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Abstract. 3D Shape retrieval algorithms use shape descriptors to iden-
tify shapes in a database that are the most similar to a given key shape,
called the query. Many shape descriptors are known but none is perfect.
Therefore, the common approach in building 3D Shape retrieval tools is
to combine several descriptors with some fusion rule. This article pro-
poses an orthogonal approach. The query is improved with a Genetic
Algorithm. The latter makes evolve a population of perturbed copies of
the query, called clones. The best clone is the closest to its closest shapes
in the database, for a given shape descriptor. Experimental results show
that improving the query also improves the precision and completeness
of shape retrieval output. This article shows evidence for several shape
descriptors. Moreover, the method is simple and massively parallel.

Keywords: Computer vision · 3D Shape matching and recognition ·
Shape Retrieval · Shape Descriptors · Cloning · Genetic Algorithms.

1 Introduction

Shape Retrieval computes which shapes in a database resemble the most to
a given key shape Q, called the query [41]. Shapes are polyhedra with trian-
gular faces. Output should be accurate (no false positive) and complete (no
omitted solution). Basically, the shape retrieval algorithm computes off-line a
shape descriptor, intuitively a signature or a feature vector, for each shape in
the database. They do not depend on queries. It also computes on-line the shape
descriptor of the query Q. Each shape descriptor induces a dissimilarity mea-
sure, or distance for short. For example, if the shape descriptor is an histogram,
the dissimilarity measure can be the Chi-squared distance, the Kullback-Leibler
divergence, the Hellinger distance, etc. Then, the algorithm computes this in-
duced distance between Q and each shape in the database. Finally, the algorithm
outputs the m (we use m = 11) shapes with the smallest dissimilarity to the
query Q.



2 B. Mokhtari et al.

Several shape descriptors have already been proposed in the literature, but
none achieves satisfying retrieval results with all kinds of shapes [8, 10, 12, 14,
19, 20]. The classical approach to solve this issue is to combine several shape
descriptors using some fusion rules [1, 4, 6, 25, 27].

This article proposes to solve the problem by improving the query shape
itself. Our approach is therefore orthogonal to the classical approaches, which
use only one query at a time, and (a fusion of) many shape descriptors.

To improve the query, we propose a genetic algorithm (GA) [21, 23, 33, 36]
called GA-SR: Genetic Algorithm for 3D Shape Retrieval. GA-SR makes evolve
a population of perturbed copies of the query shape. Perturbed copies are called
clones. The fittest clone Q∗ is the clone the closest to its m closest shapes
M(Q∗, D) in the database, for a given shape descriptor and its induced distance
D. The m closest shapes to Q are the m closest shapes to the fittest clone.

All shapes in the database, query Q and its clones are (generically non con-
vex) polyhedra with triangular faces.Q and all its clones share the same topology,
i.e., the same incidence relations between vertices, edges and faces. The sole dif-
ference between Q and any one of its clones is that the 3D coordinates of some
vertices of Q are weakly perturbed. The perturbation is small enough, in order
for the query and its clones to have similar appearance for the human eye.

Improving the query also improves the precision (no false positive) and com-
pleteness (no forgotten solution) of shape retrieval, regardless of the used shape
descriptor and its induced dissimilarity measure. This article shows evidences
for several shape descriptors: VND (Vertex Normal Descriptor), DMC (Discrete
Mean Curvature), LSD (Local Shape Descriptor), and TD (Temperature Distri-
bution).

Shapes in the database are usually classified into several classes or clusters to
facilitate the work of classical shape retrieval methods [1, 5, 6]. In opposite, GA-
SR does not need to know the class of shapes in the database. This information
is only needed for measuring and comparing performances of GA-SR [19, 23, 26,
27, 32, 38, 42].

The rest of this paper is organized as follows. Section 2 presents the back-
ground. Section 3 details GA-SR. Section 4 presents experimental results. Section
5 concludes.

