
A \Lazy" Solution to Imprecisionin Computational GeometryM.O. Benouamer, P. Jaillon, D. Michelucci, J-M. MoreauD�epartement Infa, E.M.S.E., 158, Cours FaurielF 42023 Saint-�Etienne, Cedex 02e-mail: moreau@emse.frAbstractMaking safe and consistent decisions is essential to geo-metric algorithms. Quite a few solutions to this problemhave been suggested in the recent years, but they generallyask that drastic changes be made to algorithms. A simpleand e�cient paradigm is suggested here, which enables pro-grammers to forget about precision issues altogether, what-ever algorithm they intend to implement.The paper describes a lazy exact arithmetic library (LEA)based on this paradigm and its operation in a typical situ-ation from Computational Geometry.1 IntroductionLazy languages (ML, Miranda) emerged a few yearsago, introducing the strong paradigm of laziness:\Why should a quantity be evaluated if it is nevergoing to be used later?" The same applies to preci-sion: \Why should a quantity be computed exactly ifit is never involved in con
icting issues later on?"Of course, if brutally implemented, such an obser-vation would be fatal in situations where some exactinformation { that was available but not needed at onestage { becomes indispensable but no longer accessi-ble, later on!Although there is no way to predict when theydo arise, such situations are not infrequent in ordi-nary computations, and the simplest, safest preven-tion is to memorize { when still possible { as little aswill prove su�cient for complete information retrieval,should this ever become necessary at a later stage.Why should we ever be concerned with precisionissues, let alone lazy paradigms? Section 2 brie
y re-views precision problems in Computational Geometryand their treatment by the most widely used tech-niques. Section 3 presents the objectives and princi-ples of a lazy library. In section 4, laziness is shown inoperation on a famous problem from ComputationalGeometry and Section 5 concludes on future work.

2 Precision and GeometryComputational Geometry deals with algorithms onreal points, lines, planes, solids: : : as modelled on a�nite-precision machine. Most of the time, processorstruncate digits, round o� results, and almost everydecision made by any program is biased! Naive algo-rithms often process data independently. The conse-quence of an error is then most likely local. However,optimal algorithms generally depend on the coherenceof the inputs to guarantee coherent outputs. For them,any error may start a chain reaction that will corruptthe global solution, or even cause system crashes, be-cause the logic of the objects they model and that ofthe data they manipulate are no longer consistent.We shall use the following problem to illustrate ourdiscussion: Given N distinct segments in the plane,detect and identify all K 2 O(N2) intersections be-tween them. There are basically three methods forsolving this problem: a brutal and always quadraticalgorithm (test the intersection of all possible pairs ofsegments), the more sophisticated O((K + N ) logN )algorithm due to J.L. Bentley and T. Ottmann ([1]),and �nally the optimal O(K +N logN ) algorithm byB. Chazelle and H. Edelsbrunner ([3]).The �rst, \brute-force" algorithm is straightfor-ward and is known to be extremely robust, if not com-putationally e�cient.\Bentley-Ottmann's" algorithm is so famous thatwe refer the reader who would be unaware of its prin-ciples to [1] (the original paper), [24] or [16] where itis further described, commented upon and analyzed.We shall just need to know that this algorithm uses avertical sweep-line moving from�1 to +1, supposedto model, at the end of each iteration, the vertical or-der of all segments it intersects. It is also well-knownthat this algorithm is extremely sensitive to machineerrors (cf. 2.1), and therefore is a very good candidatefor testing the virtues of laziness.



We intend to implement Chazelle-Edelsbrunner'salgorithm in the future to measure its sensitivity toprecision, which should be much less than Bentley-Ottmann's. Interestingly enough, the authors of [3]use a \functional approach to data structures" ([2]),that shows similar concerns, to some extent, to thelazy paradigm described in this paper.2.1 DjinnsDe�ne x-order (y-order) as the natural order on ab-sciss� (ordinates) { noted >x (>y) { and xy-order asthe usual lexicographical order on points (x-order, theny-order for ties) { noted >xy. Now suppose a facetiousdjinn exchanges the positions of two elements in thexy- or y-order while Bentley-Ottmann's algorithm isrunning: There is no way to guarantee that the resultswill be valid, or even that the process will terminate.This supernatural intervention is likely to perturbthe execution of procedures manipulating x- and xy-order data structures since the invariants of such struc-tures are no longer preserved. The program will in-variably abort or wind up in theoretically impossible(topolo-)logical con
icts ([17]).Bentley-Ottmann's method assumes it is possible tosort endpoint or intersection coordinates reliably, andthis may no longer be guaranteed when �nite preci-sion is used. Consider the following example (refer toFigure 1): Each square has unit length sides, so A =(0; 0); B = (1; 3); C = (0; 2); D = (1; 2). Furthermore,the abscissa of both E and F is equal to the 
oatingpoint number 0:666667. AB\CD = 
 = (23 ; 2). In themachine, and in the best case, 
 will be represented asa point 
? such that, say, 
? = (0:666667; 2). The ver-tical segment EF has been chosen so that, accordingto the real x-order 
 <xy E <xy F , whereas we haveE <xy 
? <xy F on the machine. 
? will therefore beinserted after E in the x-order, which is wrong: This
Figure 1: Djinns and Bentley-Ottmann's algorithm.

