
Using the witness method to detect rigid subsystems of
geometric constraints in CAD

Dominique Michelucci
LE2I, UMR CNRS 5158
Université de Bourgogne

dmichel@u-bourgogne.fr

Pascal Schreck
LSIIT, UMR CNRS 7005
Université de Strasbourg

schreck@unistra.fr

Simon E.B. Thierry
LSIIT, UMR CNRS 7005
Université de Strasbourg

simon.thierry@unistra.fr

Christoph Fünfzig
LE2I, UMR CNRS 5158
Université de Bourgogne

christoph.fuenfzig@u-bourgogne.fr

Jean-David Genévaux
LSIIT, UMR CNRS 7005
Université de Strasbourg

jean-david.genevaux@etu.unistra.fr

ABSTRACT
This paper deals with the resolution of geometric constraint
systems encountered in CAD-CAM. The main results are
that the witness method can be used to detect that a con-
straint system is over-constrained and that the computation
of the maximal rigid subsystems of a system leads to a pow-
erful decomposition method.

In a first step, we recall the theoretical framework of the
witness method in geometric constraint solving and extend
this method to generate a witness. We show then that it can
be used to incrementally detect over-constrainedness. We
give an algorithm to efficiently identify all maximal rigid
parts of a geometric constraint system. We introduce the
algorithm of W-decomposition to identify rigid subsystems:
it manages to decompose systems which were not decompos-
able by classical combinatorial methods.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineer-
ing—Computer-Aided Design; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Geo-
metric algorithms, languages, and systems; G.1.3 [Numeri-
cal Analysis]: Numerical Linear Algebra

Keywords
Geometric Constraints Solving, witness configuration, Jaco-
bian matrix, rigidity theory, W-decomposition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPM ’10 Haifa, Israël
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

p1
p1 p2

p2 p3

p3

p4

p4

p5p5

p6
p6

7
5

9

8

6

7 135
◦

120
◦

115
◦

Figure 1: A technical sketch (left) and a possible
solution (right).

1. INTRODUCTION
Geometric constraints solving in Computer-Aided Design

(CAD) aims at yielding a figure which meets some metric re-
quirements (e.g. distances between points or angles between
lines), usually specified under graphical form. Formally, a
geometric constraint system (GCS) consists in constraints
(predicates), unknowns (geometric entities) and parameters
(metric values). Solutions are returned as the coordinates of
the geometric entities. The left of figure 1 shows an exemple
of a technical sketch and its right shows a possible solution.

The literature describes a lot of differerent approaches to
solve geometric constraint systems:

• algebraic methods consist in translating the GCS into
a set of equations and working on the equation system,
thus forgetting the geometrical background. Algebraic
methods can be classified in numerical methods [21]
(iterative computations to obtain an approximate solu-
tion from initial values given by the user) and symbolic
methods [2, 10] (direct computations on the equations
– these methods are seldom used because of their com-
plexity),

• geometric methods use the geometric knowledge to
solve the system: graph-based methods [6, 21, 9, 28,
29, 31] compile this knowledge in algorithms which
consider only combinatorial and connectivity criteri-
ons, rule-based methods [16, 3] explicitly use geometric
rules to deduce construction plans,

• hybrid methods [4, 8] alternate algebraic and geomet-
ric phases of computations to use the powers of both
approaches.

For more details on geometric constraint solving, see [11].
A general trend, both to reduce complexity and to enhance
resolution power, is to decompose the GCS in solvable sub-
systems and to assemble their solutions [4, 5, 9, 12, 14, 21,
28, 29, 31, 32, 34]. For instance, on the example of figure 1,
it is easy to separately solve each “triangle” (p1p2p6, p2p3p4

and p4p5p6) and then assemble them. For a detailed survey
of decomposition methods, see [15].

Notice that, on the example of figure 1, if one removes
one of the triangles, say p2p3p4, and then tries to solve
the remaining system, one needs to add information from
the solved subsystem, otherwise the remaining system be-
comes articulated. This piece of information is called the
border [23]. Although several methods exist to find the rel-
evant information in specific resolution frameworks [28], no
general algorithm yet exists to compute the border without
adding too much information.

Indeed, it is important for resolution methods, especially
for graph-based methods, that the system does not have too
few or too many constraints. A system is said

• under-constrained if it has an infinite number of so-
lutions because there are not enough solutions to pin
down every geometric entity,

• over-constrained if it has no solution because of con-
straints redundancy,

• well-constrained if it has a finite positive number of
solutions.