2 Background and principles

2.1 Improvement of shape retrieval

Several efforts have already been conducted to improve shape retrieval [37, 43,
50]. Most of improvement methods are based on fusion of shape descriptors
and their related dissimilarity measures. Chahooki et al. [6] proposed a method
to fuse contour and region-based features for improving the retrieval precision.
Akgül et al. proposed a fusion-based learning algorithm [1], which combines
dissimilarity measures operating on different shape features. It computes their
optimal combination by minimizing the empirical ranking risk criterion. Other
fusion methods exist [7, 27].
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Improving pre-existing shape descriptors also improves shape retrieval out-
put. For example, Bronstein and Kokkinos [3] present a scale-invariant version
of the heat kernel descriptor previously proposed by Sun et al. [42]. Ling and
Jacobs [28] aim to make the shape context descriptor by Sun et al. invariant
to articulation: they replace the Euclidean distance by the inner (also called
geodesic) distance to build a shape context descriptor. Other methods [51] for
improving shape retrieval associate the database with a graph whose nodes are
the database shapes. Therefore, the distance between shapes is defined as the
length of the geodesic path in the graph associated to the database. A learning
method permits to improve dissimilarity measure using graph transduction.

The concept of perturbation has been used as a successful strategy to improve
many algorithms [15, 16, 22, 29, 46, 49].

For example, Thompson and Flynn [46] extract the iris from an image by
finding circular boundaries that approximate the circle surrounding the iris. A
perturbation is performed by changing the values of one or more parameters of
the method.

Stochastic arithmetic is another field which uses random perturbations to
improve the robustness of numerical computations [49].

In Computational Geometry, small random perturbations of geometric data
remove all degeneracies such as, in 2D, three collinear points or four co-cyclic
points [15, 16, 22]. Perturbation greatly simplifies geometric algorithms, because
only a small number of generic cases needs to be considered, while the number
of degenerate cases increases exponentially with the geometric dimension of the
problem.

In Stochastic Resonance, perturbation enhances the transmission of informa-
tion and the detection of low signals [11, 40].

In Machine Learning, several works [13, 24] recently showed that noisy com-
putations improve associative memories.

More recently, a face recognition system [30] is enhanced by using landmark
perturbation technique that sweeps more landmarks, which improves faces com-
parison.

Yin et al. [52] establish connections between evolutionary algorithms and
stochastic approximations.

In this wake, Vaira and Kurasova [48] use a genetic algorithm based on ran-
dom insertion heuristics for the vehicle routing problem with constraints.

Ernest et al. [17] use GA and Genetic Fuzzy trees to compute deterministic
fuzzy controllers, for autonomous training and control of squadron of unmanned
combat aerial vehicles.

GAs have been used for solving complex optimization problems [34, 35]. GAs
have been also used as a powerful strategy to improve the precision in Informa-
tion Retrieval Systems [18] and in Web Retrieved Documents [45].

GAs have been also used in Computer Vision and Graphics for measuring
similarity of visual data, and in CBIR (Content-Based Image Retrieval). Syam
and Rao [44] propose a GA-based similarity measure for CBIR: the GA integrates
distinct image features in order to find images that are most similar to a given
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query image. Aparna [2] proposes a GA-based CBIR method to merge similarity
scores: it computes the adequate weight associated with each similarity measure.
Chan and King [7] combine different shape features: a GA computes suitable
weights for considered features.

Several fitness functions have been used for information retrieval involving
GAs. Thada and Jaglan [45] give a comparative study of similarity coefficients
used to find the best fitness function, in order to find the most relevant text
documents for a set of given keywords. Fan et al [18] computes the best fitness
function with a GA for information retrieval.

2.2 Shape descriptors

Shape descriptor represents an essential ingredient for measuring the similarity
of shapes. For a polyhedric shape with vertices V , it consists in calculating a
signature for some of its vertices. It can be for all vertices in V , or for a strict
subset of V refereed to by feature vertices.

Several researches have been conducted to propose discriminant shape de-
scriptors [8, 10, 12, 14, 20].

We have considered several shape descriptors selected from different cate-
gories, such as Vertex Normal-based Descriptor VND [47], Local Shape Descrip-
tor LSD [26], Temperature Distribution TD [19], and a Discrete Mean Curvature
DMC [32]. The GA-SR methods based on these descriptors are referred as GA-
VND, GA-LSD, GA-TD, and GA-DMC, respectively. We have selected these
descriptors for their simplicity and efficiency. GA-SR improves all these shape
descriptors, in terms of recall-precision curves. Other descriptors can be used.

