
A Lazy Exact ArithmeticM.O. Benouamer, P. Jaillon, D. Michelucci, J-M. MoreauE.M.S.E., D�epartement Infa158, Cours Fauriel, 42023 Saint-�Etienne, Cedex 02, FRANCEe-mail: author@emse.frAbstractSystems based on exact arithmetic | as they areknown in Symbolic Calculus or Computational Geom-etry | are very slow. In practical situations, veryfew computations need be performed exactly as approx-imating the results is very often su�cient. Unfortu-nately, it is impossible to know in advance (i.e. at thetime when the computation is called for) whether anexact evaluation will be necessary or not. The arith-metic library presented here achieves laziness by post-poning any exact computation until it is proven to beindispensable. This yields very substantial gains inperformance while allowing exact decisions.The paper presents lazy arithmetic techniques in thecontext of rational computations and uses the �eld ofComputational Geometry as background.1 IntroductionExact (arithmetic) libraries are used, among other�elds, in Symbolic Calculus or in ComputationalGeometry. It is well known that they require alarge amount of memory space and computational re-sources. Lazy implementations o�er interesting op-timisation schemes, and, as such, allow to broadenthe until now rather restricted application �eld of ex-act arithmetics. The lazy arithmetic library presentedhere operates on oating point numbers and rationalnumbers represented by unbounded integers.This section presents the problem and research re-lated to it. The basics and objectives of the lazy arith-metic are listed in 2. Section 3 deals with the manip-ulation of lazy numbers. Section 4 addresses imple-mentation issues; section 5 presents some extensionsand/or future work, and section 6 gives informationabout performance issues.The term \lazy" was chosen with the lazy eval-uation scheme of functional languages (Miranda,LazyML, etc.) in mind. However, unlike these lan-

guages, lazy arithmetics exploit multiple representa-tions for data: one representation approximates eachpiece of data, and another stores a symbolic de�ni-tion for it, which may, in turn, yield the exact valueassociated with the data, if necessary.1.1 Previous workIn Computational Geometry, one has to make topo-logical decisions based on the outcome of arithmetictests, such as the sign of a determinant. Errors relatedto �nite precision induce topological inconsistencies,and hence a vast amount of research has been devotedin the last few years to �nding e�cient solutions tothis problem. A �rst class of such methods attemptto solve precision problems by either allowing impre-cise computations, or compensating �nite precision byvarious oating point schemes:Epsilons: All computations are performed to withina given tolerance (basically the unit roundo� er-ror). Roughly speaking, any two quantities di�er-ing by less than the tolerance are declared equal.This popular heuristic proves very poor in practi-cal situations as it makes it impossible to discrim-inate events or even objects conicting within thetolerance.Epsilon Geometry [5], [15]: Computations areperformed within a certain degree of con�dence.Predicates help determine whether any result iswithin its associated con�dence interval or not,but no comprehensive solution may be given inpractice as soon as decisions happen to be madeoutside the associated con�dence intervals.Symbolic Geometry [12], [6]: Things are organi-zed so that any new decision be consistent withall the ones made before. This technique is ex-tremely powerful but calls for a total and cleverredesign of existing algorithms (minute bookkeep-ing of past history).1

Adaptive Geometry [4]: Objects are `bent' in or-der to adapt their geometry to a discrete set ofpositions (integral grid). For instance, two inter-secting segments are transformed so that their in-tersection occurs at the nearest appropriate pointon the grid. As this induces possible perturba-tions on the true topology of the initial data, theconsistent results produced are not necessarily co-herent with those of the original problem.Obviously, another solution is to only perform exactcomputations, with the help of an exact library. Sucha technique has major drawbacks:� Exact computations are extremely greedy both intime and memory resources.� In most situations, exact arithmetic is not used toget exact results but to reach coherent decisionsand to ensure program consistency. So there isa vast amount of computational e�ort wasted insystematic exact evaluations.� Unlike their oating point counterparts, exactarithmetic libraries are not available in standardhigh-level language environments, with the excep-tion of Lisp and SmallTalk (which provide forbuilt-in rational operations). Furthermore, im-plementing exact arithmetic libraries in such lan-guages as C, FORTRAN or even C++ yields se-vere memory management problems. Next, froma syntactic point of view, exact numbers maynever be treated as machine numbers in C norFORTRAN, but require extensions, external tothe language (as opposed to libraries), such asPASCAL-XSC,C-XSC,ACRITH-XSC. Solutionsof this type do not o�er the exibility of the li-brary presented here.� Until now, the only exact modules used in Com-putational Geometry (but not in symbolic cal-culus) work on unbounded integers or rationals.This forbids the manipulation of algebraic (and afortiori transcendental) curves or surfaces. Usingother schemes (such as the one presented in thispaper) might shed another light on these prob-lems and perhaps help solve them in the future.To overcome the previous drawbacks, some researchhas been devoted to �nding better solutions based onexact libraries, or a mixture of exact and oating pointarithmetics:Semi-exact techniques [8]: The authors use inte-ger intervals to accelerate computations in con-junction with a C++ implementation of rational