is just how a minor numerical error becomes topologi-cal, and imprecision plays the part of a facetious djinn.A last remark: Imprecision only has serious con-sequences when it alters the order between numbers.This means that �nding a good lazy remedy to pre-cision problems is to cure them when they becomehazardous for coherence, and to leave them alone oth-erwise!2.2 A collection of published solutionsQuite a lot of research has been devoted to �nding so-lutions to numerical imprecision. Extensive accountson this topic may be found in [18] and the othersources below. For the purpose of this paper, we shallonly give the outlines of a (non-exhaustive) classi�ca-tion.1. Solutions based on pure 
oating point arithmetic(a) Numerical solutionsi. Epsilons (popular folklore)ii. Finite exact precision ([4], [9], [18], [19])iii. Epsilon geometry ([8], [25])(b) Geometrical solutionsi. Adaptive geometry ([7], [18], [20])ii. Robust geometry ([10], [13], [18])iii. Constructive geometry ([11])iv. Symbolic geometry ([18])2. Solutions based on an exact library3. Perturbation techniques ([5], [26])4. Mixed solutions(a) Solutions based on one exact operator ([23])(b) Semi-exact solutions ([14], [17])(c) Reluctant algorithms ([22])Solutions in class 1 compensate for numerical impre-cision with 
oating point tools using either purely nu-merical or purely geometrical strategies. Most of thesesolutions may only be applied to speci�c problems,and generalizations are di�cult.Solutions in class 2 solve imprecision problems us-ing an exact representation for data, and hence areextremely greedy in time and space.Solutions in class 3 do not attempt to solve pre-cision problems, but remove degeneracies from com-putations by appropriately perturbing the data, andrequire an exact module { all the same.Solutions from class 4 are much more universal inessence, and use two types of representations for thedata to achieve consistent decisions. The present workoriginates from solutions 4(b) and 4(c).



3 LEAObjectivesThe lazy rational library is an independent module,which may be used by virtually any program in aC/C++ environment. It has �ve major objectives:1. It must be exact (yielding consistent results, andresults consistent with the data). Moreover, thelibrary must provide for the basic arithmetic op-erations on lazy numbers (+; �; inv+; inv�) andcomparisons. Extensions have in fact been addedto allow more sophisticated operators.2. It must be transparent to the programmer whowill use LazyNumbers instead of (but in exactlythe same way as) floats.3. It must be fast, and use as little resources as pos-sible (i.e. slightly more than 
oating point solu-tions, but much less than exact solutions).4. It must depend on the built-in 
oating pointarithmetic of the machine and an exact arith-metic module { possibly user-de�ned { withoutexplicitly depending on whatever exact repre-sentation is chosen. Thus, it should be possi-ble to replace rational numbers with algebraicnumbers without disturbing the operation of thelazy library. This means that speci�c modulesshould be made available for working with alge-braic numbers, etc.5. Programs based on valid algorithms, running suc-cessfully with 
oating point arithmetic (but pos-sibly crashing in degenerate situations) must ter-minate successfully with the lazy library (even inthe presence of such degeneracies as accepted bythe underlying algorithms).PrinciplesMultiple representation: A lazy number is repre-sented as an interval and a formal de�nition. Theinterval is bounded by two floats and must containthe underlying number (the one modelled by the lazynumber). The de�nition is a �eld that conveys, at anymoment, su�cient information to produce the exactrepresentation of the underlying number.Intervals: Any data inputted in a program must beassigned an interval (by the library itself). Methodsfor this, justi�cations, treatment of over- and under-
ow exceptions will be covered in depth in [12].De�nition �elds: When a lazy number is �rst en-countered, its de�nition �eld is unevaluated and is ba-sically made up of a node for an operator and pointersto operands. Another way to look at this is to say that

