2.1. Basic facts

Up to now, in the field of Geometric Constraints Solving, researchers have mainly

studied rigid systems of constraints in order to specify CAD-CAM objects. These

constraints concern metric properties of the objects to be designed. Consequently,

the subtended framework was Euclidean geometry associated with the group of

isometries, or conform geometry with the similarity group14.

We put here the focus on incidence constraints, and then, on a simplified frame-

work where only points, lines and incidence relationship are considered. This frame-

work corresponds to incidence geometry. For the sake of simplicity, we consider pro-

jective geometry : two distinct coplanar lines always meet in one point. Projective

geometry is associated with the group of homographies.

Incidence constraints are the simplest geometric constraints, but they can lead

to arbitrarily difficult configurations. Fig. 1 illustrates a configuration which is not
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Fig. 1. An irrational configuration. Lines are ABEF , ADG, AHI,BCH, BIG, DFH, CFI, DEI

(and all pairs of points). In parenthesis, another automorphic solution.
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Fig. 2. For given aligned points A, B, X, point X ′ does not depend on L nor s.

realizable with rational coordinates in the real projective plane. Indeed, a regular

pentagon –or, more precisely, the image of a regular pentagon by a homography–

is needed. Other small systems of incidence constraints have been studied5,13,9.

2.2. Classical 2D Theorems

Let us recall some classical properties of the real projective plane P and related to

incidence relationship. They all share the same combinatorial flavor which becomes

more explicit in further sections.

(Harmonic conjugate) Let A,B,X be 3 distinct aligned points. Let L be any

line through X, s any point outside L and ABX. Then point X ′ defined

by the construction: a = sA∩L, b = sB ∩L, s′ = aB ∩Ab, X ′ = ss′ ∩AB,

depends neither on L nor on s. See Fig. 2.

(Pappus theorem) If p1, p2, p3 are three distinct aligned points of P, and if

q1, q2, q3 are three distinct aligned points, then the three intersection points

p1q2 ∩ p2q1, p1q3 ∩ p3q1 and p2q3 ∩ p3q2 are aligned as well.

(Dual of Pappus) If l1, l2, l3 are three distinct concurrent lines of P, and if

m1,m2,m3 are three distinct concurrent lines, then the three joining lines

(l1∩m2, l2∩m1), (l1∩m3, l3∩m1), (l2∩m3, l3∩m2) are concurrent as well.

(Desargues theorem) If two triangles abc and ABC are perspective ( that is

aA, bB, cC concur), then homologous sides cut in 3 aligned points, that is

ab ∩ AB, bc ∩ BC, ca ∩ CA are collinear. The converse is true as well.
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(Pascal theorem) If p1, p2, p3, q1, q2, q3 lie on a common conic in P, then the three

intersection points p1q2 ∩ p2q1, p1q3 ∩ p3q1 and p2q3 ∩ p3q2 are aligned.

p1

p2

p3

q3

q2
q1

aA

b

B

c

C

O

Fig. 3. Pascal and Desargues theorems.

Note that Pascal theorem seems to get out our point/line framework, but recall

that the union of two lines is a conic. Thus, Pappus theorem is a direct consequence

of Pascal theorem. Moreover, we will see below that Pascal theorem can be re-

formulated into the so-called hexamys theorem which falls into our framework.

All these properties are well-known theorems in the real projective plane, but,

in fact, some of them are more fundamental than the others. For instance, it is a

classical fact that Desargues property is a consequence of Pappus property. Our aim

is to use these fundamentals properties in a combinatorial way to prove projective

theorems.

Next section recalls the axiomatic framework of projective geometry.

2.3. Axioms of projective geometry

The real projective plane is not the only geometrical projective structure. In fact,

geometers have axiomatized the projective framework giving the amazingly simple

definition which follows.

Definition 1 (Projective geometry). A projective geometry is a set S of points

and a collection of subsets of S, the set of lines, subject to these axioms:

(P1) each pair A, B of distinct points is contained in a unique line which is

denoted (AB),

(P2) if A, B, C and D are distinct points for which (AB) ∩ (CD) 6= ∅, then

(AC) ∩ (BD) 6= ∅, and

(P3) each line contains at least three points.