operations. Results (determinants for instance)are �rst computed in terms of intervals with inte-ger bounds. If the intervals do not allow for safedecisions (e.g. �nding the sign of a determinantwhose value interval contains 0), the intervals arere�ned and the process is repeated. Although ityields exact decisions, the main disadvantage ofthis method is that its computational cost is hardto evaluate. See also [11] and [3] for other possibleexact arithmetic schemes.Reluctant algorithms [14]: Each basic decisionmay be expressed as a functional whose associ-ated di�dence interval (which depends on vari-ous parameters such as number size and the func-tional itself) may be calculated at compile time(although possibly not so easily). When a deci-sion must be made, it su�ces to check whetherthe oat test value lies outside its associated dif-�dence interval (\safe" decision) or not (the de-cision must be \backed up" by exact computa-tions). Such a technique saves a lot of computa-tional e�ort but requires severe rewriting of pro-grams and forces the maintenance of large datastructures to store intermediate results or objectsthat may prove totally useless if the associatedvalues have not been involved in any other com-putation.2 Laziness fundamentalsIn view of the preceding presentation, laziness standsout as a new and important paradigm. It is impor-tant to emphasize the fact that laziness is exploitedat the arithmetic level and not at the program level:any program using a lazy library automatically ben-e�ts from the lazy exact arithmetic without the pro-grammer having even to notice: from his or her pointof view, only (abstractions of) \real" numbers, calledlazy numbers, are used and manipulated with the helpof standard C++ operators. This is a major improve-ment over any method requiring the rewriting of allprograms for the sake of taking precision idiosyncra-cies into account. This section briey outlines the fun-damentals of laziness.2.1 ObjectivesThe lazy library:1. Must yield consistent decisions, with the help ofoating point operations or of an in�nite precision2

arithmetic. It must also be fast, using as little re-sources as possible (although more than standardoating-point computations, by de�nition).2. Must only perform the exact computations thatcan be proven to be indispensable in the contextof oating point numbers.3. Must be totally transparent to the user who willwant to manipulate lazy numbers as traditionaloating point numbers or integers.4. Must provide for the four basic arithmetic opera-tions (+; �; inv+; inv�), and the elementary com-parisons (<;�;=; 6=;�; >). In the restrictive ra-tional setting we are imposing here, it will be im-possible to use square roots or more complex op-erators. Multiple representation of data will bethe clue to ensuring exact decisions and fast com-putations. Transparency and basic arithmetic onlazy numbers will be achieved through sophisti-cated language constructs (for instance operatoroverloading in C++).2.2 Lazy numbers and multiple represen-tationAny real number is represented as a lazy number viaan interval and a de�nition �eld. The interval isbounded by two oating point numbers and must con-tain the exact value. Most of the time, the interval willbe su�cient for numerical tests. When this is no morethe case, the de�nition �eld will enable exact compu-tations. This �eld initially contains an unevaluatedsymbolic de�nition of the number in the form of anexpression dag (refer to 3.2) with nodes for operatorsand references to other lazy quantities. When evalua-tion is in order, the symbolic de�nition dag of the lazynumber to be evaluated is replaced with a single nodecontaining the exact (rational) value.2.3 Elementary operationsTo perform an elementary lazy operation(+; �; inv+; inv�):1. allocate a new dag node for the result,2. compute the oating-point interval with the helpof interval arithmetic operations as decribed be-low, and3. �ll in the �eld of the unevaluated de�nition withan operator node and pointers to the operands.No exact computation is performed. Furthermore, inthe case where the exact value was not needed afterall, it will never have been computed!

