A Lazy Exact Arithmetic

M.O. Benouamer, P. Jaillon, D. Michelucci, J-M. Moreau
E.M.5.E., Département Infa
158, Cours Fauriel, 42023 Saint-Etienne, Cedex 02, FRANCE

e-mail: author@emse.fr

Abstract

Systems based on exact arithmetic — as they are
known in Symbolic Calculus or Computational Geom-
etry — are very slow. In practical situations, very
few computations need be performed exactly as approz-
wmating the results is very often sufficient. Unfortu-
nately, it is impossible to know in advance (i.e. at the
time when the computation is called for) whether an
exact evaluation will be necessary or not. The arith-
metic library presented here achieves laziness by post-
poning any exact computation until it is proven to be
indispensable. This yields very substantial gains n
performance while allowing exact decisions.

The paper presents lazy arithmetic techniques in the
context of rational computations and uses the field of
Computational Geometlry as background.

1 Introduction

Exact (arithmetic) libraries are used, among other
fields, in Symbolic Calculus or in Computational
Geometry. It is well known that they require a
large amount of memory space and computational re-
sources. Lazy implementations offer interesting op-
timisation schemes, and, as such, allow to broaden
the until now rather restricted application field of ex-
act arithmetics. The lazy arithmetic library presented
here operates on floating point numbers and rational
numbers represented by unbounded integers.

This section presents the problem and research re-
lated to it. The basics and objectives of the lazy arith-
metic are listed in 2. Section 3 deals with the manip-
ulation of lazy numbers. Section 4 addresses imple-
mentation issues; section 5 presents some extensions
and/or future work, and section 6 gives information
about performance issues.

The term “lazy” was chosen with the lazy eval-
uation scheme of functional languages (Miranda,
LazyML, etc.) in mind. However, unlike these lan-

guages, lazy arithmetics exploit multiple representa-
tions for data: one representation approximates each
piece of data, and another stores a symbolic defini-
tion for it, which may, in turn, yield the exact value
associated with the data, if necessary.

1.1 Previous work

In Computational Geometry, one has to make topo-
logical decisions based on the outcome of arithmetic
tests, such as the sign of a determinant. Errors related
to finite precision induce topological inconsistencies,
and hence a vast amount of research has been devoted
in the last few years to finding efficient solutions to
this problem. A first class of such methods attempt
to solve precision problems by either allowing impre-
cise computations, or compensating finite precision by
various floating point schemes:

Epsilons: All computations are performed to within
a given tolerance (basically the unit roundoff er-
ror). Roughly speaking, any two quantities differ-
ing by less than the tolerance are declared equal.
This popular heuristic proves very poor in practi-
cal situations as it makes it impossible to discrim-
inate events or even objects conflicting within the
tolerance.

Epsilon Geometry [5], [15]: Computations are
performed within a certain degree of confidence.
Predicates help determine whether any result is
within its associated confidence interval or not,
but no comprehensive solution may be given in
practice as soon as decisions happen to be made
outside the associated confidence intervals.

Symbolic Geometry [12], [6]: Things are organi-
zed so that any new decision be consistent with
all the ones made before. This technique is ex-
tremely powerful but calls for a total and clever
redesign of existing algorithms (minute bookkeep-
ing of past history).

Adaptive Geometry [4]: Objects are ‘bent’ in or-
der to adapt their geometry to a discrete set of
positions (integral grid). For instance, two inter-
secting segments are transformed so that their in-
tersection occurs at the nearest appropriate point
on the grid. As this induces possible perturba-
tions on the true topology of the initial data, the
consistent results produced are not necessarily co-
herent with those of the original problem.