For a projective plane, (P2) becomes: (P2’) any two distinct lines intersect in exactly

one point.
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When three distinct points A, B and C belong to the same line, we say that they

are collinear and we use the notation [A,B,C].

Note that this definition has a matroidal formulation (see below). It comes di-

rectly from the definition that [A,B,C], [A,B,D] and C 6= D implies that [B,C,D].

This fact is true in every projective geometry and it constitutes the simplest exam-

ple of induced incidence. Note that Pappus and Desargues theorems are no longer

true in this general framework, so we usually call them Pappus and Desargues

properties.

From this definition, the following notions are usually derived:

• a flat is a set of points such that the entire line defined by two points A

and B lies in the flat whenever A and B belong to it;

• the flat closure of a set E is the intersection of all flats containing E. It is

the smaller flat containing E;

• the rank of a flat F is the minimal number of points of F necessary to

cover F by flat closure. The respective ranks of a single point, a line and a

plane are 1, 2 and 3.

Real P(R) or complex P(C) geometric projective planes are usual examples of

projective planes. But not all projective planes arise from a field. We have the

following characteristic properties:

Theorem 1 (Fundamental theorem of projective geometry1,5,6). A projec-

tive plane is isomorphic to a projective plane arising from a division ring if and

only if it satisfies Desargues property.

A projective geometry is isomorphic to a projective geometry arising from a

commutative field if and only if it satisfies the Pappus property.

Any projective geometry of a dimension greater than 2 is isomorphic to a pro-

jective geometry arising from a division ring (and Desargues property is true).

The main idea of the proof consists in defining addition and multiplication

in terms of geometric constructions1. Numbers are represented by points along a

particular line, where three distinct points are arbitrarily chosen, and called 0, 1

and ∞. A geometric construction in Fig. 4 gives the point representing a + b,

from the points representing a and b. For pedagogic reasons, the construction is

first performed in the affine plane, using parallelism, then in the projective plane.

The proof of the correction of this construction — for instance , the fact that the

resulting point a + b is independent of the used auxiliary points or lines, that the

point a+ b equals the point b+a, that the addition so defined is indeed associative,

etc. — uses Desargues property. Similarly, another construction in Fig. 5 gives

the point representing ab, from the points representing a and b. Once again, the

construction is first illustrated in the affine plane, then in the projective plane.

The proof of the correction of this construction uses Desargues property again. The

proof that the defined multiplication is commutative ( that is permuting a and b

gives the same result, ab = ba) uses the Pappus property.
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Fig. 4. the operation a + b. Affine and projective variants.

a b ab10
1

0

ab

b
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8

Fig. 5. The operation a × b. Affine and projective variants.

This demonstration directly leads to the following theorem which states that

incidence constraints are “universal”.

Theorem 2 (Universality theorem). All algebraic systems of equations with

integer coefficients and unknowns in a field K (typically K = R or C) reduce to a

system of point-line incidence constraints in the projective plane P(K).

Every integer coefficient is represented by a point on the line 0, 1,∞, and ge-

ometrically constructed from 0 and 1 with iterated squaring and multiplications.

Every unknown of the algebraic system is also represented by a point on the line

0, 1,∞. Iterated squaring is also used to construct the point xk for a given k ∈ N.

The point representing a monomial xd1

1
xd2

2
. . . is deduced by geometric multiplica-

tion of the points representing xd1

1
, xd2

2
, etc. The point representing a polynomial is

the geometric sum of the points representing its monomials. Each equation Ei = 0

is represented by the equality between the points representing Ei and 0. Fig. 6

shows (a solution of) the point line incidence system of the equation x2 − 2 = 0.

The size of the resulting point line incidence system (the number of incidences) is

proportional to the bit size of the algebraic system.

3. The compatible matroid problem

3.1. Definition

The matroid theory19,16 intents to capture combinatorial properties of indepen-

dence, which occur in graph theory, linear algebra, geometric arrangements. Several

axiomatizations, cryptically isomorphic, were designed for matroids. The following

axiomatization is convenient:
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Fig. 6. From left to right: affine construction of the point x2; middle: affine construction of the

point 2; superposition of the two affine constructions; projective superposition, that is projective

representation of the equation x2 − 2 = 0.

