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ABSTRACT
Classically, geometric constraint solvers use graph-based meth-
ods to analyze systems of geometric constraints. These meth-
ods have intrinsic limitations, which the witness method
overcomes. This paper details the computation of a basis
of the vector space of the free infinitesimal motions of a
typical witness, and explains how to use this basis to inter-
rogate the witness for detecting all dependencies between
constraints: structural dependencies already detectable by
graph-based methods, and also non-structural dependencies,
due to known or unknown geometric theorems, which are
undetectable with graph-based methods. The paper also
discusses how to decide about the rigidity of a witness.

Categories and Subject Descriptors
I.3.5 [Applications]: Computational Geometry and Object
Modeling—Geometric Constrait Solving ; G.1.3 [Numerical
Analysis]: Numerical Linear Algebra

Keywords
Geometric Constraint Solving, dependency Detection

1. INTRODUCTION
Shape modelling based on geometric constraints enables the
designer to specify shapes as sets of geometric entities with
their constraints and relationships. Geometric constraints
are specifications of distances, angles, incidences, tangen-
cies, parallelisms, orthogonalities, etc. between geometric
elements such as points, lines, planes, conics, quadrics, or
higher degree algebraic curves and surfaces. Examples of
big clients of geometric constraints are: robotics (e.g., gen-
eralized Stewart platform), molecular chemistry (e.g., the
molecule problem which consists in finding the configura-
tions of a molecule from interatomic distances), geometric
modelling for CAD-CAM (dimensioning mechanical parts),
and virtual reality (e.g., blending surfaces) [14, 1, 11, 5].

Graph-based methods work well for correct systems of con-

straints, and they indeed make possible the solving of sys-
tems which are intractable otherwise. These methods are
even able to detect simple mistakes in systems of constraints,
namely structural dependencies, which may usually occur
when a subset of unknowns is constrained by too much con-
straints, non-structural dependencies, due to geometric the-
orems, can not be detected with pure graph-based methods
in polynomial time. Missing to detect such dependencies
makes the solver fail to solve the system, and to give a rel-
evant explanation to the designer [13]. This is a serious
drawback as the probability of existence of such dependen-
cies increases with the size of the system to solve.

For CAD-CAM problems, assuming a witness configuration
[3, 13] is available, it is possible to check the independency
between the geometric constraints, or to check that a de-
composition proposed by any other method is correct [6].
Systems of geometric constraints reduce to solving systems
of equations of the form F (U,X) = 0 where U is a vector of
parameters composed of geometric (e.g., distances, angles)
and non-geometric (e.g., weights, forces, costs) entities.

Figure 1: A target and a witness configurations, in
2D. Constraints are collinearities, and some edges
lengths or some angles.

The target (UT , XT ) is the system to solve: UT are the values
of parameters U , and XT is the corresponding root, so that
F (UT , XT ) = 0. A witness is a numeric couple (UW , XW )
such that F (UW , XW ) = 0, and UW and UT are generally
different. Fig. 1 shows a target configuration and a possible
witness configuration. A witness (UW , XW ) is typical of
the target (UT , XT ) if they share the same combinatorial
properties. When no witness is available, a witness can be
computed by considering U , the vector of parameters, as
unknowns and solving the under-constrained F (Y,X) = 0
system with the solver in [4].

This paper introduces the vector space of free infinitesimal
motions of the witness, how to compute a basis of this vector
space, and how to use this basis to detect constraint depen-
dencies. The paper is structured as follows. §2 presents



the principle of the witness method. §3 presents the notion
of free infinitesimal motions and how they are computed
with rank considerations. §4 explains the interrogation of
the witness method for testing flexibility and rigidity. For
conciseness, §3 and §4 assume that the witness is typical. §5
gives the conclusion and some ideas for future improvements
of this work.

2. THE WITNESS METHOD AND GCS
The goal of the witness approach is to help the designer
build correct systems of constraints [13]. When a system is
correct, the numeric solver in use can reliably solve it in a
numerically stable way.

A numerical solver can reliably compute a root in RN as the
intersection point between the N hypersurfaces described
by the N equations of the system only when the hyper-
surfaces intersect transversely [12], i.e., when the tangent
hyperplanes at the root intersect transversely. This means
that the N normal vectors to the tangent hyperplanes are
linearly independent, i.e., the Jacobian has full rank at the
solution point.