2.4 Lazy evaluationThe only reasons why a lazy number should ever beevaluated are when- its sign or its reciprocal must be determined and itsassociated interval includes 0,- it is to be compared to another lazy number andtheir associated intervals overlap (see 3.3),- another lazy number whose de�nition refers to itneeds being evaluated.3 Creating and manipulating lazynumbers3.1 Interval arithmetic for lazy needsThis section presents the basics of interval arithmetics,according to our (lazy) needs. It is a rather lazy ac-count on an anotherwise well-studied �eld. The coura-geous reader may wish to refer to more authoritativesources on the topic, such as [9], [10], [13]. Let usstate the minimumde�nitions that will be needed. Torestrict the discussion of over- and underows to theminimum, let us just suppose that all lazy numbersbelong to the subset � =] � M;��[[f0g[] + �;+M [of the real line, where � and M can be understood,in �rst approximation, to be the smallest and largestpositive oats on the machine.A thorough presentation of this topic and the fol-lowing will be available in [7].3.1.1 Primitives and intervalsIf � is any oating point number in �, 5(�) (resp.4(�)) is the oating point number immediately below(resp. above) �. Hence the \natural" interval bound-ing any real number X in � is [5(�);4(�)], where �is the machine approximation nearest to X.3.1.2 Operators and intervalsLet ? be any arithmetic operator amongst f+; �;�; =gin the real domain. Its machine equivalent will bedenoted by ? . Suppose a and b are two oating pointnumbers in �. Due, among other things, to truncatureand alignment considerations, the result of a ? b hasno reason to be a representable oating point number.But one can be assured ([9]) that5(a ? b) < a ? b; a ? b < 4(a ? b),whence a bounding interval for a ? b.3

3.1.3 Arithmetic operations on intervalsLet x and y be any two lazy numbers. Denote byIx = [ax; bx] and Iy = [ay; by] their bounding intervals.We wish to determine the intervals bounding their sumand product, or the opposite and the reciprocal of x.Using the above de�nitions and excluding exceptionsfor the sake of conciseness, we may write:Ix+y = [5(ax + ay);4(bx + by)].Ix�y = [5(m);4(M)], where m (M) is the minimum(maximum) of fax * ay; ax * by; bx * ay; bx * byg.I�x = [�bx;�ax].I1=x = [5(1:0 = bx);4(1:0 = ax)], except when notapplicable (see 3.3).Typically, the amplitudes of bounding intervals growwith the number of lazy operations. Evaluation maybe seen as the ultimate tool to stop this growth, albeitthe most expensive and most unwanted one.In the implementation of the above de�nitions, theonly di�culty is to avoid the errors related to over- andunderows during oating point computations. One isoften forced to simulate IEEE standards for oatingpoint numbers [2], which are designed to signal andaccount for all such events { and which all systemsshould abide by but rarely do! A neat way out of this isto use oats (32 bits single precision oating numbers)for the interval bounds and to make computationswith doubles (64 bits double precision oating num-bers) while checking at every step that no over- nor un-derow occurs. Special ags (�1; 0�; 0+;+1) maybe used to label each situation and to help discrim-inate out-of-range lazy numbers from standard ones(for which a valid bounding interval may be expected).Interval arithmetics must take these \exceptions" intoaccount, which calls for complex Pythagorean tablesfor all operators. Refer to [7] for more details.3.1.4 Data alignmentAs the lazy library may happen to handle exact quan-tities at various stages, some convention must be usedto \align" the initial data on proper exact numbers,and to associate consistent bounding intervals withthem. Note that such alignment is inherent to any ex-act arithmetic library and that we shall not considerthe case where data are inputted as decimal numbersand read as strings, which may be easily treated muchthe same as described below. Three major techniquesmay be considered:Exact alignment: oating point numbers are con-verted into exact (rational) values by a straight-forward algorithm without loss of precision! But