• A set is either independent or dependent.

• The empty set is independent.

• Subsets of an independent set are independent.

• If the sets U and V are both independent, and V has one element more

than U , then it is possible to complete U with one element v ∈ V −U such

that U ∪ {v} is independent.

A basic theorem of the matroid theory is that all maximal independent sets

have the same cardinality, called the rank of the matroid. Matroids representing

configurations in a projective plane (respectively in 3D) have rank 3 (resp. 4).

The compatible matroid problem can now be defined: given

• a set S of points,

• an integer K,

• a set I of subsets of S which have to be independent, and

• a set D of subsets of S which are specified to be dependent,

find a matroid with rank K and compatible with the given specification. The

searched matroid can be represented by O(|S|R) boolean variables α(T ), each one

attached to a subset T of S with at most R elements with the meaning α(T ) is true

if and only if T is independent. The problem becomes “find values for the O(|S|R)

boolean unknowns αs, compatible with the specification and the O(|S|2R−1) ax-

ioms of matroids”. Clearly, it relies on problem SAT, thus it is decidable and NP-

complete.

This problem is relevant, since the non existence of a compatible matroid implies

the configuration is not realizable. The converse is wrong: some matroids are not

realizable in some (or all) fields.

3.2. The compatible matroid problem is NP-complete

The compatible matroid problem is NP-complete: the proof polynomially re-

duces the satisfaction problem4 to a compatible matroid problem with rank 3.

The satisfaction problem consists in finding values of boolean unknowns such

that they satisfy a logical formula in conjunctive normal form as, for instance,
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J K

O I X
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L

Fig. 7. The Fano plane, F7: it is the projective plane with coordinates in Z/2Z.

(x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) (recall that ∨ is the disjunctive operator, ∧ is the

conjunctive operator, ¬ is the negation operator).

The satisfaction problem reduces to the compatible matroid problem in two

steps. The first step classically consists in representing booleans by integers 0 and

1 in Z/2Z, ∧ by the multiplication of Z/2Z, x ∨ y by (x + (1 − x) × y), and ¬x by

1 − x. Thus the problem is now to solve a set of algebraic non linear equations in

Z/2Z.

In the second step, algebraic equations are translated into specifications of de-

pendence or independence in the finite projective plane P(Z/2Z) using the geo-

metric constructions for + and ×. P(Z/2Z) is represented by (actually it is iso-

morphic to) the Fano matroid with vertices {O, I,X, J, Y,K,L}, and with minimal

dependent subsets: {O, I,X}, {O, J, Y }, {O,K,L}, {X,Y, L}, {I, J, L}, {I,K, Y },

{J,K,X}, in Fig. 7. To help intuition, we give homogeneous coordinates for vertices:

O = (0, 0, 1), I = (1, 0, 1), X = (1, 0, 1), J = (0, 1, 1), Y = (0, 1, 0),K = (1, 1, 1), L =

(1, 1, 0); O represent false, I represents true. Each boolean unknown is represented

by a point. Each equation is represented by specifications. After solving the com-

patible matroid problem, each unknown boolean couple (xi,¬xi) is equal either to

(O, I) ( that is the set {xi, O} is dependent, the set {¬xi, I} is dependent) or to

(I,O), if a compatible matroid exists. If there is no compatible matroid, the formula

is not satisfiable.

Thus, for ranks greater or equal to 3, the compatible matroid problem is NP-

complete; for rank 2, it is only a reformulation of the union-find4 problem, which

has polynomial time complexity.

3.3. Discussions about NP-completeness of compatible matroid

problem

Recall that the characterization of the rigidity of bar systems, which consist only of

points and generic distance constraints, is the subject of the rigidity theory15. In-

cidence constraints and bar systems are two basic classes of geometric constraints.

Both problems seem homologous but their difficulties strongly contrast. In 2D, sev-



November 21, 2005 19:14 WSPC/Guidelines michelucci-schreck

Incidence Constraints 9

eral deterministic methods allow to establish rigidity of bar systems in polynomial

time, while the compatible matroid problem is NP-complete. In any dimension, a

probabilistic method with cubic time compexity, decides the rigidity of bar systems.