The witness method takes into account the complications
due to the intrinsic under-constrainedness of the systems of
geometric constraints which have less equations than un-
knowns. For instance, a triangle in the plane is well con-
strained by three constraints (e.g., three lengths), but there
are six unknown coordinates xi, yi, i = 1, 2, 3. For concise-
ness, we assume that the available witness is typical of the
target: they share the same combinatorial properties. The
witness method basically computes the Jacobian structure
at the witness; it detects subsets of hypersurfaces which do
not intersect transversely, i.e., subsets of equations having
dependent gradient vectors. We think that transversality is
definitively the good criterium. It has the convenient fea-
tures listed below.

- Transversality of the witness (thus of the target) is decid-
able in polynomial time; it requires only standard tools from
linear algebra.

- Transversality guarantees the convergence of the numerical
solver in some neighborhood of the root (for the witness, and
thus for target). Then classical methods from interval anal-
ysis compute such a neighborhood (a box, that is a vector
of intervals), and provide guarantees.

- Transversality also guarantees that the root (the witness,
or the target) is stable against small perturbations of the val-
ues of parameters U in the system F (U,X) = 0, more pre-
cisely it guarantees that the root is locally an implicit, con-
tinuous, and differentiable function of parameters U ; interval
analysis is able to compute and guarantee such a neighbor-
hood for U and X.

- When the equations are transversal at the witness, but
there is no root for the parameters values of the target, there
is something wrong with these target parameters (e.g., they
violate a triangular inequality).

- There are numerous ways to translate constraints into
equations, and to choose unknowns. But, the mapping be-

tween two distinct formulations is locally (i.e., in some neigh-
borhood of the witness, and thus in some neighborhood of
the target) a diffeomorphism, that is a bijective, continuous
and differentiable mapping. Transversality is preserved by
diffeomorphisms, thus it is preserved through variations in
the translation of constraints into equations.

3. FREE INFINITESIMAL MOTIONS
In geometric constraint-based modelling, the constraints con-
trol the shape of the configuration, and then the only per-
mitted actions are motions that can be applied to trans-
form the modelled configuration without violating the con-
straints. These infinitesimal motions are usually classi-
fied in two types: (i) infinitesimal displacements, namely
translations, rotations and their compositions, which never
deform the configuration, and which apply to all geomet-
ric elements in the configuration; (ii) infinitesimal flexions
(sometimes called deformations). Clearly, the witness is flex-
ible if it admits an infinitesimal flexion, i.e., the system does
not determine completely the geometric configuration.

Flexions can be displacements which apply to only a strict
part of the configuration: e.g., a subpart can rotate, while
the rest of the configuration is fixed. Generic flexions deform
the configuration. Degenerate flexions do not; they occur
with atypical witnesses; an example of an atypical witness
is a triangle with collinear vertices in the witness, though the
collinearity is not due to the constraints. The set of atypical
witnesses has measure zero, in the set of possible witnesses.

Assume a witness (UW , XW ) is known, i.e., F (UW , XW ) =
0, the main idea of the witness method is to compute the
vector space of the free infinitesimal motions Ẋ of the wit-
ness, such that the perturbed witness XW + εẊ, where ε
is an infinitesimally small number, still fulfils the specified
constraints: F (UW , XW + εẊ) = 0. Taylor expansion gives

F (UW , XW +εẊ) = F (UW , XW )+εF ′(UW , XW )Ẋt+O(ε2).

Thus, for F (UW , XW +εẊ) to be O(ε2), infinitesimally small

in front of the perturbation ε, the term F ′(UW , XW )Ẋt must
vanish: the vector space of the free motions is the kernel of
the Jacobian matrix F ′(UW , XW ) at the witness.