Obviously, another solution is to only perform exact
computations, with the help of an exact library. Such
a technique has major drawbacks:

e Exact computations are extremely greedy both in
time and memory resources.

e In most situations, exact arithmetic is not used to
get exact results but to reach coherent decisions
and to ensure program consistency. So there is
a vast amount of computational effort wasted in
systematic exact evaluations.

e Unlike their floating point counterparts, exact
arithmetic libraries are not available in standard
high-level language environments, with the excep-
tion of Lisp and SmallTalk (which provide for
built-in rational operations). Furthermore, im-
plementing exact arithmetic libraries in such lan-
guages as C, FORTRAN or even C++ yields se-
vere memory management problems. Next, from
a syntactic point of view, exact numbers may
never be treated as machine numbers in C nor
FORTRAN, but require extensions, external to
the language (as opposed to libraries), such as
PASCAL-XSC, C-XSC, ACRITH-XSC. Solutions
of this type do not offer the flexibility of the li-
brary presented here.

e Until now, the only exact modules used in Com-
putational Geometry (but not in symbolic cal-
culus) work on unbounded integers or rationals.
This forbids the manipulation of algebraic (and «
fortiori transcendental) curves or surfaces. Using
other schemes (such as the one presented in this
paper) might shed another light on these prob-
lems and perhaps help solve them in the future.

To overcome the previous drawbacks, some research
has been devoted to finding better solutions based on
exact libraries, or a mixture of exact and floating point
arithmetics:

Semi-exact techniques [8]: The authors use inte-
ger intervals to accelerate computations in con-
junction with a C'++ implementation of rational

operations. Results (determinants for instance)
are first computed in terms of intervals with inte-
ger bounds. If the intervals do not allow for safe
decisions (e.g. finding the sign of a determinant
whose value interval contains 0), the intervals are
refined and the process is repeated. Although it
yields exact decisions, the main disadvantage of
this method 1s that its computational cost is hard
to evaluate. See also [11] and [3] for other possible
exact arithmetic schemes.

Reluctant algorithms [14]: Each basic decision
may be expressed as a functional whose associ-
ated diffidence interval (which depends on vari-
ous parameters such as number size and the func-
tional itself) may be calculated at compile time
(although possibly not so easily). When a deci-
sion must be made, 1t suffices to check whether
the float test value lies outside its associated dif-
fidence interval (“safe” decision) or not (the de-
cision must be “backed up” by exact computa-
tions). Such a technique saves a lot of computa-
tional effort but requires severe rewriting of pro-
grams and forces the maintenance of large data
structures to store intermediate results or objects
that may prove totally useless if the associated
values have not been involved in any other com-
putation.

2 Laziness fundamentals

In view of the preceding presentation, laziness stands
out as a new and important paradigm. It is impor-
tant to emphasize the fact that laziness is exploited
at the arithmetic level and not at the program level:
any program using a lazy library automatically ben-
efits from the lazy exact arithmetic without the pro-
grammer having even to notice: from his or her point
of view, only (abstractions of) “real” numbers, called
lazy numbers, are used and manipulated with the help
of standard C++ operators. This is a major improve-
ment over any method requiring the rewriting of all
programs for the sake of taking precision idiosyncra-
cies into account. This section briefly outlines the fun-
damentals of laziness.

2.1 Objectives

The lazy library:

1. Must yield consistent decisions, with the help of
floating point operations or of an infinite precision

arithmetic. It must also be fast, using as little re-
sources as possible (although more than standard
floating-point computations, by definition).

2. Must only perform the exact computations that
can be proven to be indispensable in the context
of floating point numbers.

3. Must be totally transparent to the user who will
want to manipulate lazy numbers as traditional
floating point numbers or integers.

4. Must provide for the four basic arithmetic opera-
tions (4, *, invy, inv,), and the elementary com-
parisons (<, <,=,#,>,>). In the restrictive ra-
tional setting we are imposing here, it will be im-
possible to use square roots or more complex op-
erators. Multiple representation of data will be
the clue to ensuring exact decisions and fast com-
putations. Transparency and basic arithmetic on
lazy numbers will be achieved through sophisti-
cated language constructs (for instance operator
overloading in C++).

2.2 Lazy numbers and multiple represen-
tation

Any real number is represented as a lazy number via
an interval and a definition field. The interval is
bounded by two floating point numbers and must con-
tain the exact value. Most of the time, the interval will
be sufficient for numerical tests. When this is no more
the case, the definition field will enable exact compu-
tations. This field initially contains an unevaluated
symbolic definition of the number in the form of an
expression dag (refer to 3.2) with nodes for operators
and references to other lazy quantities. When evalua-
tion 1s in order, the symbolic definition dag of the lazy
number to be evaluated is replaced with a single node
containing the exact (rational) value.