Invariance of rigid systems by displacements is generally
taken into account by anchoring a point and a direction.
The point and the direction are called a reference for the
displacements. Other transformation groups may be con-
sidered [30].

A lot of work has been done about the detection of over-
constrainedness [13, 27] or under-constrainedness [17, 18, 33,
37] and more generally about the characterization of rigid-
ity [19, 20, 30, 35]. Yet, methods described in the literature
are tricked by mathematical theorems when they are not
explicitly taken into account in the construction of the reso-
lution rules. Since a theorem list cannot be exhaustive, it is
impossible to develop a rule-based or graph-based algorithm
which detects geometric properties induced by mathematical
theorems.

In this article, we extend the witness method [24] to ad-
dress several problems cited above: how to determine the
constrainedness level of a GCS without being tricked by
mathematical theorems; how to efficiently detect all max-
imal well-constrained subsystems of a given GCS; how to
decompose a well-constrained system into well-constrained
subsystems.

This article is organized as follows: section 2 recalls the
principles of the witness method and gives a way to gener-
ate a witness; section 3 demonstrates that an incremental
version of the witness method has the same computational
cost than the original version but allows to detect overcon-
strainedness in all cases; section 4 gives algorithms to effi-
ciently identify the maximal rigid subsystems of an artic-
ulated system; section 5 deduces from these algorithms a
method to further decompose a rigid system into rigid sub-
systems; finally, section 6 concludes and gives perspectives
to this work.

2. THE WITNESS METHOD

2.1 Principle
The witness method comes from ideas of Structural Topol-

ogy where the question of rigidity is studied through the
notion of frameworks. A framework is a triple (V, E, p)
where (V, E) is a graph and p : V → R

d a realization of the
graph, which maps the vertices of V to points of dimension
d. Thinking of graph edges as rigid bars and of vertices as
articulation points, the main goal of combinatorial rigidity
is to answer the question “Is (V, E, p) rigid?”.

Infinitesimal flexion. An infinitesimal flexion is a map
q : V → R

d such that (p(i) − p(j)) · (q(i) − q(j)) = 0, for
each (i, j) ∈ E. A framework is called infinitesimally rigid,
if the only flexions arise from the direct isometries of R

d, i.e.
the translations and rotations in 2D.

Under some conditions of genericity concerning incidence
relationships, if one framework (V, E, p0) is infinitesimally
rigid then almost all frameworks (V, E, p) are infinitesimally
rigid.

In other words, frameworks in rigidity theory correspond
to the realization of a geometric constraint systems where
all constraints are point-to-point distance constraints: such
a system is generically well-constrained up to direct isome-
tries if it is generically rigid. This was generalized by D.
Michelucci et al.[26, 24, 25] to metric constraints over points,
lines, etc.

Witness. Let F (X, A) = 0 be a constraint system where
X is the set of unknowns and A the set of parameters. We
suppose that all constraints are of the form f(x, a) = 0 and
are differentiable. A witness is then a solution of F (X, A) =
0 for some values of A.

Typically in CAD, when the designer draws a sketch,
he/she yields a solution, say Xe, for system F (X,Ae) = 0
where Ae are the values for A read on the sketch, since the
goal is a solution for the system F (X,Aa) = 0 where Aa

are the values put on the dimensioning. Using a Taylor ex-
pansion for a small perturbation around a solution X0 for
F (X, Ae) = 0, we have:

F (X0 + εv, Ae) = F (X0, Ae) + εF ′(X0, Ae) · v + o(ε)

where v can also be seen as the instant velocity of each object
involved in the system and ε is a small time step. Thus, if
an infinitesimally small perturbation is another solution of
F (X, Ae), we must have

F ′(X0, Ae) · v = 0

The space of the infinitesimal motions allowed by the con-
straints to the witness is then given by ker(F ′(X0, Ae)).
Note that

• the matrix F ′(X0, Ae) is known as the Jacobian of sys-
tem F (X, Ae) = 0 taken at point X0;

• when the constraints are all point-to-point distance
contraints, this matrix is a minor of the rigidity matrix
as defined in the combinatorial rigidity theory;

• for other constraints with parameter the genericity con-
ditions are more complicated than in the combinatorial
case: A parameter value A∗ of a constraint f is called
generic, if a solution XA∗ , f(XA∗ , A∗) = 0 with an
open neighborhood S(XA∗ , A∗) exists such that the

matrix
„

df(X, A)/dX 0
0 df(X, A)/dA

«

has the same rank. It remains that the generic param-
eter values are dense in the set of parameter values cor-
responding to a realization. So a witness can be chosen
by tacking coordinates at random, with probability 1
under the condition that the boolean constraints, typ-
ically incidence constraints, are satisfied.