A basis of the infinitesimal displacements is computable a
priori : it does not depend on the constraints, but only on
the variables. Such a basis is provided below in §3.1. The
following conventions are used to describe the unknowns.
In 2D, a point has coordinates (x, y); a line with equation
ax + by + c = 0 is represented by a tuple (a, b, c); a vec-
tor is represented by its coordinates (u, v); this distinction
between points and vectors is because a translation (includ-
ing an infinitesimal translation) modifies the (x, y) of points,
but it does not modify the (u, v) of vectors; similarly trans-
lations do not modify the a, b coefficients of lines, but they
modify the c coefficient. Under displacements, the variables
u, v and a, b behave in the same way. Other geometric un-
knowns (barycentric coordinates, scalar products, distances,
squared distances, angle cosines or squared cosines, or other
trigonometric functions, areas, volumes) are unchanged by
infinitesimal displacements, so the corresponding entries in
all vectors of the basis are 0. This holds for all non-geometric
unknowns (weights, costs, densities, temperatures. . .).



ẋi ẏi ȧl ḃl ċl u̇k v̇k

tx 1 0 0 0 −al 0 0
ty 0 1 0 0 −bl 0 0
rxy −yi xi −bl al 0 −vk uk

ẋi ẏi żi ȧh ḃh ċh ḋh u̇k v̇k ẇk

tx 1 0 0 0 0 0 −ah 1 0 0
ty 0 1 0 0 0 0 −bh 0 1 0
tz 0 0 1 0 0 0 −ch 0 0 1
rxy −yi xi 0 −bh ah 0 0 −vk uk 0
rxz −zi 0 xi −ch 0 ah 0 −wk 0 uk

ryz 0 −zi yi 0 −ch bh 0 0 −wk vk

Table 1: Left: a basis for the free displacements in 2D for points, lines, and vectors. Right: a basis for the
free displacements in 3D for points, planes, and vectors.

3.1 Basis of infinitesimal displacements
It is possible to compute an a priori basis of the infinitesimal
displacements. Tab. 1 shows such a basis, in the 2D case,
composed of tx a translation in the x direction, ty a transla-
tion in the y direction, and rxy a rotation around the origin.
(xi, yi) are coordinates of a point, (al, bl, cl) are coordinates
of a line (i.e., the line has equation: alx+ bly+ cl = 0), and
(uk, vk) are coordinates of a vector (the difference between

two points). Dotted variables ẋi, ẏi, ȧl, ḃl, ċl, u̇k, and v̇k are
used to denote the values of the corresponding coordinates
in the basis of infinitesimal displacements, e.g., the couple
(ẋi, ẏi) represents the infinitesimal translation tx along the
x axis of a point (xi, yi), it is equal to (1, 0) as this is shown
on the first row of Tab. 1).

(x’, y’)

(x, y) (a, b, c)

(a’, b’, c’)

Figure 2: A 2D under-constrained system of geo-
metric constraints.

Vectors (u, v) are differences between two points, and thus
(u̇, v̇) straightforwardly follows for all infinitesimal displace-
ments. Note that the infinitesimal displacements for a point
(x, y), for a normal (a, b) to a line, and for a vector (u, v)
are different; e.g., translating a point modify it, but trans-
lating a vector or a normal does not. In 3D, a basis of the
infinitesimal displacements is tx, ty, tz, rxy, rxz, ryz, where
tz is a translation along z, ryz, rxz, rxy are rotations around
the x, y, and z axes. Corresponding coordinates are given
in Tab. 1 Right, which has as many columns as unknowns.

3.2 A structurally under-constrained example
A simple structurally under-constrained example in 2D is
the system of six equations shown in formula (1) and Fig. 2,
with generic parameters δ (a distance) and λ (a cosine).
Point (x, y) lies on two lines (a, b, c) and (a′, b′, c′), with a
specified angle between them. Moreover the distance be-
tween points (x, y) and (x′, y′) is specified. Tab. 2 shows
the Jacobian and a basis for a set of infinitesimal motions
composed of three displacements and one flexion: the point
(x′, y′) can rotate around the point (x, y) (note that lines

stay unchanged: ȧ = ḃ = ċ = ȧ′ = ḃ′ = ċ′ = 0, thus this
transform is not a rotation, but indeed a flexion). The reader

can check that vectors of infinitesimal motions are orthogo-
nal to the gradient vectors (the derivatives) e′1, . . . e