The Vertex Normal-based Descriptor (VND) The VND [47] descriptor is
simple and fast. It considers the normal vector at vertices. The normal vector−→
N at a vertex v is the average of normal vectors in the 1-star of the vertex:

−→
N (v) =

1

l

∑
αf
−→
Nf (1)

where l is the number of faces surrounding the vertex v, and αf is the ratio area

of the face f to the total area of the 1-star. The normal vector
−→
Nf of a face f

with three points p1, p2 and p3, is given by:

−→
Nf = (p2 − p1)× (p3 − p1) (2)

pi = (xi, yi, zi), i = 1, 2, 3, and × stands for the cross product. The orientation

of
−→
Nf does not matter. Let F be the subset of feature vertices n(F ) = 3000.

Then the descriptor VND of a vertex v in F is given by:

V ND(v) =
‖−→N (v)‖2∑

v′∈F ‖
−→
N (v′)‖2

(3)
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Discrete Mean Curvature (DMC) The Discrete Mean Curvature [32] of a
vertex v is given by:

DMC(v) =
1

4

d∑
i=1

li(π − βi) (4)

where d is the degree of vertex v, βi the internal dihedral angle (in radians)
between two consecutive faces around the vertex v, and li the length of the edge
common to those faces.

Local Shape Distribution (LSD) The LSD descriptor [26] extracts n random
vertices (n = 3000), and characterizes each sample vertex v in terms of Euclidean
distances to all other points belonging to its neighborhood. The neighborhood
is a spherical region centered at point v. The LSD descriptor associates to each
region a histogram of Euclidean distances between the point v and points in its
neighborhood.

To compute the similarity between two shapes A and B, a complete bipartite
graph g is built as follows: the first set of vertices of g is given by the regions of
A, the second set is given by the regions of B. The cost of an edge (a, b) between
two regions in g is the Chi-squared distance between the a histogram and the b
histogram. By definition, the distance between A and B is the smallest cost of
perfect matchings in g. This method does not only compute a distance between
two shapes A and B, but it also matches regions in A with regions in B.

The Temperature Distribution (TD) The temperature distribution [42]
simulates the heat diffusion process on the surface of a model, which starts at a
vertex, and goes through other vertices over time.

The temperature distribution descriptor [19] of a vertex is represented as the
average of temperatures measured on all vertices in the surface of the model,
after applying a unit heat at that vertex. The average temperature for a vertex
v, at heat dissipation time t, is given by:

TD(v) =
1

n− 1

∑
w,w 6=v

∑
i

e−λit φi(v) . φi(w) (5)

where n is the number of vertices (usually n ≈ 3400), t = 50 is a constant,
and λi is the ith eigenvalue (sorted in decreasing order) of the Laplacian of the
underlying graph of the mesh, and φi its ith eigenvector. In practice, only few
eigenvectors are used, four in our experiments.

The distribution of the average temperature values is then represented by
means of a histogram. The distance between two shapes is the L2-norm computed
from their histograms.

TD descriptor is invariant to isometric transformations like pose changes,
and robust against noise and geometric textures like bumps. However, TD is
improved by GA-SR.
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2.3 Shape similarity and statistical distances

There are many statistical distances to calculate dissimilarity between two shapes
represented as distributions (histograms): Kullback-Leibler divergence, Hellinger
distance, Bhattacharyya distance, Chi-squared distance, Ln norm, etc. In this
work, we have used some of these distances to measure the dissimilarity of shapes
based on each of the used descriptors. We have used Chi-squared distance [39]
for VND, LSD and DMC, and L2-norm for TD [9], in accordance to their ex-
periments. Note that the number of drawers of histograms of compared shapes
is b ≈

√
n (b ≈ 50). In the rest of this paper, D(A,B) refers to the distance

between two shapes A and B.

3 GA-SR: Genetic Algorithm for Shape Retrieval

3.1 Notations and definitions

All shapes i.e., the query, its clones, and shapes in the database, are polyhedra
with triangular faces. A polyhedron is represented with a geometric part V
and a topologic part F . V is an array of the 3D coordinates of vertices of the
polyhedron: Vi = (xi, yi, zi) ∈ R3. Coordinates are floating point numbers. F is
an array of triangular faces: Fk = (ak ∈ N, bk ∈ N, ck ∈ N), where ak, bk, ck are
the indices in array V of the vertices composing face Fk. ak, bk, ck are typically
ordered counterclockwise, seen from outside the polyhedron. For convenience, a
scaling normalization is applied to all polyhedra, so that the sum of all triangles
areas equals one (one square meter, say).