We give some examples for the formulation of generic con-
straints. For point, line, plane incidences, we assume that
the corresponding constraints are specified explicitly with-
out parameters. This is to avoid expressing point-point in-
cidences by a distance constraint (P1,x − P2,x)2 + (P1,y −
P2,y)2 = d2 with distance parameter d = 0. For a distance
constraint (P1,x−P2,x)2+(P1,y−P2,y)2 = d2, the parameter
d = 0 is not generic, as the constraint is singular in the so-
lution point. For an angle constraint angle(P1, P2, P3) = θ,
i.e. P1P2 P3P2 = lP1P2

lP3P2
cos θ, the parameter values

θ = ±π, θ = ±π/2, and θ = 0 are not generic. Simi-
larly, point-line, line-line, line-plane and plane-plane inci-
dence constraints are not expressed by angle constraints of
non-generic angles.

Assuming that the constrainedness is generic for the con-
straint system S = F (X, A), we can then study the de-
grees of freedom of S by studying the rank of the Jaco-
bian F ′(X0, Ae) on a generic witness X0, and in the case of
under-constrainedness, the structure of the allowed infinites-
imal motions can be deduced by the study of the kernel of
F ′(X0, Ae).

2.2 Generation of a witness
In principle, a witness solution can be determined by a

solver for under-determined systems F (X, A) = 0 like the
subdivision solver presented in [7]. We replace the nonlinear
monomials x2

i and xixj for i < j by additional variables xii

and xij , which are enclosed in a polytope BD(xi, xii, xi,j,i<j) ≥
0 with halfspaces given by the non-negativity of relevant
Bernstein polynomials (Bernstein polytope). The quadratic
constraint system becomes a polyhedron SD(xi, xii, xi,j,i<j) ≥
0 after rewriting into the additional variables xii and xij . In
this way, bounds for the solution domain of quadratic poly-
nomials can be expressed as two linear programs

min xi and max xi

SD(xi, xii, xi,j,i<j) ≥ 0
BD(xi, xii, xi,j,i<j) ≥ 0

Domain bounds are computed by linear programming in
order to reduce the current solution domain D. If the poly-
tope is empty, which is detected by linear programming,
then the current domain box contains no solution. Other-
wise we can perform a sequence of reductions and bisections
of domain boxes until the domain box D = [x1, x1] × . . . ×
[xn, xn] is δ-small: (xi − xi) < δ for all i. These δ-small
boxes cover the solution set piecewise.

The subdivision solver requires a domain box to start the
search. The intervals for generic parameter values of con-
straints are easy to find: angle parameters cos θ (cos θ in-
stead of θ to avoid trigonometric functions in the solver) are
in [−1+ ǫ,−ǫ] or [ǫ, 1− ǫ] with a small, arbitrary ǫ; intervals
for distance parameters d can be obtained from maximum
bounds of the point coordinates. Finding a bound on the

magnitude of any root, is necessary to prove that the sys-
tem has no solution. Such a root bound has been given in
[36] and [1] for polynomial systems with a finite zero-set.
In order to be in this case, it is necessary to divide by the
common factors of the polynomials.

Root bound [36]. Let f = (f1, . . . , fn)t be a system of poly-
nomials fi ∈ R[x1, . . . , xn] with total degree tdeg(fi) = 2 for
i = 1, . . . , n. If the zero-set of f is finite, it holds for every
root ξ = (ξ1, . . . , ξn)t ∈ C

n that |ξi| < (23/2αβ)γ2(n+1)2n

,
where α, β and γ are given by

α = max{
√

n + 1, max1≤i≤n ‖fi‖2},
β =

„

1 + 2n
n

«

, γ =
`

1 + n
2

´

2n.