Methods to decompose systems of geometric constraints in CAD-CAM are

mainly graph based2. They have polynomial time complexity, and are very use-

ful by enabling to solve systems which can not be otherwise. They are more or less

inspired by methods from rigidity theory ( for instance see Hendrickson’s work10).

A direct consequence of this NP-completeness is that these methods can give wrong

results in presence of incidence constraints which are, unfortunately, ubiquitous in

CAD-CAM applications.

Finally, due to its genericity assumptions, the rigidity theory is of little help to

study incidence constraints. Admittedly, the witness configuration method11 is di-

rectly inspired by the probabilistic method to test rigidity: interrogating the witness

configuration makes possible to detect redundancies and decompose in polynomial

time. However, this method assumes that a witness, that is a geometric realization

of an incidence specification, is known. Thus the specification is obviously realizable,

consistent, and the only possible dependences are redundancies, not contradictions.

4. The Hexamys prover

The Hexamys prover directly implements the proving method proposed by Ray-

mond Pouzergues12 and based on the following theorem.

Theorem 3 (Pouzergues hexamys theorem). A hexamys is a hexagon such

that its opposite sides cut in three collinear points. Every permutation of a hexamys

is a hexamys.

This theorem allows to discover new collinearity relations in a given figure, or

to prove that certain collinearities are consequences of other collinearities (see two

examples below). R. Pouzergues proves more than thirty theorems of geometry using

a sequence of hexamys, incidence theorems but also theorems about conics. Using a

clever projective reformulation of orthogonality, Pouzergues even proves Euclidean

( that is metric) theorems involving orthogonality, like: the three altitudes of a

triangle concur. Most of the time, a unique hexamys is sufficient for the proof;

thus the proof is just 6 names long. But in more difficult cases, three hexamys are

needed, as for the proof of Desargues in the Cevian case.

4.1. Two examples

Example 1. Fig. 8 depicts the Desargues theorem. Hexamys proves automatically

this theorem in the generic case as follows. By hypothesis, OAA′, OBB′, OCC ′

are aligned. We want to prove the collinearity of IJK, that is [I,J,K] using our

notation, where I = AC ∩ A′C ′, J = AB ∩ A′B′, K = BC ∩ B′C ′. The auxiliary

points: P = A′B′ ∩ BC, Q = AB ∩ B′C ′ are needed. Now (A,A′, P, C,C ′, Q) is a

hexamys since its three opposite sides cut in O,B,B ′, collinear by hypothesis. Thus
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AQC’A’PC

AA’PCC’Q

C’

O

I
K

P

Q
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BC

J

A

Fig. 8. Desargues property is a consequence of the hexamys property. (This proof of the generic
case has been automatically generated).

(A,Q,C ′, A′, P, C) is a hexamys as well, the opposite sides cut in J,K, I, thus they

are collinear. QED.

Example 2. Desargues theorem is true even in the “Cevian case” depicted on

Fig. 9. Recall that A′B′C ′ is a Cevian triangle of ABC if A′ ∈ (BC), B′ ∈ (AC),

C ′ ∈ (AB) and (AA′), (BB′) and (CC ′) are concurrent. We interactively prove the

theorem as follows.

We have to prove that P,Q,R are collinear where P = (AB) ∩ (A′B′), Q =

(AC)∩ (A′C ′) and R = (BC)∩ (B′C ′). We introduce R1 = (PQ)∩ (BC) and R2 =

(PQ)∩(B′C ′): we have now to prove that R1 = R2. Auxiliary intersection points are

I = (OB) ∩ (PQ), L = (A′C ′) ∩ (AI), N = (AB) ∩ (LB′) and M = (AL) ∩ (CC ′)

(the existence of these points is a question left to the reader). Since [L,N,B ′],

(A′, L,B′, I, A, P ) is a hexamys, so is (A′, A, P, I, B′, L), and we have [O,N,Q] by

using only one hexamys. With the second hexamys, (C,B,A,O, I,Q) which gives by

permutation (C,O,Q, I,A,B), we prove that [R1,M,N ] A third hexamys is used

to prove [R2,M,N ]: this is (C ′, B′, Q,O, I, L) giving (C ′, O,Q, I, L,B′). Thus the

lines (MN) and (PQ) have two points in common: R1 and R2. Either the lines are

equal but then the configuration degenerates and all points are aligned; or R1 = R2

and P , Q and R = R1 = R2 are collinear. Three hexamys and three “generations”

of lines are needed here.