A query and all its clones have the same topologic part F . However, the
geometric parts are different. Let Q = shape(V, F ) be the query shape. Let
Q′ = shape(V ′, F ) be a clone of Q. The geometric part V ′ of Q′ is defined as:

V ′ := V + P, ||P ||∞ ≤ ε, ||P ||0 = µ = dρne (6)

where Pi = (xi, yi, zi) ∈ [−ε, ε]3 is a perturbation vector, ε ∈ R+ the noise
threshold, n the number of vertices. P is the unknown of our problem.
||P ||∞ ≤ ε is imposed to guarantee the perturbation is small. This constraint

is compatible with GA cross-over. Typically, ε is between 0.002 (2 millimeters)
and 0.06 (6 centimeters). The optimal values of ε for VND, TD, DMC, and LSD
are respectively 0.0074, 0.0022, 0.0562, and 0,0005.

Moreover, we impose that P is sparse. Let ρ be the probability for a vertex
to be ε-perturbed. In practice, ρ = 1/4. The number of perturbed vertices is
µ = dρne, with n the number of vertices. The number of perturbed vertices is
the same for all clones of a query. This constraint is sometimes written ||v||0 = µ,
where |.|0 is a pseudonorm i.e., ||v||0 is the number of non zero coordinates of v.

Clones are not re-normalized. It is assumed that the perturbation size is
less than the Least Feature Size of shapes, so perturbations do not introduce
self-intersections or other geometric inconsistencies.

Let M(Q,D) or M(Q) be the set of the m = 11 shapes in the database which
are the closest to Q, according to the dissimilarity measure D.
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Let q be a shape, typically a clone of Q or Q itself. Its fitness f(q) or f(q,D)
is the averaged distance between q and shapes in M(q,D) defined as:

f(q,D) := (1/m)
∑

b∈M(q,D)

D(q, b) (7)

We are looking for the perturbation P such that the clone q = shape(V +P, F ) is
the closest to its m most similar shapes in the database, i.e., such that f(q,D)
is minimal. For convenience, pose g(P ) := f(shape(V + P, F ), D). Then the
problem becomes: find the optimal or a good enough perturbation X which
minimizes g(X) with ||X||∞ ≤ ε, ||X||0 = µ:

X∗ = argmin g(X), ||X||∞ ≤ ε, ||X||0 = µ (8)

3.2 Sensitivity to perturbations and discretization artifacts

Shape descriptors are very sensitive to noise, i.e., small random perturbations
and artifacts due to discretization. This sensitivity, which can be seen as a short-
coming of shape descriptors, is illustrated in Fig. 1: it shows for several shape
descriptors the distance curves between a model David1 and clones of a model
David2. David1 and David2 are two statues of David, in different poses. Let
V2, F2 be the geometry and the faces of David2. Let P2 be the normalized di-
rection of some perturbation vector : ||P2||∞ = 1 for simplicity. Each curve in
Figure 1 shows the curve d(t) = D(David1, shape(V2 + tP2, F2)), with t sampled
in [0., 0.1]. t is on the horizontal axis, and d(t) on the vertical axis. d(0) is not
zero: it is the distance between David1 and David2. It depends on the used de-
scriptor. d(t) quickly falls below d(0) for tiny values of t in [0, 0.006], then slowly
increases until t = 0.01 or 0.07 depending on the used shape descriptor, and
finally quickly increases. For t ∈ (0., 0.01] or (0., 0.07] depending on the used
shape descriptor, all d(t) are below d(0) for this random perturbation direction
P2. These distance curves are rough or noisy. This is due to discretization arti-
facts. When it is possible, increasing n, the number of samples or feature vertices,
and thus increasing the ratio n/b yield to smoother curves. Anyway, this noise
does not jeopardize GA-SR, so it is useless to try to reduce it.