this may be a little akward as the resulting ra-tional numbers will most likely be cumbersome,and as such \original" numbers may themselvesbe the results of imprecise computations.Regular alignment: inputs are aligned on the near-est multiple of a given unit. For instance, ifthe unit were 1, oating point numbers would bealigned on the nearest integer (cf. [16]).Adaptive alignment: the inputs are aligned on thenearest rational number for a given precision.Several techniques may be used for this pur-pose, among which continued fractions expansion(CFE) [9]. This method yields the fastest algo-rithms and the most concise rational numbers fora given precision.Note that the de�nition of lazy numbers can be aug-mented with a new class for each alignment method.For instance, instead of storing rational 2=3 in a def-inition, one may store something like \the numberobtained through continued-fractions-alignment withoriginal data .6666667 and with relative precision10�6". This technique allows to delay alignments untilthey become inevitable.3.2 DagsTrees are the natural structures for storing expres-sions. Any arithmetic expression may be translatedinto a tree whose internal (binary or unary) nodes con-tain operators (+; �; inv+; inv�) and whose leaves arelazy operands. (Note that this may be generalized totrees with arbitrary arity to allow composite opera-tors, such as determinants or universal functionals).The de�nition �eld of a lazy number typically pointsto a �xed number of nodes (two for binary operators,etc.), but the tree at the root of which it resides mayhave an arbitrary depth. Moreover, any lazy numbermay be referred to by more than one \father". Hencethe proper structure for storing a lazy de�nition is nota tree but a directed acyclic graph (dag).When a lazy number is �rst met, its de�nition �eldis �lled with a pointer to the formal dag representingthe rational expression de�ning the number. For in-stance, if number x is de�ned by x = a=(b� c) wherea, b and c are other lazy numbers, it may be eas-ily rewritten in terms of the four basic operators asx = ((a) � (inv�((b) + (inv+(c))))). Its de�nition �eldwill contain a tree with operator � at the root, a andoperator-node inv� as left and right children. The lat-ter will itself have a \unique" child (operator +), andso forth. This implicitly means that subexpressions4

are stored as lazy numbers, and may, of course, them-selves be lazy numbers or subexpressions referring toconstants (such as \1", \22/7", etc.).Therefore, �lling the de�nition �eld of a lazy num-ber (such as resulting from the computation of a de-terminant) takes space and time proportional to itslength in the worst case, as each operator uses up O(1)space and is constructed in constant time.3.3 Elementary operations on lazy num-bersWe have just seen how to �ll in the de�nition �elds forall arithmetic operations considered here. Let us nowconsider interval management. Adding, multiplyingtwo lazy numbers or taking the opposite of anothersimply amounts to computing a new bounding intervalusing the rules in 2.2.Suppose we now want to compute the reciprocalof a lazy number x. If its bounding interval Ix doesnot include 0, the image by x ! 1=x of this inter-val only has one connected component and the simplerule stated in 2.2 may be applied to build it. If 0 2 Ix,then the interval image is clearly splitted into two con-nected components: an exact evaluation is called for,and is decided upon by the lazy library itself. Themain advantage of evaluation in this case is to re�nethe interval for x (which has obviously grown beyondcontrol) and to provide one for its reciprocal. Evalua-tion is followed by replacement of the de�nition for xby the node with the exact value.3.4 Comparing two lazy numbersSuppose the bounding intervals of the two numbers tobe compared do not overlap. Then the numbers arenecessarily di�erent and it takes O(1) to determinethe relative positions of their bounding intervals, andhence of the numbers themselves.If the intervals overlap, then the idea is that theyhave grown too large and the numbers must be evalu-ated: in other words, machine precision is insu�cientto discriminate the two numbers! Evaluation will re-sult in new and tighter bounds for the intervals, whichmay then be disjoint (the numbers may then be com-pared with interval arithmetic). If they are not, thelast resort is to compare the rational values, using theexact library.Now, the most di�cult lazy task is to actually provethat two given numbers are equal. In fact, the previ-ous algorithm says that the only way out is to evaluateboth numbers! Needless to say, the very �rst thing todo to improve on this is to check, before anything else,