the formal expression for any lazy number is a tree1.For instance, if a; b; c are three lazy numbers, the def-inition �eld for z = a+ 1b+ chas a node containing the binary operator \+", itselfpointing to two \subtrees" (one for \a", another forsubexpression \inv�(b+ c)").The important thing is that no evaluation is donewhen the de�nition �eld of a lazy number is con-structed. In other words, the construction of the dagfor any elementary arithmetic operation is a constanttime and space process, as opposed to evaluation.Evaluation: Intervals tend to grow with the num-ber of arithmetic operations. If this becomes a prob-lem (see comparing lazy numbers, or computing theirreciprocal below), the only way out is evaluation, aprocess involving the de�nition �elds. When a lazynumber actually needs being evaluated, its de�nition�eld is simply �lled with the exact representation ofthe evaluated underlying number. The de�nition �eldis then said to be evaluated.Incidentally, if a node in the de�nition dag of anevaluated number is not referred to by any other ex-pression, it may disposed of. Hence, some sort ofgarbage collection must be arranged.There are only three reasons why a lazy numbershould ever be evaluated:1. When it is compared with another lazy numberwhose interval intersects its own,2. When its reciprocal is required and its intervallies on both sides of 0, and3. When the evaluation of a lazy number referringto it is called for.Refreshing intervals: The most natural evaluationstrategy consists in a recursive procedure that evalu-ates all the children of a given node, and then evaluatesit with the help of the operator it contains. Duringthis process, tighter interval bounds from lower levelsbubble up to the current node, allowing to update and\refresh" the node interval itself.Comparisons: If the numbers have non-overlappingintervals, the relative positions of these intervals (andhence of the two numbers) may be found in O(1).Else, the intervals have grown too large and must be\refreshed". If intervals still overlap after evaluation,compare the numbers using exact arithmetic.1Actually, it is a dag (for directed acyclic graph), since thenode for a lazy number may be pointed to by as many otherlazy numbers as needed in the application programs



Arithmetic operations: Interval arithmetic ([15],[21]) allows a straightforward de�nition of the inter-vals resulting from the sum, di�erence and productof two lazy numbers (represented by their own inter-vals). As for the reciprocal of a lazy number, the situ-ation is more complex. Let z be any lazy number, andIz = [�; �] its associated interval. Clearly, if 0 62 Iz,the image of Iz under z ! 1z is another interval [ 1� ; 1� ]with only one connected component, and the recip-rocal of z is well de�ned. Else, the image has twodisjoint connected components and exact evaluationis required. Note that evaluation will yield a new andtighter interval for both z and its reciprocal.Implementation: We have chosen C++ to imple-ment the lazy library, as this language allows operatoroverloading (writing \a < b" in a program although aand b are not floats but \LazyNumbers"). Garbagecollection is not provided for in this language, but hasbeen made possible through the use of reference coun-ters on rationals and arbitrary length integers. Thelibrary consists in an interval module (arithmetic on
oating-point intervals), a rational module (arithmeticon arbitrary length integers in large base, and ratio-nals), and a lazy module (operations on lazy numbers).4 Using the lazy libraryFrom a general standpoint, using a library such as theone described above, is straightforward. Data struc-tures and objects refer to lazy numbers explicitly, in-stead of 
oating point numbers. Such a test as \ifpoint p is to the left of the directed line through (q; r)"is coded using determinants ([24]) as usual. Whetherthe outcome of this test is computed with 
oatingpoint arithmetic only or with the extra help of ex-act arithmetic is not for the programmer to know, butfor the lazy library to decide.4.1 Putting it all togetherWriting Bentley-Ottmann's algorithm in programform is no easy process, and even less so when testinga new library. Specifying the library as was done ob-scures many details that only become apparent whenthings don't go the way they should.Although it is only possible to scratch the surfaceof things in this paper, here is a brief list of the prob-lems one is faced with when implementing a lazy exactlibrary. Remember that the underlying goal is to solvethese problems ahead of time, and at the lowest level,to relieve programmers from precision issues.� Preventing useless evaluations when comparinglazy numbers. For an interesting subproblem,