These features can be reproduced and more easily understood in the much
simpler context of 1D shapes, see Fig. 2. A 1D shape is a continuous and derivable
function from [0, 1] to [0, 1], for convenience. For discretization, the interval [0, 1]
is divided into n intervals, with n = 250 or 5000 in Fig. 2. Each function f is
discretized with a vector F such that F [i] = f(i/n), i ∈ [0, n]. The distance
between two 1D shapes f1 with vector F1 and f2 with vector F2 is the Chi-
squared distance between their histogramsH(F1) and H(F2) with b = 50 buckets
per histogram (this is the value used in references). The example in Fig. 2 uses 1D
shapes f1(x) = L(a1, x) and f2(x) = L(a2, x), where L(a, x) = ax(1 − x) is the
Logistic map, and a1 = 0.7 and a2 = 0.75. Visually, f1 and f2, or their respective
vectors F1 and F2, are very close, but the Chi-squared distance between their
histograms is 0.16 or 0.17 (the possible maximal value in 1). Fig. 2 shows that
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Fig. 1. The impact of perturbation parameter t (horizontal axis) applied on the clones
of David2 model, using VND, TD and DMC descriptors in term of distance (vertical
axis) to David1 model. Distances are computed between a model David1 and clones
of David2. Values of graphs of the left column are picked with a step of 0.0001 in the
interval [0,0.1], and those of the right column are picked with the step in the intervals
[0,0.01], [0,0.01],[0.04,0.07], and [0,0.01].
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clones of F2 are closer to F1. Each point (x, y) of a curve in Fig. 2 is (x = t, y =
χ2(H(F1), H(F2(t)))) and F2(t) = F2 + tP2, where P2 is a random perturbation
vector. Three random perturbation vectors P2 were tried. For all of them, some
clone of F2 is better than the query F2, i.e., closer to F1. With n = 5000, curves
are smoother than with n = 250.
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Fig. 2. Distance curves between F1 and clones of F2. Left: n = 250 samples. Right:
n = 5000 samples. The height of the horizontal line is 0.17, the Chi-squared distance
between F1 and F2 histograms. Many clones of F2 are closer to F1 than F2 itself.

3.3 The genetic algorithm

GA-SR is a genetic algorithm. Let Q be the query, and D be the shape descrip-
tor and its induced distance. GA-SR makes evolve a population P of K = 15
clones during G = 20 iterations, from generation P0 to PG. The first population
P0 contains Q and K − 1 mutants. Next populations are generated with GA
operators: crossover and mutation. Equation (7) defines the fitness of a clone q:
the closest to the set M(q,D) of its most similar shapes in the database, the
fittest. Figure 3 shows the evolution of the fitness value of the best clone at each
generation of the GA. The best solution of the GA corresponds to the minimal
fitness value, in this case at the fourteenth generation.

The genotype of a clone is an unsorted array of its µ perturbed vertices:
(i, xi, yi, zi), where i is the index of the perturbed vertex, and (xi, yi, zi) the 3D
coordinates of the vertex after perturbation. The tuple (i, xi, yi, zi) is called a
gene in the GA parlance. It is easy to obtain vertex coordinates of the clone
from the vertex coordinates of the query and from the genotype.

Each clone in the first population P0 is generated with mutations of the
query. Let V, F be the geometric and topologic parts of Q. The µ genes of each
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Fig. 3. Evolution of the fitness of the best clone among generations.

clone are generated as follows. µ distinct vertex indices in 1, . . . n are picked at
random. Let i be one of these integers. Let Vi = (xi, yi, zi) be the 3D coordinates
of vertex Vi of Q. The gene is (i, xi + εR(), yi + εR(), zi + εR()) where function
R() returns a pseudorandom floating point value uniformly distributed in the
interval [−1, 1].

For each population Pg, g = 0, . . . G, the fitness function (see eq. 7) of every
clone is computed. To renew the population, standard genetic operators are
applied to selected parents to generate new clones: there is no elitism, so the curve
in Fig. 3 is not monotonous. More precisely, K/2 pairs of clones are selected using
the fitness-proportionate selection rule (also called the roulette-wheel selection).
Each selected pair generates two new clones with a standard crossover operation
between the two genotypes. These two new clones replace their parents in the
next generation.

The standard crossover between a first genotype G1 = L1R1 (L for left, R for
right) and a second genotype G2 = L2R2 gives two genotypes L1R2 and L2R1,
where lengths of L1, L2 are equal. Any classical crossover operator can be used.
Some vertices may be perturbed several times, without hindering GA-SR.