4.2. Hexamys rules

The following genericity assumption of the Hexamys prover simplifies dramatically

the problem, and the prover itself: two points with different names are independent

( that is distinct). The genericity assumption enables to use the generality of the
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Fig. 9. Cevian triangles

hexamys theorem, which has only one non degeneracy condition: the six points

(a, b, c, d, e, f) must be distinct; indeed, the hypothesis of the hexamys theorem do

not require independences for triples of points in (a, b, c, d, e, f).

The user specifies a set of collinearities between three distinct points, that is

between three distinct names of points. It is not possible (and useless) to specify

that three points are not collinear. The Hexamys prover uses the following rules:

• a matroid rule: [a, b, c] ∧ [a, b, d] ∧ c 6= d ⇒ [b, c, d].

• the hexamys permutation theorem, with σ any permutation:

Hex(a, b, c, d, e, f, g) ⇔ Hex(σ(a, b, c, d, e, f, g))

• a convenient definition: p = a ∨ p = b ∨ [p, a, b] ⇔ p ∈ (a, b)

• the hexamys theorem provides two rules:

a, b, c, d, e, f all different

∧ i ∈ (a, b) ∧ i ∈ (d, e)

∧ j ∈ (b, c) ∧ j ∈ (e, f)

∧ k ∈ (c, d) ∧ k ∈ (f, a)















⇒ Hex(a, b, c, d, e, f, g)

i, j, k all different

∧ Hex(a, b, c, d, e, f, g)

∧ i ∈ (a, b) ∧ i ∈ (d, e)

∧ j ∈ (b, c) ∧ j ∈ (e, f)

∧ k ∈ (c, d) ∧ k ∈ (f, a)























⇒ [i, j, k]
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This last rule uses property i ∈ (a, b) instead of [i, a, b]: this is because the latter

implies that i, a, b are all distinct, contrarily to i ∈ (a, b). The rules above can

not create collinearities [a, b, c] where a, b, c are not all distinct (names of) points,

starting from a specification where all collinearities involve triples of distinct points.

¿From these rules and the initial specification of collinearities, it is easy to

deduce new hexamys and new collinearities, using either forward chaining (we im-

plemented a saturation method using Ocaml language) or backward chaining (we

implemented it in Prolog language). We reproduce Pouzergues proofs and some

others.

4.3. Hexamys features

For genericity reasons, the Hexamys prover needs no backtrack. For instance, it

can not happen that the prover “believes” or supposes that a triple (a, b, c) is

independent, deduces new hexamys and collinearities, and then realizes that the

independence of (a, b, c) is actually wrong. It is due to the generality of the Hexamys

theorem and of the genericity assumption.

For the same reasons, the Hexamys can never find that a specification is incon-

sistent: when two lines cut in two points, the Hexamys prover deduces the two lines

are equal, so that, in the extremal case, all points become collinear. It is worth to

point out this asymmetry between lines and points. The behavior of Hexamys gives

a strategy to the user for proving that two points are equal: create two distinct

points, then check that Hexamys merges all lines through them.

Always for these reasons, the Hexamys prover is polynomial time: O(n6) for n

initial and auxiliary points. Of course, this prevents the Hexamys prover to treat

problems arising from the geometrization of satisfaction problems, as in the NP-

completeness proof of the compatible matroid problem, where the genericity as-

sumption is wrong.

¿From an axiomatic viewpoint, all theorems in the projective plane results from

the Pappus axiom and the “matroidal” axioms. But, in fact, the Hexamys prover

has it own limitations.