′
6. A pos-

sible witness of this system is (x = y = 0, x′ = 3, y′ = 4, δ =
5, a = 1, b = 0, a′ = 12/13, b′ = 5/13, and λ = 12/13). To
perform computations, the witness method replaces all vari-
ables (x, y, x′, y′, a, b, c, a′, b′, c′) with their numerical values
at the witness in Tab. 2.

e1 : ax+ by + c = 0
e2 : a′x+ b′y + c′ = 0
e3 : (x− x′)2 + (y − y′)2 − δ2 = 0
e4 : a2 + b2 − 1 = 0
e5 : a′2 + b′2 − 1 = 0
e6 : aa′ + bb′ − λ = 0

(1)

3.3 Degrees of Displacements (DoD)
In an attempt to make graph-based methods more robust
against dependencies between constraints Jermann et al. de-
fine degrees of rigidity [10]. We prefer the name: degrees
of displacements. The degree of displacements of a rigid
configuration is the number of equations needed to fix it
in a cartesian coordinate system. The DoD is difficult to
compute with pure graph-based methods. Jermann et al.
mainly suggest formulas for big enough configurations and a
tabulation for a finite set of small configurations; moreover
the configurations need to be generic: incidence degeneracies
(e.g., collinearities, coplanarities) due to geometric theorems
are forbidden.

The witness method computes straightforwardly the DoD,
by interrogating the typical witness, and requires no gener-
icity hypothesis at all: for instance, the typical witness can
contain three collinear points; due to typicality, this collinear-
ity is a consequence of the system of constraints, and holds
for the target. The witness method can determine which in-
finitesimal displacements are dependent. Let Y be a subset
of X, the set of variables which describe the configuration,
and D be a basis of the infinitesimal displacements at the
witness. The DoD of Y is the rank of D[Y ], the subset of
D that is relevant to Y . Let us consider the computation of
the DoD in the following cases:

- For a line (a, b, c) in 2D, D[Y ] = D[a, b, c] is shown on
Tab. 3. It is extracted from Tab. 1 by keeping only relevant
variables. D[Y ] has rank 2: we can even see that the two
dependent translations are tx and ty, which is correct as a
translation along a line leaves it unchanged.

- For a segment Y = (x, y, z, x′, y′, z′) in 3D, we just consider
D[Y ] in the witness as it is shown on Tab. 3. In this case



x y x′ y′ a b c a′ b′ c′

e′1 a b 0 0 x y 1 0 0 0
e′2 a′ b′ 0 0 0 0 0 x y 1
e′3 2(x− x′) 2(y − y′) 2(x′ − x) 2(y′ − y) 0 0 0 0 0 0
e′4 0 0 0 0 2a 2b 0 0 0 0
e′5 0 0 0 0 0 0 0 2a′ 2b′ 0
e′6 0 0 0 0 a′ b′ 0 a b 0

ẋ ẏ ẋ′ ẏ′ ȧ ḃ ċ ȧ′ ḃ′ ċ′

tx 1 0 1 0 0 0 −a 0 0 −a′

ty 0 1 0 1 0 0 −b 0 0 −b′

rxy −y x −y′ x′ −b a 0 −b′ a′ 0
flx 0 0 y − y′ x′ − x 0 0 0 0 0 0

Table 2: The Jacobian and a basis of infinitesimal motions: three displacements and a flexion for the system
given in (1). All variables are replaced by the numerical values of the witness.

ȧ ḃ ċ
tx 0 0 −a
ty 0 0 −b
rxy −b a 0

ẋ ẏ ż ẋ′ ẏ′ ż′

tx 1 0 0 1 0 0
ty 0 1 0 0 1 0
tz 0 0 1 0 0 1
rxy −y x 0 −y′ x′ 0
rxz −z 0 x −z′ 0 x′

ryz 0 −z y 0 −z′ y′

ȧ ḃ ċ ḋ ȧ ḃ ċ ḋ
tx 0 0 0 −a 0 0 0 −a′

ty 0 0 0 −b 0 0 0 −b′

ty 0 0 0 −c 0 0 0 −c′

rxy −b a 0 0 −b′ a′ 0 0
rxz −c 0 a 0 −c′ 0 a′ 0
ryz 0 −c b 0 0 −c′ b′ 0

Table 3: Left: a basis of infinitesimal displacements for a line. Middle: a basis of infinitesimal displacements
for a segment. Right: a basis of infinitesimal displacements for two secant or parallel planes. Variables are
replaced with their values at the witness.