2.3 Elementary operations

To perform an elementary lazy operation
(4, *, tnvy, invy):
1. allocate a new dag node for the result,

2. compute the floating-point interval with the help
of interval arithmetic operations as decribed be-
low, and

3. fill in the field of the unevaluated definition with
an operator node and pointers to the operands.

No exact computation is performed. Furthermore, in
the case where the exact value was not needed after
all, it will never have been computed!

2.4 Lazy evaluation

The only reasons why a lazy number should ever be
evaluated are when

- 1ts sign or its reciprocal must be determined and its
associated interval includes 0,

- it is to be compared to another lazy number and
their associated intervals overlap (see 3.3),

- another lazy number whose definition refers to it
needs being evaluated.

3 Creating and manipulating lazy

numbers

3.1 Interval arithmetic for lazy needs

This section presents the basics of interval arithmetics,
according to our (lazy) needs. It is a rather lazy ac-
count on an anotherwise well-studied field. The coura-
geous reader may wish to refer to more authoritative
sources on the topic, such as [9], [10], [13]. Let us
state the minimum definitions that will be needed. To
restrict the discussion of over- and underflows to the
minimum, let us just suppose that all lazy numbers
belong to the subset ¥ =] — M, —e[U{0}U] + ¢, + M|
of the real line, where ¢ and M can be understood,
in first approximation, to be the smallest and largest
positive floats on the machine.

A thorough presentation of this topic and the fol-
lowing will be available in [7].

3.1.1 Primitives and intervals

If x is any floating point number in X, 7(x) (resp.
A(x)) is the floating point number immediately below
(resp. above) y. Hence the “natural” interval bound-
ing any real number X in X is [7(x), &(x)], where y
is the machine approximation nearest to X.

3.1.2 Operators and intervals

Let L be any arithmetic operator amongst {+,*, —, /}
in the real domain. Its machine equivalent will be
denoted by . Suppose a and b are two floating point
numbers in . Due, among other things, to truncature
and alignment considerations, the result of @ L b has
no reason to be a representable floating point number.
But one can be assured ([9]) that

V(ab)<aJ_b,ab<A(ab),

whence a bounding interval for a L b.

3.1.3 Arithmetic operations on intervals

Let # and y be any two lazy numbers. Denote by
I, = [az, bs] and I, = [ay, by] their bounding intervals.
We wish to determine the intervals bounding their sum
and product, or the opposite and the reciprocal of z.
Using the above definitions and excluding exceptions
for the sake of conciseness, we may write:

Lowy = [V (0 +]w). Al + o))
Iowy = [V(m), A(M , where m is the minimum
(maximum) of {amlay,amlby,b .ay, .b 1.

I_z = [~bs, —az].
L, = [v(1.0 bz), (1.0 az)], except when not

applicable (see 3.3).

Typically, the amplitudes of bounding intervals grow
with the number of lazy operations. Evaluation may
be seen as the ultimate tool to stop this growth, albeit
the most expensive and most unwanted one.

In the implementation of the above definitions, the
only difficulty is to avoid the errors related to over- and
underflows during floating point computations. One is
often forced to simulate IEEE standards for floating
point numbers [2], which are designed to signal and
account for all such events — and which all systems
should abide by but rarely do! A neat way out of this is
to use floats (32 bits single precision floating numbers)
for the interval bounds and to make computations
with doubles (64 bits double precision floating num-
bers) while checking at every step that no over- nor un-
derflow occurs. Special flags (—o0, 07,07, +00) may
be used to label each situation and to help discrim-
inate out-of-range lazy numbers from standard ones
(for which a valid bounding interval may be expected).
Interval arithmetics must take these “exceptions” into
account, which calls for complex Pythagorean tables
for all operators. Refer to [7] for more details.

3.1.4 Data alignment

As the lazy library may happen to handle exact quan-
tities at various stages, some convention must be used
to “align” the initial data on proper exact numbers,
and to associate consistent bounding intervals with
them. Note that such alignment is inherent to any ex-
act arithmetic library and that we shall not consider
the case where data are inputted as decimal numbers
and read as strings, which may be easily treated much
the same as described below. Three major techniques
may be considered:

Exact alignment: floating point numbers are con-
verted into exact (rational) values by a straight-
forward algorithm without loss of precision! But

this may be a little akward as the resulting ra-
tional numbers will most likely be cumbersome,
and as such “original” numbers may themselves
be the results of imprecise computations.