In order to enumerate all solutions of a system, we used
mid-bisection of the largest interval in [7], which minimizes
the height of the exploration tree while cycling through di-
mensions. For the case of determining a single solution as
fast as possible, the choice of the smallest interval (greater or
equal δ) is beneficial as setting variables to values allowing
solutions improves the effectiveness of the domain reduction
step.

In principle for a δ-small box containing a solution, we
need to check all subsets of three points P1, P2, P3 (in 2D)
for degeneracy, i.e. for a zero determinant

˛

˛

˛

˛

˛

˛

P t
1 1

P t
2 1

P t
3 1

˛

˛

˛

˛

˛

˛

= 0.

There are
`

m
3

´

∈ Θ(m3) degenerate configurations for a sys-
tem of m points but they are of zero measure inside the
domain. In consequence for our bisection strategy, we start
newly with a domain box containing a small neighborhood
(a multiple of δ) of the solution found and change to the
strategy, bisecting the largest interval. We compute n suc-
cessive solutions and take the solution with largest rank of
the Jacobian at the box center as a witness. This is similar
to a perturbation of the solution in the space of infinitesimal
motions to make it non-degenerate [24].

As examples, we show two systems of different difficulty.
In Figure 2, two triangles with a common point p0 are speci-
fied by six side lengths. For the side lengths, the lower inter-
val bound l = 0.01 is found to admit a solution. In Figure
3, four points and five lines with 10 point-line incidences are
specified by four angle parameters and a distance parameter.
The left part shows a witness solution with symmetric and
nice shaped triangles, obtained by additional minimum dis-
tance constraints between the triangle points. In the right
part, a non-degenerate witness solution is shown, which was
found without additional constraints automatically.

3. OVER-CONSTRAINEDNESS
We already showed in section 1 that the detection of over-

constrainedness is a complicated yet essential problem in the
field of geometric constraints solving.

In this section, we show that the use of the witness method
leads to an efficient and robust detection of redundancy in
geometric constraints.

We also show the usefulness of the witness method to en-
hance robustness of decomposition methods by an accurate
computation of the border.

p0p1

p2

p3

p4

Figure 2: “The butterfly”: 5 points with 6 dis-
tance parameter d(p0, p1), d(p1, p2), d(p2, p0), d(p0, p3),
d(p3, p4), d(p4, p0).

p
q

r

c

p

q

r

c

Figure 3: System of 4 points and 5 lines
with 10 point-line incidences, 4 angle parameter
angle(qp, cp), angle(cp, rp), angle(rq, cq), angle(cq, pq)
and 1 distance parameter d(r, c). Symmetric witness
solution (left) and random, non-degenerate witness
solution (right).

3.1 Incremental detection of over-constrained-
ness

We showed in [24] that it is possible to interrogate a wit-
ness in order to detect whether a set of constraints is depen-
dent or not. Indeed, it is easy to compute the rank of the
Jacobian matrix at the witness and to compare it with the
number of constraints. However, finding a maximal inde-
pendent subset of a dependent set is not a trivial problem.
Working on the witness, the naive idea would be to try and
remove constraints one by one and, at each step, compute
the rank again to determine if the constraint is redundant
with the remaining set. If the rank does not change, the con-
straint can be removed. Performed this way, the removal of
redundant constraints is expensive. Yet, considering an in-
cremental construction of the geometric constraint system
allows to identify the set of redundant constraints with no
additional costs in comparison to the basic detection of re-
dundancy.

Indeed, consider a geometric constraint system S with no
redundancy between the constraints. Applying the Gauss-
Jordan method on the Jacobian matrix at the witness leads
to a matrix J ′ = IP with I a n× n diagonal matrix and P
a m × n matrix, m being the number of actual degrees of
freedom of the system. This method has a known complexity
of O(n3). Let us now consider a system S ′ with S ⊂ S ′. In
order to know if S ′ is over-constrained, one only needs to
incrementally add the geometric entities and the constraints
(bearing in mind that a constraint can be added only when
the geometric entities it concerns are all in the system) of
S ′ − S to S and applying Gauss-Jordan again. Since the
leftmost part of the matrix is the diagonal, the number of
operations is at most 2×n×m: for each line of I , each non-
zero element of P must be multiplied and added to the new
line. The number of operation is in fact far smaller, since
the number of zero elements in the new line of the matrix is
high.