D[Y ] has rank 5; the three translations are independent;
the three rotations are dependent, they have rank 2; this is
correct as the rotation around a line supporting the segment
leaves it unchanged.

- For two secant planes Y = (a, b, c, d, a′, b′, c′, d′) in 3D, we
also consider D[Y ] at the witness as it is shown on Tab. 3. It
has rank 5; more precisely, the three translations have rank
2, the three rotations are independent. In the same way,
we can compute the DoD of two parallel planes, which is
four: the three translations have rank 2. So, the DoD of two
planes depends on the planes configuration (are they secant
or parallel). The DoD can not be computed reliably with
graph-based methods, which have no way to decide correctly
if the two planes are secant or parallel.

- Similarly, in 3D, the DoD of three collinear points is five
(as for a segment), but the DoD of three non-collinear points
is six. Again, the interrogation of the typical witness gives
the correct answer, while graph-based methods have no way
to decide if the three points are collinear or not. Remark
that the three points may be collinear, not because of an ex-
plicit collinearity constraint (which some graph-based meth-
ods can account for, at least in theory), but because of a
geometric theorem. Indeed, a lot of geometric theorems im-
ply collinearities, e.g., Desargues, Pappus. When a part has
DoD three in 2D and six in 3D, we say that it has full DoD.

4. INTERROGATIONS OF A WITNESS
4.1 Are constraints coordinate-independent?
Correct geometric constraints are coordinate-independent.
However, coordinate-dependent constraints such as xp = 0
are sometimes needed to pin the configuration in the plane or
in the 3D space, because numerical solvers expects systems
with as many unknowns as equations.

A constraint is coordinate-dependent if its gradient vector
is not orthogonal to at least one of the vectors in the basis
of infinitesimal displacements. For instance, the constraint
xp = 0 is orthogonal to the vectors of the y translation and
of the rotation around the origin, but not to the vector of the
x translation. All equations can be tested this way. These
tests are only numerical: the witness is a numerical vector,
as the basis of infinitesimal displacements at the witness. In
the remaining of this paper the equations are assumed to be
coordinate-independent.

4.2 Are constraints dependent or independent?
Graph-based methods can detect only structural dependen-
cies, as in the system: f(x, y, z) = g(z) = h(z) = 0 which
over-constrains the unknown z. Interrogation of the witness
makes possible the detection of non-structural dependencies.
The constraints are dependent if the gradient vectors of the
equations at the witness, i.e., the Jacobian matrix at the
witness, are dependent. It suffices to compute a basis of this
Jacobian. It is also possible to tune pure graph-based meth-
ods to make them detect the simplest dependencies [14, 10,
8, 7]. However, the universal theorem makes intractable the
problem of detecting all dependencies [13].

If the constraints are dependent, then the interrogation of
the witness permits finding the smallest dependent set of
constraints: this information is relevant to the user for re-
moving the error from the system of constraints: remember
that constraints can be numerous. This problem reduces to
finding the minimal dependent set in a dependent set of vec-
tors which are the gradient vectors of the equations at the
witness. We assume that the rank of the dependent set is
its cardinal minus one: typically, the last vector we try to
add in the basis reduces to the null vector. So, the minimal
dependent set is unique; to find it, just try to remove each



xO yO xA yA xB yB xC yC

e′1 2 0 −1 0 −1 0 0 0
e′2 0 2 0 −1 0 −1 0 0
e′3 2xA − 2xC 2yA − 2yC 2xO − 2xA 2yO − 2yA 0 0 2xC − 2xO 2yC − 2yO

e′4 0 0 xB − xA yB − yC xA − xC yA − yC 2xC − xA − xB 2yC − yA − yB

e′5 2xO − 2xA 2yO − 2yA 2xA − 2xO 2yA − 2yO 0 0 0 0
˙xO ˙yO ˙xA ˙yA ˙xB ˙yB ˙xC ˙yC

tx 1 0 1 0 1 0 1 0
ty 0 1 0 1 0 1 0 1
rxy −yO xO −yA xA −yB xB −yC xC

flexion 0 0 0 0 0 0 yO − yC xC − xO

Table 4: The Jacobian, and a basis of four free infinitesimal motions for the dependent system given in (2).
The fourth motion is a flexion: point C can rotate around O. Variables are replaced with their values at the
witness.

vector in the dependent set; if the set minus this vector is
still dependent, then remove this vector. The remaining set
of vectors is then the minimal dependent set. This greedy
method can be proved with matroid theory [2, 9].