whether the two lazy numbers are not indeed refer-ences to the same memory location. This obvious testsaves a substantial amount of evaluations in practice.As we shall see later, this is by no means su�cient norsatisfactory to settle all cases.3.5 EvaluationThe most natural and simple evaluation strategy con-sists in evaluating the de�nition trees from the leavesupward while propagating new bounds from each levelto the next. This yields complete evaluations of treesand new, tighter bounds for intervals.Each lazy number evaluated in the process is re-placed with its exact value. Incidentally, each evalu-ated lazy number that is not referred to by any otherelement may be disposed of. This implies that thede�nition �eld must also allow some sort of referencefor bookkeeping and garbage collection purposes.Other evaluation strategies have been tried, but allare equivalent to within 10 percent. See [7] for details.4 ImplementationWe chose C++ to implement the lazy library. Thislanguage provides for the overloading of arithmeticoperators. Thus, the lazy library allows one to manip-ulate lazy numbers as standard numbers in a straight-forward manner. The lazy rational arithmetic libraryincludes three modules: the interval arithmetic mod-ule, the rational arithmetic module and the dag man-agement module. See [7] for more details. The majorclasses are:Interval: Instances include two oats. Main meth-ods: Arithmetic operations, IncludesZero?,Disjoint?.Arbitrary length integer: Instances have the fol-lowing �elds: number of digits, pointer over dy-namically allocated digit array. Main methods:Arithmetic operations, comparisons, greater com-mon divisor, next or previous oat.Rational: Instances have two pointers on arbitrarylength integers (numerator and denominator).Main methods: Reduction to the common divi-sor, arithmetic operations, comparisons, next orprevious oat.Lazy number: Instances include a bounding intervaland a de�nition �eld. Main methods: Arithmeticoperations, evaluate.5

De�nition: Virtual class. Subclasses: rational andexpression. Essential method for this class andall inheriting classes: Evaluate.Expression: Virtual class. Subclasses: sum, prod-uct, opposite, reciprocal.Sum, Product: Instances include two pointers onlazy operands.Opposite, Reciprocal: Instances include a pointeron lazy operand.Memory management is ensured through referencecounters associated with lazy numbers, rationals andarbitrary length integers. Garbage collection of tem-porary variables is automatic (note that lazy numbersare represented by acyclic graphs). Of course, it is stillthe responsibility of the programmer to dispose of anydata structure he or she may allocate in the program.5 ExtensionsSimple ideas may be suggested to improve the lazylibrary. We shall only mention a few problems wehave been confronted with.A straightforward implementation of the previousconcepts results in disappointing performances for ap-plications with realistic, non-random data. Fortu-nately, this may be easily seen to.5.1 Detecting clonesOne of the main reasons for such misbehaviors is thata lot of useless evaluations are done, owing to thefact that the most straightforward and \natural" al-gorithms tend to check that equal things are equal!Let us take an example. Suppose we store geomet-ric items { for instance segments { in a binary tree,ans we wish to delete one segment in this structure.We must compare this segment against all those alongthe search path until it is actually compared to itself.At this point, we have seen in 3.4 that a sane strategyis to compare addresses to detect equality.Let us now suppose that slopes are used askeys. The problem is that, for such simple testsas if (slope(x) == slope(y)), there is no way to\teach" the lazy library to remember where the quan-tities on both sides of the == sign come from (withoutasking the programmer to cooperate: An easy wayout would be to ask such tests to be written out as:if (x == y || slope(x) == slope(y))!)Luckily, there is an elegant and easy solution. Treea is said to be the clone of tree b if both have the same