The Hexamys prover is only half deterministic since it can only prove collinear-

ities of points but not non-collinearities. Note that the later notion does not even

exist in the Hexamys world, though it is relevant for the user. Moreover, adding

auxiliary intersection points is essential to enable Hexamys to prove collinearities. If

only one hexamys is needed, the auxiliary points are automatically found and cre-

ated. If more hexamys are needed, the user has to interact with the prover in order

to guide it. Of course, it is possible to systematically generate intersection points;

but it has an exponential cost and we do not know stopping criteria. To overcome

these limitations, we come back to compatibles matroids and their formulation in

term of SAT problem.
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5. Pappus prover

5.1. The compatible configuration problem

Some rank 3 matroids are not realizable in projective fields, for instance they

contain configurations which contradict theorems such as Desargues, Pappus, or

hexamys. This suggests to search matroids which do not contain forbidden con-

figuration (forbidden minors16,19, in matroid parlance). We call this problem, the

compatible configuration problem. The aim of our Pappus prover is to check such

configurations by searching a rank 3 matroid

• which is compatible with a specification given by the user under the form

of a set of dependent tuples and a set of independent tuples,

• and which is not contradictory with Pappus property.

5.2. Rules of Pappus prover

As said in section 3.1, we can define a boolean variable α(T ) for each subset T

with three points or less by using the intuitive semantic: α(T ) is true if and only if

T is independent. For n points, there are O(n3) boolean variables. Every subset S

with more than three points is dependent, so variables α(S) are useless for |S| > 3.

The axioms of the theory of matroids and Desargues and Pappus axioms provide a

boolean formula in conjunctive normal form (CNF) which is solved with a boolean

solver, namely Minisat8. Minisat is fast enough to solve configurations with 25

points in a matter of seconds, but it crashes for some configurations involving 34

points or more.

For every subset B, |B| ≤ 3, and A ⊂ B: α(B) ⇒ α(A). The corresponding

clause is: ¬α(B) ∨ α(A). For every couple of subsets U , V , where |V | ≤ 3 and

|V | = |U | + 1, the complementing axiom of matroids asserts that, if U and V are

independent, then it is possible to complete U with an element in V − U to get

an independent set: α(U) ∧ α(V ) ⇒ α(U + v1) ∨ α(U + v2) . . . ∨ α(U + vk) where

vi ∈ V − U and U + vi is a shortcut for U ∪ {vi}. These axioms are translated

into clauses as usual. For rank 3, the matroid theory provides O(n5) clauses for n

points.

Forbidden configurations contradicting Pappus’ or Desargues’ theorems provide

another set of clauses. These clauses involve every subset of 10 points, thus they

are terribly numerous; the major part of them is useless. To speed up, only the

matroidal part is solved in a first stage; if Minisat finds a solution, the Pappus

and Desargues clauses violated in the solution are added to the formula (O(n6)

operations are needed to find them), and the boolean solver Minisat is called again.

This loop is repeated until no more Pappus or Desargues clause is violated, or the

boolean formula becomes unsatisfiable.

It is worth mentioning that the specification is the only non symmetric part of

the boolean formula: all matroid, Pappus and Desargues clauses are permutation

invariant. Minisat does not exploit this high level of symmetry.
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A theorem: H ⇒ C is proved by refutation, that is if and only if H ∧ ¬C is

contradictory. We check Pappus on a subset of the theorems proved with Hexamys.

5.3. Features of Pappus prover

The Pappus prover is typically faster than Hexamys but we will not discuss further

running times, since these provers are only prototypes. Pappus provides strictly no

explanation, while Hexamys gives short and readable proofs. Moreover, the spec-

ifications used by Pappus prover have to be complete, that is all non degeneracy

conditions must be specified –which is error prone, and a burden for the user.

As the Hexamys prover, the Pappus prover is only half deterministic. More pre-

cisely, if a specification is not compatible, adding points and specifications will not

make it compatible. Conversely, if no contradiction is detected, it does not guarantee

that the configuration is compatible “for ever”: maybe a forbidden configuration is

missing – or some non degeneracy condition has been forgotten in the specification.

As for Hexamys prover, adding an auxiliary intersection point can enable the Pap-

pus prover to detect a contradiction which was not detected before. Each time the

Pappus prover does not detect a contradiction it should detect, it means that a new

forbidden configuration is discovered. Identifying minimal forbidden configurations

is a work in progress.