Proceeding incrementally does not raise the number of op-
erations: it only changes the order of the operations. Indeed,
the classical Gauss-Jordan method consists in column-by-
column operations: for each column j, divide line j by Jj,j ,
then substract Ji,j times this new line from line i for every
i, so that column j is a null vector except for the j-th value.
With the incremental calculus of the reduced row echelon
form, one proceeds line by line: for each line i, substract
Jj,j times line j for each j < i, then divide line i by Ji,i so
that the i−1 first elements of line i are zero and the i-th el-
ement is 1. Thus, the overall complexity of the incremental
computation of the reduced row echelon form of J is also of
O(n3).

The incremental version of the Gauss-Jordan elimination
has the same complexity as the global one, but has a major
advantage in our case: at each step, when a constraint is
added, one may compare the new rank with the previous
one and thus detect a redundant constraint. With exactly
the same number of operations as in the case of the classi-
cal Gauss-Jordan elimination, one obtains the reduced row
echelon form of the Jacobian matrix together with the list
of redundant constraints.

Let us consider the example of figure 4. The Jacobian
matrix of this system is shown on table 1. Consider the
following witness: p1 = (2, 7), p2 = (5, 6), p3 = (1, 1) and
p4 = (6, 3). The Jacobian at this witness is shown on ta-
ble 2, with a partial Gauss-Jordan elimination, since the

Table 1: The Jacobian matrix for the system of figure 4.
x1 y1 x2 y2 x3 y3 x4 y4

r1: dist(p1, p2) x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0
r2: dist(p1, p3) x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0
r3: dist(p2, p4) 0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2

r4: dist(p3, p4) 0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

r5: dist(p2, p3) 0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
r6: dist(p1, p4) x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1

p1 p2

p3 p4

Figure 4: “The kite”: over-constrained 2D system
with 4 points and 6 distances. Without the dotted
constraint, the system is rigid.

Table 2: The Jacobian matrix of table 1 at a witness.
The Gauss-Jordan elimination method was used on
the first five rows. The sixth row is redundant (r6 =
r′2 − r′1)

x1 y1 x2 y2 x3 y3 x4 y4

r′1 1 0 0 0 0 − 4
5
−1 4

5

r′2 0 1 0 0 0 − 4
5

0 − 1
5

r′3 0 0 1 0 0 − 3
5
−1 3

5

r′4 0 0 0 1 0 − 1
5

0 − 4
5

r′5 0 0 0 0 1 2
5

−1 − 2
5

r6 −1 1 0 0 0 0 1 −1

sixth line has not been modified. That is, table 2 shows the
matrix obtained by performing the incremental version of
the Gauss-Jordan elimination, after adding the sixth con-
straint but before performing the elimination on it. It is
easy to see that the sixth row is redundant, since it can be
obtained by substracting the first row from the second one.
Thus, we detected the over-constrainedness.

For a more complex and famous example, consider the
double-banana (see figure 5): adding the last constraint of
the double-banana leads to a zero-filled line in the Jacobian
matrix at the witness. If one considers an example with
higher connectivity [22], our method still succeeds to effi-
ciently detect over-constrainedness.

Moreover, the witness method manages to detect cases of
under-constrainedness for which graph-based methods are
helpless because they do not consider geometric theorems.
For instance, consider the example in figure 6. It is unlikely
that a graph-based method can ever detect the fact that
point y is fixed, no matter what coordinates are given to
point p and line l. Hence, a graph-based method would
see this system as a system with 8 remaining degrees of
freedom (5 for the three aligned points a, b and x, 1 for
line l traversing x and 2 for point p) and would consider
that adding a constraint distance between points a and y

Figure 5: “The double-banana”: famous counter-
example to the extension of Laman’s characteriza-
tion of rigidity in 3D. Each segment represents a
distance constraint.

removes a degree of freedom. The witness method, however,
detects that this new distance constraint is redundant.

3.2 Accurate computation of border systems
This easy and efficient way to compute a maximal inde-

pendant subset is also useful in decomposition to make sure
that the border of a subsystem is not over-constrained.

Recall that the border of a system S ′ according to a sys-
tem S is the set of all information computable in S ′ about
geometric entities which are both in S and S ′. For instance,
if S ′ is a rigid system which shares three points with system
S , then the border of S ′ contains the following displacement-
invariant constraints:

• the three point-point distances,

• the three angles between the sides of the triangle.