Regular alignment: inputs are aligned on the near-
est multiple of a given unit. For instance, if
the unit were 1, floating point numbers would be
aligned on the nearest integer (cf. [16]).

Adaptive alignment: the inputs are aligned on the
nearest rational number for a given precision.
Several techniques may be used for this pur-
pose, among which continued fractions expansion
(CFE) [9]. This method yields the fastest algo-
rithms and the most concise rational numbers for
a given precision.

Note that the definition of lazy numbers can be aug-
mented with a new class for each alignment method.
For instance, instead of storing rational 2/3 in a def-
inition, one may store something like “the number
obtained through continued-fractions-alignment with
original data .6666667 and with relative precision
10=%”. This technique allows to delay alignments until
they become inevitable.

3.2 Dags

Trees are the natural structures for storing expres-
sions. Any arithmetic expression may be translated
into a tree whose internal (binary or unary) nodes con-
tain operators (=, #, invy, inv,) and whose leaves are
lazy operands. (Note that this may be generalized to
trees with arbitrary arity to allow composite opera-
tors, such as determinants or universal functionals).
The definition field of a lazy number typically points
to a fixed number of nodes (two for binary operators,
ete.), but the tree at the root of which it resides may
have an arbitrary depth. Moreover, any lazy number
may be referred to by more than one “father”. Hence
the proper structure for storing a lazy definition is not
a tree but a directed acyclic graph (dag).

When a lazy number is first met, its definition field
is filled with a pointer to the formal dag representing
the rational expression defining the number. For in-
stance, if number # is defined by # = a/(b — ¢) where
a, b and ¢ are other lazy numbers, it may be eas-
ily rewritten in terms of the four basic operators as
z = ((a) * (inv.((b) + (invy(c))))). Tts definition field
will contain a tree with operator * at the root, a and
operator-node inv, as left and right children. The lat-
ter will itself have a “unique” child (operator 4), and
so forth. This implicitly means that subexpressions

are stored as lazy numbers, and may, of course, them-
selves be lazy numbers or subexpressions referring to
constants (such as “17, “22/7” etc.).

Therefore, filling the definition field of a lazy num-
ber (such as resulting from the computation of a de-
terminant) takes space and time proportional to its
length in the worst case, as each operator uses up O(1)
space and is constructed in constant time.

3.3 Elementary operations on lazy num-
bers

We have just seen how to fill in the definition fields for
all arithmetic operations considered here. Let us now
consider interval management. Adding, multiplying
two lazy numbers or taking the opposite of another
simply amounts to computing a new bounding interval
using the rules in 2.2.

Suppose we now want to compute the reciprocal
of a lazy number z. If its bounding interval I, does
not include 0, the image by @ — 1/« of this inter-
val only has one connected component and the simple
rule stated in 2.2 may be applied to build it. If 0 € I,
then the interval image is clearly splitted into two con-
nected components: an exact evaluation is called for,
and 1s decided upon by the lazy library itself. The
main advantage of evaluation in this case is to refine
the interval for # (which has obviously grown beyond
control) and to provide one for its reciprocal. Evalua-
tion is followed by replacement of the definition for x
by the node with the exact value.

3.4 Comparing two lazy numbers

Suppose the bounding intervals of the two numbers to
be compared do not overlap. Then the numbers are
necessarily different and it takes O(1) to determine
the relative positions of their bounding intervals, and
hence of the numbers themselves.

If the intervals overlap, then the idea is that they
have grown too large and the numbers must be evalu-
ated: in other words, machine precision is insufficient
to discriminate the two numbers! Evaluation will re-
sult in new and tighter bounds for the intervals, which
may then be disjoint (the numbers may then be com-
pared with interval arithmetic). If they are not, the
last resort 1s to compare the rational values, using the
exact library.