¿From matroid theory19,16, there is an infinite quantity of minimal forbidden

configurations for realizability in the reals. However only a finite number is relevant.

So, we only need to study configurations with a finite number of points. The possi-

bility of detecting or automatically learning all relevant forbidden configurations is

an open question. Clearly, if we can detect all forbidden configurations, the Pappus

prover can be made fully deterministic.

It would give an exotic method to solve the basic problem of computer algebra,

the ideal membership problem: given polynomials gi and a polynomial f all in

Q[X], determine if there are polynomials hi ∈ Q[X] such that f =
∑

hi × gi,

in other words if gi(X) = 0 ⇒ f(X) = 0. Just translate the algebraic question

into a question about incidence constraints and use the Pappus prover. The NP-

completeness of the proving problem is not an argument to reject such an exotic

approach since the complexity is intrinsic to the problem.

6. Projective theorems and proofs in higher dimensions

This section conjectures that it is possible to reach full determinism in combinatorial

provers.

6.1. Non monotony

A first common limitation to Pappus and Hexamys provers consists in their restric-

tion to the plane. Indeed, no extension of Pascal or hexamys theorems is known

concerning the 3D space and beyond.
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Another remaining limitation is that both provers are only half deterministic

up to now. According to Hilbert, or to the universality theorem, all theorems of

the projective plane are consequences of Pappus axiom and of the simple axioms

for rank 3 matroids. This gap between logic and provers comes from the non ma-

troid axioms: Desargues, Pappus or hexamys, used in forbidden configurations.

Indeed, these axioms introduce non monotony in the following sense: completing a

compatible configuration with a missing intersection point can make the configura-

tion non compatible. On the other hand, we conjecture that the matroid theory is

monotone, more precisely, that it is always possible to complete a matroid with a

missing intersection point without introducing a contradiction. Now, Pappus theo-

rem is captured by matroids over the cubic curves in the projective plane (see proof

below). Suppose that the user specifies incidences between points and cubic curves

in the projective plane a. The idea is to search a rank 10 matroid compatible with

the specification. Such a matroid will automatically satisfy Pappus axiom, and, due

to the conjectured monotony of matroids, adding missing intersection points will

not make the compatible matroid inconsistent.

Even if this conjecture is correct, the method is clearly not practicable: for n

points, there are O(n10/10!) tuples of at most 10 points, thus a satisfaction problem

involving O(n10/10!) boolean unknowns has to be solved. This method is only an

interesting but theoretical argument.

6.2. Chasles theorem and its consequences

Assuming that P is a projective plane arising from a field, we have:

Theorem 4 (Chasles). If Q1 and Q2 are two cubic curves in P without a common

component, which cut in 9 distinct points, then every cubic passing through 8 of

these points also passes through the 9th point.

Numerous theorems5,6,7,18 share the same combinatorial flavor like, for instance,

the three quadrics theorem, Beltrami theorem and Mobius’s tetrahedrons theorem.

A matroidal proof of Chasles theorem is given next section. We prove before that

Pappus property is a consequence of Chasles theorem:

Let Q1 be the cubic curve composed of the 3 lines p1q2, p2q3, p3q1. Let Q2 be the

cubic curve composed of the 3 lines p2q1, p3q2, p1q3. Let C be the conic composed

of the 2 lines p1p2p3 and q1q2q3. Let K be the cubic C∪ i3i1 where i3 = p1q2∩p2q1,

i1 = p2q3 ∩ p3q2. We note i2 = p3q1 ∩ p1q3. The two cubic curves Q1 and Q2 cut in

the 9 points pk, qk, ik, k ∈ 1, 2, 3. The cubic K passes through all these points too,

except i2. By Chasles theorem, since it passes by 8 of the 9 points, it also passes

by the 9th point i2. Thus K = p1p2p3 ∪ q1q2q3 ∪ i3i1 passes through i2. But i2 does

not lie on p1p2p3 ∪ q1q2q3, thus it lies on i3i1, and i1, i2, i3 are aligned. QED.

ato give an idea, the table 10 lists the quadratic rank of basic configurations of points. The table

for cubic ranks is defined similarly but is much bigger.
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R3 R6 coR6 Configuration