It is easy to see that if the border of a subsystem is not
added after removal of the subsystem from a rigid GCS, then
the remaining GCS becomes under-constrained because in-
formation is lost. For instance, consider the GCS of figure 4
without the constraint shown with dotted lines. The tri-
angle p1p2p3 is rigid and trivially solved. If it is removed
from the system, the remaining GCS is a 2-bars system con-
taining two distance constraints: p3 – p4 and p2 – p4. This
remaining system has solutions which are not subfigures of
the global GCS, since the angle between both bars may vary.

To get rid of this problem, one may add the border of
the solved subsystem to the remaining system [23]. In the
example above, the border of triangle p1p2p3 consists in the
distance between points p2 and p3. With a bigger border,
a new problem arises. Consider, for instance, a rigid sub-
system which shares three points with the remaining sys-
tem. One can compute the values of the three point-point

a b x

p

l

y

p1

p2

p′

a b x

p

l

y

p1

p2
p′

Figure 6: Given three aligned points a, b and x and for any point p and line l traversing x, y is unchanged:
p1 = (ap) ∩ l, p2 = (bp) ∩ l, p′ = (ap2) ∩ (bp1), y = (ab) ∩ (pp′).

distances, but also the values of the three angles. Thus,
the border is an over-constrained GCS with three points
and six constraints. Although, formally, the system is not
over-constrained since the metrics are consistent, it is struc-
turally over-constrained, which means that any combinato-
rial method will fail to continue the solving process.

Using our incremental Gauss-Jordan elimination method,
one can compute a well-constrained subset of the border
system which contains all the information to generate the
rest of the border system. One adds all the constraints of
the border one by one to an empty system. If the last added
constraint is redundant with the previous ones, one removes
it.

4. DETECTION OF MAXIMAL RIGID SUB-
SYSTEMS IN ARTICULATED SYSTEMS

In this section, we show how the witness method can
be used to efficiently detect all maximal rigid subsystems
(MRS) of a geometric constraint system, even with systems
for which graph-based methods would fail to detect rigidity.
We give a basic algorithm based on a series of Gauss-Jordan
eliminations then show two ways to enhance computation
speed.

The basic idea of our MRS detection algorithm is to study
which geometric entities are fixed when one anchors a refer-
ence for the displacements (see [30] or [23] for a formal defi-
nition of references). In the witness framework, anchoring a
reference for the displacements consists in switching columns
in the Jacobian matrix so as to put the three columns of the
reference in the right-most positions. Indeed, performing a
Gauss-Jordan elimination diagonalizes the matrix from the
left and thus consists in expressing the different coordinates
as functions of the right-most columns (the ones that do not
belong to the identity part of the matrix). For instance,
table 2 shows the reduced row echelon form of the Jaco-
bian matrix at the witness for the GCS of figure 4. Since
this GCS is rigid (once the redundant constraint removed),
three columns do not belong to the identity part of the ma-
trix: they correspond to coordinates x4, y4 and y3, which
form a reference for the system. All other coordinates can
be expressed in function of these three coordinates. For in-
stance, the first line of the matrix must be interpreted as
x1− 4

5
×y3−x4 + 4

5
×y4 = 0, i.e. x1 = 4

5
×y3 +x4− 4

5
×y4.

When the GCS is not rigid, three parameters are not
enough to anchor all entities. There are then more than
three columns at the right of the identity. Table 3 shows
the reduced row echelon form of the Jacobian matrix at a
witness for the GCS of figure 7. Notice that columns y2 and
y4 were moved to the right, since it would have been impos-

p1

p2

p3 p4

p5

p6
p7

Figure 7: Articulated chain made of three rigid tri-
angles. Distance constraints are implicitly repre-
sented by the segments.

sible to find a pivot and finish the Gauss-Jordan elimination
otherwise. All coordinates can be expressed as functions
of y2, y4, y6, x7 and y7. Indeed, a reference for this GCS
can consist in point p7, direction p7-p6, direction p5-p4 and
direction p3-p2.

An important result to identify MRSs comes from the ze-
ros in columns y2 and y4. Rows 7, 8 and 9 of table 3 can
be interpreted as the fact that the values of x5, y5 and x6

depend only on those of y6, x7 and y7. Said otherwise, if one
anchors a reference for the displacements by pinning down
p7 and direction p7-p6, then points p6 and p5 are fixed, i.e.
p5p6p7 is a rigid subsystem.