Now, the most difficult lazy task is to actually prove
that two given numbers are equal. In fact, the previ-
ous algorithm says that the only way out is to evaluate
both numbers! Needless to say, the very first thing to
do to improve on this is to check, before anything else,

whether the two lazy numbers are not indeed refer-
ences to the same memory location. This obvious test
saves a substantial amount of evaluations in practice.
As we shall see later, this is by no means sufficient nor
satisfactory to settle all cases.

3.5 Evaluation

The most natural and simple evaluation strategy con-
sists in evaluating the definition trees from the leaves
upward while propagating new bounds from each level
to the next. This yields complete evaluations of trees
and new, tighter bounds for intervals.

Each lazy number evaluated in the process is re-
placed with its exact value. Incidentally, each evalu-
ated lazy number that is not referred to by any other
element may be disposed of. This implies that the
definition field must also allow some sort of reference
for bookkeeping and garbage collection purposes.

Other evaluation strategies have been tried, but all
are equivalent to within 10 percent. See [7] for details.

4 Implementation

We chose C++ to implement the lazy library. This
language provides for the overloading of arithmetic
operators. Thus, the lazy library allows one to manip-
ulate lazy numbers as standard numbers in a straight-
forward manner. The lazy rational arithmetic library
includes three modules: the interval arithmetic mod-
ule, the rational arithmetic module and the dag man-
agement module. See [7] for more details. The major
classes are:

Interval: Instances include two floats. Main meth-
ods: Arithmetic operations, IncludesZero?,
Disjoint?.

Arbitrary length integer: Instances have the fol-
lowing fields: number of digits, pointer over dy-
namically allocated digit array. Main methods:
Arithmetic operations, comparisons, greater com-
mon divisor, next or previous float.

Rational: Instances have two pointers on arbitrary
length integers (numerator and denominator).
Main methods: Reduction to the common divi-
sor, arithmetic operations, comparisons, next or
previous float.

Lazy number: Instances include a bounding interval
and a definition field. Main methods: Arithmetic
operations, evaluate.

Definition: Virtual class. Subclasses: rational and
expression. Essential method for this class and
all inheriting classes: Evaluate.

Expression: Virtual class. Subclasses: sum, prod-
uct, opposite, reciprocal.

Sum, Product: Instances include two pointers on
lazy operands.

Opposite, Reciprocal: Instances include a pointer
on lazy operand.

Memory management is ensured through reference
counters associated with lazy numbers, rationals and
arbitrary length integers. Garbage collection of tem-
porary variables is automatic (note that lazy numbers
are represented by acyclic graphs). Of course, it is still
the responsibility of the programmer to dispose of any
data structure he or she may allocate in the program.

5 Extenslons

Simple ideas may be suggested to improve the lazy
library. We shall only mention a few problems we
have been confronted with.

A straightforward implementation of the previous
concepts results in disappointing performances for ap-
plications with realistic, non-random data. Fortu-

nately, this may be easily seen to.
5.1 Detecting clones

One of the main reasons for such misbehaviors is that
a lot of useless evaluations are done, owing to the
fact that the most straightforward and “natural” al-
gorithms tend to check that equal things are equal!

Let us take an example. Suppose we store geomet-
ric items — for instance segments — in a binary tree,
ans we wish to delete one segment in this structure.
We must compare this segment against all those along
the search path until it is actually compared to itself.
At this point, we have seen in 3.4 that a sane strategy
1s to compare addresses to detect equality.

Let us now suppose that slopes are used as
keys. The problem is that, for such simple tests
as if (slope(x) == slope(y)), there is no way to
“teach” the lazy library to remember where the quan-
tities on both sides of the == sign come from (without
asking the programmer to cooperate: An easy way
out would be to ask such tests to be written out as:
if (x == y || slope(x) == slope(y))!)

Luckily, there is an elegant and easy solution. Tree
a 18 said to be the clone of tree b if both have the same

structure, nodes and leaves. It is clear that although
slope might cast a shadow on the origin of the previ-
ous quantities to be compared, the images of # and y
by the function yield perfect clones when x and y are
pointers to the same location.