structure, nodes and leaves. It is clear that althoughslope might cast a shadow on the origin of the previ-ous quantities to be compared, the images of x and yby the function yield perfect clones when x and y arepointers to the same location.Checking whether two trees are actual clones is aclassical problem that can be solved using any stan-dard tree traversing procedure combined with the ap-propriate tests, as in:function Clone? (a, b: LazyNumber): boolean;f if (address(a) == address(b)) return true;if (a.interval \ b.interval == ;) return false;if (class(a) 6= class(b)) return false;if (class of a is UnaryOperator)return Clone?(a.onlyson, b.onlyson);if (class of a is BinaryOperator)if (Clone?(a.lson, b.lson) and Clone?(a.rson, b.rson))return true;else return false;return EqualLeaves?(a, b);gComments: To optimize the process, recursion isstopped as soon as the intervals of the two subtreesbeing tested are disjoint or the nodes are references tothe same memory location. Testing intervals is espe-cially useful for the comparison of trees with identicalstructures di�ering only at the leaves (e.g. two de-terminants). EqualLeaves is a simple function thatreturns true i� its arguments are bitwise equal.5.2 Comparing two lazy numbers (�nalversion)The comparison of two lazy numbers a and b may nowbene�cally be rewritten as:function LazyCompare (a, b: LazyNumber): -1..1;fComment: returns the sign of (a-b)if (address(a) == address(b)) return 0;if (a.interval \ b.interval == ;)if (b.interval.lbound > a.interval.rbound) return +1;else return -1;if (Clone?(a, b)) return 0;return ExactCompare(a, b);gExactCompare is, of course, the comparison functionfrom the exact library, returning values consistentwith those returned by LazyCompare.5.3 Hashing and other related topicsLazy arithmetic provide for the basic arithmeticand comparison operators. Such operators are not6

su�cient for geometric algorithms, for instance thosein which numbers are treated as identi�ers. Typically,associating a hash-code to each number allows geomet-ric algorithms to retrieve vertices from coordinates.To this e�ect, it is possible to choose a hash-functionsuch that, in the general case, if a and b are two lazynumbers and ? any operator in f+;�; �; =g,hash(a ? b) � hash(a) ? hash(b):Some care must be taken to treat special cases, butthis is beyond the scope of this paper. The interestedreader will �nd ample information in [7].Hashing lazy numbers helps cutting down on eval-uation: if two lazy numbers with overlapping intervalshave di�erent hash-keys, they are necessarily di�erent!Hence hashing schemes are used by the library itself,and may be used by the programmer, if needed.5.4 ProspectsQuite a number of extensions to the lazy arithmeticlibrary described here have been designed and imple-mented by the authors. Others are in the making,still.The basic goal we have set (designing a tool to re-lieve the programmer from �nite-precision concerns)has proven, so far, extremely powerful, and brings allkinds of interesting problems, new or old.For instance, laziness { at its best { would beto also de�ne new compiler-level boolean tests, thatshould impose priorities on evaluation according tolazy paradigms. For instance, in a logical and test,it would be useful to check whether one condition orthe other is not false by interval arithmetic standards,before evaluating either.One may also wish to de�ne new lazy operations,with larger scope, such as the maximum of a �nite setof values, absolute values, etc. In a nutshell, detectingthe need for laziness at language level would be thebest one could hope for: this could only be dealt withby designing a truly lazy-oriented language.The major future goal is to generalize the conceptsin this paper to an algebraic arithmetic. This will al-low, we hope, to address certain classes of problems inComputational Geometry that can hardly be tackledso far.Some of the topics hinted at in this section, includ-ing hashing methods applied to lazy numbers, are pre-sented in another paper (submitted to SCAN-93, Vi-enna).