C

OB A

Figure 3: Example of dependent constraints.

4.3 Example of non-structural dependencies
Let us consider an example of dependency detection by wit-
ness interrogation. In 2D, suppose that we have four points
A,B,C, and O with the following constraints: (i) the dis-
tance OA is specified by a parameter u, (ii) O is the middle
of the points A and B, (iii) distances OC and OA are equal,
and (iv) AC and BC are orthogonal (see Fig. 3). This last
constraint results from the previous ones, this is due to a ge-
ometric theorem: if C lies on the circle with diameter AB,
then AC and BC are orthogonal. These constraints give the
system of equations:

e1 :2xO − xA − xB = 0 (2)

e2 :2yO − yA − yB = 0

e3 :(xC − xO)2 + (yC − yO)2 − (xA − xO)2 − (yA − yO)2 = 0

e4 :(xC − xA)(xC − xB) + (yC − yA)(yC − yB) = 0

e5 :(xA − xO)2 + (yA − yO)2 − u2 = 0

A possible witness for this system of constraints is: O =
(0, 0), A = (−10, 0), B = (10, 0), C = (6, 8), u = 10. Tab. 4
displays the Jacobian and a basis of the free infinitesimal
motions: three displacements and a flexion, point C can
rotate around point O (this is a flexion, not a rotation, be-
cause other points A and B are fixed). The rank of e′1, . . . e

′
5

computed at the witness is 4, thus equations are dependent.

Here is another 2D example, without equations for concise-
ness. By constraints, points p1, p2, p3 are collinear, as well
as q1, q2, q3. Other constraints can specify lengths or angles.
Due to Pappus’ theorem, the three points piqj ∩ pjqi, i 6= j
are collinear. This collinearity holds in the target, and in
all witnesses. The witness method indeed detects that the

collinearity of the piqj ∩ pjqi is a consequence of the con-
straints –though it can not say it is due to Pappus’theorem.

We underline that these non-structural dependencies are not
detectable, in polynomial time, with graph-based methods.

4.4 Rigidity test
4.4.1 Is the system flexible?

Compute a basis of the kernel of the Jacobian at the typical
witness: it is a basis of the free infinitesimal motions of the
witness. If it contains vectors outside the vectorial space
generated by the basis of the infinitesimal displacements,
then the witness (and the target) is flexible. For instance,
in the classical configuration of the double banana, the two
bananas can rotate around the axis through their two com-
mon vertices [9]; the corresponding infinitesimal flexion is
detected by the method. If the system is flexible, then the
witness method can provide a basis of the infinitesimal flex-
ions, and the set of maximal rigid subparts.

4.4.2 Is a part rigid?
A flexible system can contain rigid parts. A part is described
by a subset Y of unknowns. On table 1, each variable corre-
sponds to a column, and a part Y is thus a subset of columns.
The part Y is rigid if and only if the vector space M [Y ], the
free infinitesimal motions in the columns Y , is equal to the
vector space D[Y ], the free infinitesimal displacements in
the columns Y ). Vectors generating M [Y ] are obtained by
taking only the columns Y in the vectors of the basis of M .
Similarly for D[Y ].

For instance, in the system defined by (1) and Tab. 2, Y =
{x, y, a, b, c, a′, b′, c′} is rigid, but Y ∪ {x′, y′} is flexible: it
does not depend on the basis chosen for M and D. In exam-
ple (2) with the Jacobian and a basis of infinitesimal motions
shown on Tab. 4, the part Y = {xO, yO, xA, yA, xB , yB} is
rigid, while Y ∪ {xC}, Y ∪ {yC}, and Y ∪ {xC , yC} are not
rigid. Again the rigidity is independent of the chosen basis.