Checking whether two trees are actual clones is a
classical problem that can be solved using any stan-
dard tree traversing procedure combined with the ap-
propriate tests, as in:

function Clone? (a, b: LazyNumber): boolean;

{
if
if
if
if

address(a) == address(b)) return true;
a.interval N b.interval == @) return false;
class(a) # class(b)) return false;
class of a is UnaryOperator)
return Clone?(a.onlyson, b.onlyson);
if (class of a is BinaryOperator)
if (Clone?(a.lson, b.lson) and Clone?(a.rson, b.rson))
return true;
else return false;
return EqualLeaves?(a, b);

}

Comments: To optimize the process, recursion 1is

e =

stopped as soon as the intervals of the two subtrees
being tested are disjoint or the nodes are references to
the same memory location. Testing intervals is espe-
cially useful for the comparison of trees with identical
structures differing only at the leaves (e.g. two de-
terminants). EqualLeaves is a simple function that
returns true iff its arguments are bitwise equal.

5.2 Comparing two lazy numbers (final
version)

The comparison of two lazy numbers a and b may now
benefically be rewritten as:

function LazyCompare (a, b: LazyNumber): -1..1;
{Comment: returns the sign of (a-b)
if (address(a) == address(b)) return 0;
if (a.interval N b.interval == §)
if (b.interval.lbound > a.interval.rbound) return +1;
else return -1;
if (Clone?(a, b)) return 0;
return ExactCompare(a, b);

}

ExactCompare is, of course, the comparison function
from the exact library, returning values consistent
with those returned by LazyCompare.

5.3 Hashing and other related topics

Lazy arithmetic provide for the basic arithmetic
and comparison operators. Such operators are not

sufficient for geometric algorithms, for instance those
in which numbers are treated as identifiers. Typically,
associating a hash-code to each number allows geomet-
ric algorithms to retrieve vertices from coordinates.
To this effect, 1t is possible to choose a hash-function
such that, in the general case, if a and b are two lazy
numbers and L any operator in {4+, — *, /},

hash(a L b) = hash(a) L hash(b).

Some care must be taken to treat special cases, but
this 1s beyond the scope of this paper. The interested
reader will find ample information in [7].

Hashing lazy numbers helps cutting down on eval-
uation: 1f two lazy numbers with overlapping intervals
have different hash-keys, they are necessarily different!
Hence hashing schemes are used by the library itself,
and may be used by the programmer, if needed.

5.4 Prospects

Quite a number of extensions to the lazy arithmetic
library described here have been designed and imple-
mented by the authors. Others are in the making,
still.

The basic goal we have set (designing a tool to re-
lieve the programmer from finite-precision concerns)
has proven, so far, extremely powerful, and brings all
kinds of interesting problems, new or old.

For instance, laziness — at its best — would be
to also define new compiler-level boolean tests, that
should impose priorities on evaluation according to
lazy paradigms. For instance, in a logical and test,
it would be useful to check whether one condition or
the other is not false by interval arithmetic standards,
before evaluating either.

One may also wish to define new lazy operations,
with larger scope, such as the maximum of a finite set
of values, absolute values, etc. In a nutshell, detecting
the need for laziness at language level would be the
best one could hope for: this could only be dealt with
by designing a truly lazy-oriented language.

The major future goal is to generalize the concepts
in this paper to an algebraic arithmetic. This will al-
low, we hope, to address certain classes of problems in
Computational Geometry that can hardly be tackled
so far.

Some of the topics hinted at in this section, includ-
ing hashing methods applied to lazy numbers, are pre-
sented in another paper (submitted to SCAN-93, Vi-
enna).

6 Results and performance

We have implemented the lazy library presented in
this paper and experimented it on a typical algorithm
from geometry, due to Bentley and Ottmann [1], which
computes the K € O(N?) intersections between N
segments in the plane in time O((N + K)logN). Tt
is well known to be extremely sensitive to precision
(see [11]).

Two series of charts and corresponding tables are
shown after the references. They describe the differ-
ences in running time of the algorithm using floating-
point (solid curves), lazy-&-clone-detection (dashed
curves) and exact (dotted, topmost curves) arith-
metics, with increasing CFE precision (from le™! to
Le=?) respectively for 50 segments (table and chart 1)
and 100 segments (table and chart 2). Segments being
randomly chosen, the worst-case running-time ratio is
about 1(;82% ~ 4.7, which is basically what com-
paring both series shows. Increasing precision does
not affect floating point computations (hopefully) nor
lazy computations (which is good news), but they do
affect rational computations: the more accurate the
computations, the more expensive the solution. The
lazy /exact ratio ranges from 4 to 75 when precision
varies from le™! to 1le™?.