consider a test for comparing segment slopes,such as \if (Slope(s) == Slope(t))". The onlyway to prevent evaluation when the two segmentsare indeed equal is to teach the library how todetect that program-de�ned functions (such asSlope) may yield clones, i.e. di�erent versions ofdags with identical structures and equal \leaves".� Allowing or forbidding the creation of identicaldags, whichever is best. This may mean using\union-�nd" algorithms to take advantage of pastexperience in future computations (for instance:From a = b, and b = c, infer that a � c).� Computing hash keys from unevaluated dags.Hash tables may then be used to retrieve ge-ometric information from co-ordinates, as oftenrequired in Computational Geometry.4.2 Comparing performancesWe have implemented the `brute-force' and Bentley-Ottmann's algorithms, both as a unique program for 3versions. Linking either program with the appropriatelibrary module generates its 
oating-point, exact, orlazy version. This means that programs running with
oating-point arithmetic may almost instantly be con-verted into lazy applications. One of the parametersused to compare the lazy and exact versions is therelative precision (ranging from 10�1 to 10�12) withwhich inputs are encoded.Brute-force algorithmNote that although this version never crashes fromimprecision, it is not guaranteed to yield consistentoutputs (i.e. the resulting segment graph is not nec-essarily planar!).On random data (segments with endpoints drawnrandomly in [0; 1] � [0; 1]), the lazy version is 4 to10 times slower than its 
oating point counterpart,and always yields valid results, of course. Moreover,it performs no exact computation and is considerablyfaster than the exact version: for a relative precisionof 10�6, it is 40 times faster; for a relative precision of10�9, it is 75 times faster; for a relative precision of10�12, it is more than 100 times faster.On more realistic data, only the indispensable com-putations are performed by the lazy version, whencea substantial gain. Data for which all computationsshould be done in exact form are extremely rare andarti�cial (for instance all segments on the same line ofsupport and partially overlapping). But even in thiscase, the lazy version outperforms the exact version,but is not ridiculed by the 
oating point version.



Figure 2: Charts for Bentley-Ottmann's algorithm on 50 (a) and 100 (b) segments, respectively. The charts showthe 
oating point version (bottom curves), the lazy version (middle curves), and the exact version (top curves).Horizontal axes show precision, and vertical axes indicate times (in sixtieths of a second).Bentley-Ottmann's algorithmThe results for this algorithm are extremely encour-aging for our paradigm. The 
oating point versioncrashes, as expected, when running on special cases(vertical segments, intersection of more than two seg-ments at a same point, etc.). The overall performanceof the lazy version is slightly slower than the 
oat-ing point version on random data, owing to the extraoverhead for dag maintenance, as one would suspect.The charts on Fig. 2 were obtained after running thethree versions of Bentley-Ottmann's algorithm on 50and 100 segments, respectively, with a relative preci-sion ranging from 10�1 up to 10�9. Increasing preci-sion does not a�ect 
oating point computations (bot-tom curves) nor lazy computations (middle curves),but does a�ect rational computations (top curves):the more accurate the computations, the more ex-pensive the exact solution! The lazy-to-exact ratioranges from 4 to 75 when precision varies from 10�1to 10�9. Roughly speaking, the 
oating point andlazy curves follow asymptotic complexity for randomcases, whereas the exact curves show the overhead ofunbounded precision. When the segments are ran-domly chosen, there is virtually no exact computa-tion, and the overhead for laziness is quite moderate.Thus the overall price to pay for laziness is by farmore reasonable than that for exact computations: Inthe vast majority of cases (segments from real scenes),the overhead is only equal to the cost of creating andupdating dags, and the exact=lazy ratio may be any-where between 1 (deadly pathological cases) and 150.

5 ConclusionThe paradigm presented in this paper relegates im-precision handling at the lowest level. It has beendemonstrated on a classical problem from Computa-tional Geometry, but is intended to be used for anyalgorithm (of rational essence) in the literature, sensi-tive as it may be to imprecisions.Laziness yields fast and e�cient solutions whichoutput consistent results, even in the presence ofthe worst pathological cases. Using a lazy library isstraightforward, frees programmers from precision is-sues, and from strenuous rewriting of algorithms.There are a few references to laziness in the litera-ture. [14] has pioneered the use of a double representa-tion (
oats and arbitrary-length-integer intervals), butthis solution di�ers signi�cantly from ours, in that (i)it is dedicated to a speci�c problem, and involves nontrivial algebraic manipulations related to the problemat hand, and (ii) it relies on successive re�nementsof intervals with initially loose bounds, until they canunambiguously be declared not to include 0. Such aprocess may be iterated an arbitrary number of times,and hence its computational cost is hard to evaluate(refer to [18] for a discussion).A reference to lazy evaluation is made in [6]. (Theauthors wish to thank the referees for pointing out,and O. Devillers, INRIA, for providing this very recentand otherwise unobtainable publication.) Fortune andvan Wyk seem to have a rather negative opinion ofsuch a scheme. The reason may well be that the mainstream of their research led them away from investigat-
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