Mutation is an important operator in evolutionary algorithms. Each gen-
erated clone is subject to a post-mutation: with probability 0.01, each gene
(i, xi, yi, zi) is changed to (j, xj + εx, yj + εy, zj + εz), where j is selected ran-
domly and εx, εy, εz are pseudo random values uniformly distributed in [−ε, ε].

4 Experiments

4.1 Databases used

We used the databases TOSCA [53] and SHREC’11 [26]. TOSCA contains 148
3D models (eg. Cats, Centaurs, Dogs, Wolves, Horses, Lions, Gorillas, Sharks,
Female and Male figures). The models are distributed into 10 categories in-
cluding a variety of poses. SHREC’11 contains about 600 non-rigid 3D objects
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classified into different groups of models, each of which contains approximately
the same number of models. In both databases, 3D models are represented as
triangular meshes stored in ASCII files in .off format (Object File Format). The
name of each file implicitly gives the class (e.g., Cats, Dogs, etc), which permits
measurement of performances of retrieval algorithms.

4.2 Tests and results
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Fig. 4. Averaged 11-point precision-recall curves of random queries of the TOSCA
database using original descriptors (blue), Smooth-based descriptors (violet) and the
GA-based descriptor (red).

The output quality of shape retrieval algorithms is measured with precision-recall
curves. They account both for precision and completeness. They are drawn with
the 11-point interpolated average precision algorithm by Manning et al. [31]. It
is the reason why we use m = 11. The higher the precision-recall curve, the
better the retrieval.

Figures 4 for TOSCA and 5 for SHREC11 show the precision-recall curves
of descriptors VND, LSD, DMC, and TD compared to their GA counterparts.
Clearly, GA-SR significantly improves all these descriptors.
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To show the effectiveness of our method, we compare it to the following exist-
ing methods: D2 [38], MDS−ZFDR [27], GPS [42], and GT [51]. Comparison
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Fig. 5. Averaged 11-point precision-recall curves of random queries of the SHREC’11
database using original descriptors (blue), Smooth-based descriptors (violet) and the
GA-based descriptor (red).

results are illustrated in plots of Figure 6. GA-SR shows better performance.
Smoothing of a query shape is another possible way to improve shape re-

trieval. To smooth a shape, all its vertices are smoothed (without any constraint
regarding the order). Let v be a vertex, let g be the barycentre of its neighbors.
Then v′, the corresponding smoothed vertex, is defined using (9).

v′ := smooth(v) := αv + (1− α)g (9)

where α is a parameter in [0, 1]. Then D′, the smoothed distance for D in VND,
LSD, DMC, TD, is (10):

D′ := D(smooth(A), smooth(B)) (10)

where smooth(.) is the smoothing operator. Smoothing reduces noise and irreg-
ularities, so intuitively, we expect smoothing to reduce distances: D′(A,B) ≤



Optimizing Query Perturbations to Enhance Shape Retrieval 13

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

o
n

GA-VND

GA-LSD

GA-TD

GA-DMC

MDS−ZFDR

D2

GPS

GT

Fig. 6. Comparing results of GA-SR with other methods proposed in the literature.
Curves are plotted according to results reported on the SHREC’11 database.

D(A,B). Smoothing is simple and fast, in particular faster than GA-SR. Fig-
ures 4 for TOSCA and 5 for SHREC’11 show the precision-recall curves for
VND, LSD, DMC, TD, their smoothed counterparts, and their GA counter-
parts. Clearly, cloning achieves better retrieval results than smoothing.

Finally, GA-SR is compatible with fusion: let D1, . . . Ds be s shape descrip-
tors and their induced distances. Then define their fusion distance D with:
D(A,B) := min(D1(A,B), . . . Ds(A,B)) (or any other fusion rule), and use this
distance D with GA-SR. We compared GA-SR and SR with this min-merged
shape descriptor, and here too, GA-SR improves SR. No figure is provided for
conciseness.

5 Conclusion

Shape descriptors are very sensitive to small perturbations. This shortcoming
is also an opportunity for improving shape retrieval. GA-SR achieves better re-
sults than previous classical retrieval methods, and better results than smooth-
ing. Other shape descriptors are easily taken into account. GA-SR is simple and
massively parallel. It needs no machine learning, no deep learning, no supervi-
sion.
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