Roughly speaking, the floating point and lazy
curves follow asymptotic complexity for random cases,
whereas the exact curve shows the overhead of un-
bounded precision. When the segments are randomly
positioned, there is next to no exact computation, and
the overhead for laziness is obviously very moderate.
On the other hand, it is important to point out that if
the topology of the scene presents many special cases
(vertical segments or very close ties), the “float” ver-
sion invariably crashes contrary to the lazy and exact
versions which behave much the same: the exact com-
putations that the exact version would perform are
done by the lazy version in addition to the interval
computations 1t is naturally supposed to do and the
construction of the dags.

Thus the overall price to pay for laziness is by far
more reasonable than that for exact computations: in
the vast majority of cases (segments from real scenes),
the overhead is only equal to the cost of creating and
updating dags, and the rat/lazy ratio may be any-
where between 50 and 150 (with 1e=!? precision).
Acknowledgements: The authors wish to thank
Jean-Michel Muller and all his colleagues from the
IN.P.G.-E.N.S. work group for their unvaluable help
and suggestions.

References

(1]

J.L. Bentley and T. Ottmann. Algorithms for
reporting and counting geomeric intersections.

IEEE Trans. Comp., C-28(9):643-647, 09 1979.

J.T. Coonen. An implementation guide for a
proposed standard for floating point arithmetic.

IEEE Computer, 13(1), 01 1980.

H Edelsbrunner and E.P. Mucke. Simulation of
simplicity: A technique to cope with degenerate
cases in geometric algorithms. In Proceedings of
the Fourth Symposium on Computational Geom-

etry, pages 118-133. ACM, 1988.

D.H. Greene and F.F. Yao. Finite-resolution com-
putational geometry. In Proceedings of the 27th
Annual Symposium on the Foundations of Com-
puter Science, pages 143-152, 1986.

L. Guibas, D. Salesin, and J. Stolfi. Epsilon geom-
etry: Building robust algorithms from imprecise
computations. In Proceedings of the Fifth Sym-
postum on Computational Geometry, pages 208—

217. ACM, 1989.

C. Hoffman, J. Hopcroft, and M. Karasick. To-
wards implementing robust geometric computa-
tions. In Proceedings of the Fourth Symposium on
Computational Geometry, pages 106-118. ACM,
1988.

P. Jaillon. Lea, a lazy exact arithmetic: Imple-
mentation and related problems. Technical re-
port, Ecole Nationale Supérieure des Mines de
Saint-Etienne, 1993.

(8]

M. Karasick, D. Lieber, and L. Nackman. Effi-
cient delaunay triangulation using rational arith-

metic. Technical Report RC 14455, IBM, 1989.

D.E. Knuth. Seminumerical Algorithms, vol-
ume 2. Addison-Wesley, Reading, Mass., 1981.

U.W. Kulisch and W.L. Miranker. A New Ap-
proach to Scientific Computation.
Press, New York, 1982.

Academic

D. Michelucci. Les représentations par les fron-
tiéres : quelques constructions; difficultés rencon-
trées. PhD thesis, Fcole Nationale Supérieure des
Mines de Saint-Etienne, 1987.

V.J. Milenkovic. Verifiable Implementations of
Geometric Algorithms Using Finite Precision
Arithmetic. PhD thesis, Carnegie-Mellon, 1988.

R.E. Moore. Interval Analysis. Prentice Hall,
Englewood Cliffs, N.J., 1966.

J-M. Moreau.
de la représentation par segments d’un graphe

Facétisation et hiérarchisation

planaire dans le cadre d’une arithmétique mixte.
PhD thesis, Ecole Nationale Supérieure des Mines
de Saint-Etienne, 1990.

M. Segal and C.H. Séquin. Consistent calcu-
lations for solids modelling. In Proceedings of
the First Symposium on Computational Geome-

try, pages 29-38. ACM, 1985.

K. Sugihara and M. Iri. A Solid Modelling System
Free from Topological Inconsistencies. Research
Memorandum, RM 89-03, University of Tokyo,
1989.