4.4.3 Are A and B relatively fixed?
A flexible system can fix some pairs of geometric elements
(two points, two lines, one point and one line, etc) relatively
to each other. Actually, the previous section already pro-
vides a decision procedure. A and B are relatively fixed by
the (possibly flexible) system if the part Y = A∪B is rigid.



4.5 All dependencies are detected
This section proves that the witness method detects all de-
pendencies in algebraic systems, including non-structural
dependencies due to geometric theorems, known or unknown.
Structural dependencies are due to trivial theorems, they are
detected as well; an example of a structural dependency is
the over-constrainedness in f(x, y, z) = g(z) = h(z) = 0,
where (x, y, z) ∈ R3.

All geometric theorems (Pappus, Pascal, Desargues, their
duals, etc) relevant to geometric constraint solving are al-
gebraically expressed by the fact that f1(x) = . . . fn(x) =
0 ⇒ g(x) = 0; here the fi(x) = 0 express the hypothe-
sis of the theorem, and g(x) = 0 is its conclusion. Alge-
braically, there are two possibilities for an algebraic equation
g(x) = 0 to be a consequence of other algebraic equations
f1(x) = . . . fn(x) = 0. In both cases, the method detects
linear dependency in the Jacobian of the typical witness.

First case. In this case, g is in the ideal of (f1, f2, . . . fn), so
the gradient vector of g at every common root x of f1, f2, . . . fn

is dependent on the gradient vectors f ′1(x), . . . f ′n(x).

Proof. Let F = (f1, f2, . . . fn) be the polynomials of some
algebraic system F (x) = 0. Let g be a polynomial lying
in the ideal generated by f1, f2, . . . fn. Then, by definition,
there are polynomials λi such that g = λ1f1+. . .+λnfn. Let
x be a root of F ; then x is also a root of g: f1(x) = . . . =
fn(x) = 0 ⇒ g(x) = λ1(x)f1(x) + . . . + λn(x)fn(x) = 0.
After deriving we get g′(x) = λ′1(x)f1(x) + λ1(x)f ′1(x) +
. . . λ′n(x)fn(x) + λn(x)f ′n(x) = λ1(x)f ′1(x) + . . . λn(x)f ′n(x).
The gradient vector of g at x lies in the vector space spanned
by the gradient vectors f ′1, . . . f

′
n of F . In other words, g′(x)

does not intersect transversally F ′(x).

Second case. In this case, g is in the radical of (f1, f2, . . . fn),
but not in the ideal, so the gradient vectors f ′1(x), . . . f ′n(x)
are linearly dependent at every common root.

Proof. The other possibility for the vanishing of g to be a
consequence of the vanishing of f1, . . . fn, is that g lies in the
radical generated by (f1, . . . fn), i.e., there is an integer k ≥
2 such that gk lies in the ideal generated by (f1, . . . fn). Here,
the fact that g is in the radical of (f1, . . . fn) does not imply
that the gradient vector of g at a root x of (f1, . . . fn) lies
in the vector space spanned by the gradient vectors F ′ of F
(e.g., g(x, y) = y, k = 2, f1 = x2+y2−1, f2 = x2−1, so gk =
f1−f2). But it implies that the gradient vectors of f1, . . . fn

at a common root x are linearly dependent: deriving −gk +P
λifi = 0 yields −kgk−1g′ +

P
λ′ifi +

P
λif
′
i = 0. If

x is a common root of (f1, . . . fn), it is also a root of g.
Accounting for the fact that k ≥ 2 (i.e., g is in the radical
and not in the ideal), we obtain

P
λi(x)f ′i(x) = 0. Thus

the gradient vectors f ′1(x), . . . f ′n(x) are linearly dependent
at the common root x, like the witness.

5. CONCLUSION
Classical graph-based methods for decomposing systems of
equations or constraints have intrinsic limitations: they can
not detect in polynomial time all dependencies between con-
straints. This paper proves that the witness method does,

assuming a typical witness is available. It shows how to in-
terrogate the witness, and how all computations reduce to
the polynomial time computation of the rank or a base of a
set of numerical vectors. The witness method may broaden
the scope of geometric constraint solving for CAD-CAM. An
extension of this work is the investigation of sensitivity rela-
tively to parameter values with applications to tolerancing.
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