6 Results and performanceWe have implemented the lazy library presented inthis paper and experimented it on a typical algorithmfrom geometry, due to Bentley and Ottmann [1], whichcomputes the K 2 O(N2) intersections between Nsegments in the plane in time O((N + K)logN). Itis well known to be extremely sensitive to precision(see [11]).Two series of charts and corresponding tables areshown after the references. They describe the di�er-ences in running time of the algorithm using oating-point (solid curves), lazy-&-clone-detection (dashedcurves) and exact (dotted, topmost curves) arith-metics, with increasing CFE precision (from 1e�1 to1e�9) respectively for 50 segments (table and chart 1)and 100 segments (table and chart 2). Segments beingrandomly chosen, the worst-case running-time ratio isabout 1002log100502log50 � 4:7, which is basically what com-paring both series shows. Increasing precision doesnot a�ect oating point computations (hopefully) norlazy computations (which is good news), but they doa�ect rational computations: the more accurate thecomputations, the more expensive the solution. Thelazy/exact ratio ranges from 4 to 75 when precisionvaries from 1e�1 to 1e�9.Roughly speaking, the oating point and lazycurves follow asymptotic complexity for random cases,whereas the exact curve shows the overhead of un-bounded precision. When the segments are randomlypositioned, there is next to no exact computation, andthe overhead for laziness is obviously very moderate.On the other hand, it is important to point out that ifthe topology of the scene presents many special cases(vertical segments or very close ties), the \oat" ver-sion invariably crashes contrary to the lazy and exactversions which behave much the same: the exact com-putations that the exact version would perform aredone by the lazy version in addition to the intervalcomputations it is naturally supposed to do and theconstruction of the dags.Thus the overall price to pay for laziness is by farmore reasonable than that for exact computations: inthe vast majority of cases (segments from real scenes),the overhead is only equal to the cost of creating andupdating dags, and the rat/lazy ratio may be any-where between 50 and 150 (with 1e�12 precision).Acknowledgements: The authors wish to thankJean-Michel Muller and all his colleagues from theI.N.P.G.-E.N.S. work group for their unvaluable helpand suggestions.7

References[1] J.L. Bentley and T. Ottmann. Algorithms forreporting and counting geomeric intersections.IEEE Trans. Comp., C-28(9):643{647, 09 1979.[2] J.T. Coonen. An implementation guide for aproposed standard for oating point arithmetic.IEEE Computer, 13(1), 01 1980.[3] H Edelsbrunner and E.P. M�ucke. Simulation ofsimplicity: A technique to cope with degeneratecases in geometric algorithms. In Proceedings ofthe Fourth Symposium on Computational Geom-etry, pages 118{133. ACM, 1988.[4] D.H. Greene and F.F. Yao. Finite-resolution com-putational geometry. In Proceedings of the 27thAnnual Symposium on the Foundations of Com-puter Science, pages 143{152, 1986.[5] L. Guibas, D. Salesin, and J. Stol�. Epsilon geom-etry: Building robust algorithms from imprecisecomputations. In Proceedings of the Fifth Sym-posium on Computational Geometry, pages 208{217. ACM, 1989.[6] C. Ho�man, J. Hopcroft, and M. Karasick. To-wards implementing robust geometric computa-tions. In Proceedings of the Fourth Symposium onComputational Geometry, pages 106{118. ACM,1988.[7] P. Jaillon. Lea, a lazy exact arithmetic: Imple-mentation and related problems. Technical re-port, Ecole Nationale Sup�erieure des Mines deSaint-Etienne, 1993.

[8] M. Karasick, D. Lieber, and L. Nackman. E�-cient delaunay triangulation using rational arith-metic. Technical Report RC 14455, IBM, 1989.[9] D.E. Knuth. Seminumerical Algorithms, vol-ume 2. Addison-Wesley, Reading, Mass., 1981.[10] U.W. Kulisch and W.L. Miranker. A New Ap-proach to Scienti�c Computation. AcademicPress, New York, 1982.[11] D. Michelucci. Les repr�esentations par les fron-ti�eres : quelques constructions; di�cult�es rencon-tr�ees. PhD thesis, Ecole Nationale Sup�erieure desMines de Saint-Etienne, 1987.[12] V.J. Milenkovic. Veri�able Implementations ofGeometric Algorithms Using Finite PrecisionArithmetic. PhD thesis, Carnegie-Mellon, 1988.[13] R.E. Moore. Interval Analysis. Prentice Hall,Englewood Cli�s, N.J., 1966.[14] J-M. Moreau. Fac�etisation et hi�erarchisationde la repr�esentation par segments d'un grapheplanaire dans le cadre d'une arithm�etique mixte.PhD thesis, Ecole Nationale Sup�erieure des Minesde Saint-Etienne, 1990.[15] M. Segal and C.H. S�equin. Consistent calcu-lations for solids modelling. In Proceedings ofthe First Symposium on Computational Geome-try, pages 29{38. ACM, 1985.[16] K. Sugihara and M. Iri. A Solid Modelling SystemFree from Topological Inconsistencies. ResearchMemorandum, RM 89-03, University of Tokyo,1989.
8