R3 = 1 R6 = 1 coR6 = 5 1 point

R3 = 2 R6 = 2 coR6 = 4 2 points

R3 = 3 R6 = 3 coR6 = 3 3 non aligned points
R3 = 2 R6 = 3 coR6 = 3 3 aligned points

R3 = 3 R6 = 4 coR6 = 2 4 points in generic position
R3 = 3 R6 = 4 coR6 = 2 4 points, 3 aligned
R3 = 2 R6 = 3 coR6 = 3 4 aligned points

R3 = 3 R6 = 5 coR6 = 1 5 points, in generic position
R3 = 2 R6 = 4 coR6 = 2 5 aligned points
R3 = 3 R6 = 4 coR6 = 2 5 points, 4 aligned
R3 = 3 R6 = 5 coR6 = 1 5 points, 3 aligned

R3 = 3 R6 = 6 coR6 = 0 6 points, in generic position
R3 = 3 R6 = 5 coR6 = 1 6 points, on a conic, generically
R3 = 3 R6 = 5 coR6 = 1 6 points, 3 aligned + 3 aligned
R3 = 3 R6 = 5 coR6 = 1 6 points, 4 aligned
R3 = 3 R6 = 5 coR6 = 1 6 points, 5 aligned
R3 = 2 R6 = 4 coR6 = 2 6 aligned points

Fig. 10. R3 is the linear rank, R6 the conic rank, coR6 the conic corank. The latter is the number
of independents conics through the points. R6 + coR6 = 6. In the same way, it is possible to
tabulate the cubic ranks.

The proof of Pascal theorem is quite similar: just replace the conic C by the

conic passing through the 6 points pk, qk, k ∈ 1, 2, 3.

6.3. Matroidal proof of Chasles theorem

Some notations are needed in order to present succinctly the proof of Chasles theo-

rem and the ideas behind the proof. Points in the projective plane are represented

by 3-vectors v = (x, y, z). As usual, all proportional non vanishing vectors repre-

sent the same point in the projective plane. Homogeneous coordinates x, y, z will

be used only for counting degrees of freedom. We define a cubic lifting φ as a map

transforming 3-vector v = (x, y, z) into 10-vector

φ(x, y, z) = (x3, y3, z3, xyz, x2y, x2z, y2z, xy2, xz2, yz2)

Let Q be a cubic curve in the projective plane, φ(Q) is then an hyperplane in a 10

dimensional vectorial space. Thus, φ(Q) has vectorial rank nine, and nine points

are needed to define a cubic curve. If the nine points are in generic position, they

define one and only one cubic curve.

We can now outline the proof of Chasles theorem. By hypothesis, Q1 and Q2 are

two cubic curves in the projective plane which do not share common component,

and which intersect in 9 distinct points. Therefore, φ(Q1) is an hyperplane in the

lift space of dimension 10, and φ(Q1) has then vectorial rank equal to 9. This is

the same for Q2. The intersection of two hyperplanes with rank 9 has rank 8. Thus,

any set of 9 vectors of the intersection of φ(Q1) and φ(Q2) is linearly dependent.
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Consequently, every vectorial space, such as an hyperplane, through 8 of them also

contains the remaining 9th. In other words, coming back to the plane, every cubic

curve through 8 of the 9 intersection points goes through the remaining 9th. QED.

The previous proof uses only properties of matroids: it uses no forbidden con-

figurations, which introduce non monotony.

7. Conclusion

Detecting dependences between geometric constraints is difficult. Indeed the easiest

problem which is the compatible matroid problem, is NP-complete. This complexity

is not due to some flaw in the combinatorial approaches, which on the contrary

provides the proof of this complexity. This complexity is intrinsic to the problem

and holds for all methods. Some mild assumptions, such as genericity, make possible

polynomial time methods, such as the Hexamys prover.

Incidentally, several open questions arise. Is it possible to make our half deter-

ministic provers completely deterministic? Are forbidden configurations detectable?

Does it make sense, computationally, to translate computer algebra problems ( for

instance the ideal membership problem) into problems of point-line incidences? Is

the theory of matroid theory monotone?
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