A näıve algorithm immediatly arises, based on anchoring
a reference for the displacements, i.e. switching columns to
have the corresponding columns on the right of the Jacobian
matrix and identifying the parts of the GCS which are fixed.
The pseudo-code is shown at algorithm 1. In this algorithm,
anchoring a reference for the displacements means switching
columns so as to have the columns corresponding to the
reference at the right of the Jacobian matrix. In order not
to identify the same MRS twice, we anchor references only
on untagged parts of the GCS, that is to say that at least
one of the columns cannot be tagged.

The cost of this algorithm depends on the number m of
MRSs: for each of them, one performs once and only once a
Gauss-Jordan elimination, that is to say that the total cost
is O(m× n3).

This cost can be reduced by not starting the Gauss-Jordan
elimination from scratch for each MRS. At the end of line 6
in the algorithm, the Jacobian matrix at the witness is un-
der reduced row echelon form. By switching the columns

Table 3: Reduced row echelon form of the Jacobian matrix at a witness for the GCS of figure 7
x1 y1 x2 x3 y3 x4 x5 y5 x6 y2 y4 y6 x7 y7

r′1 1 0 0 0 0 0 0 0 0 4
3

101
18

− 181
108

-1 − 473
108

r′2 0 1 0 0 0 0 0 0 0 − 7
3
− 40

9
28
27

0 140
27

r′3 0 0 1 0 0 0 0 0 0 4 29
2

− 15
4

-1 − 59
4

r′4 0 0 0 1 0 0 0 0 0 0 9
2

− 17
12

-1 − 37
12

r′5 0 0 0 0 1 0 0 0 0 0 5
2

− 7
12

0 − 35
12

r′6 0 0 0 0 0 1 0 0 0 0 3 − 7
6

-1 − 11
6

r′7 0 0 0 0 0 0 1 0 0 0 0 − 2
3

-1 2
3

r′8 0 0 0 0 0 0 0 1 0 0 0 − 1
6

0 − 5
6

r′9 0 0 0 0 0 0 0 0 1 0 0 − 7
6

-1 7
6

Algorithm 1 Näıve MRS identification algorithm

1: i← 0
2: repeat
3: anchor a reference for the displacements on an un-

tagged part of the GCS
4: perform a Gauss-Jordan elimination
5: tag with label i the columns of the GCS which corre-

spond to coordinates depending only on the reference
6: i← i + 1
7: until all the columns are tagged

in an appropriate way, one needs only perform the Gauss-
Jordan pivot operation on two to three columns. Indeed,
by looking at the constraint graph, it is possible to select a
new reference for the GCS (i.e. a set of n columns, n being
the number of degrees of displacement of the GCS) which
satisfies the following conditions:

• it includes a reference for the displacements which is
not totally tagged,

• each identified MRS is fixed, i.e.

– the reference includes three coordinates in the
MRS,

– the MRS shares a point with a fixed MRS and the
reference includes a coordinate in the MRS.

To select this reference, one only needs to consider a point
which is in an already identified MRS and which is linked
by a constraint to an untagged entity. More cases occur
with systems for which the constraint graph has several con-
nected components or with systems with implicit points (e.g.
similarity-invariant systems with only lines and angles), but
the principle remains. Thus, in most cases, one only needs
to switch two columns, so as to change the point in the ref-
erence. Three switches happen with disconnected graphs.
Algorithm 2 shows how to perform MRS identification. For
the sake of simplicity, the algorithm works only on articu-
lated GCS made of several MRSs connected by points.

In the case of open chains, i.e. GCS where all cycles in
the constraint graph are included in rigid subsystems, an
even less costly algorithm exists, by using both the con-
straint graph and the Jacobian matrix. After performing
the Gauss-Jordan elimination, a first MRS is identified by
considering all the coordinates which depend only on the
reference. From there, one can consider all the coordinates
which depend on the reference and on one additional param-
eter. In the matrix of table 3, with the additional parameter

Algorithm 2 MRS identification algorithm for an articu-
lated system

1: anchor a reference for the displacements and identify a
first MRS

2: repeat
3: select a tagged point linked by a constrait to an un-

tagged element
4: switch the columns of this point with the columns of

the point in the last reference
5: perform Gauss-Jordan elimination on the two latter
6: until all the columns are tagged

y4, x3, y3 and x4 are fixed. Taking a look at the constraint
graph, we notice that the previously identified MRS (p5p6p7)
shares only one point with the rest of the system and thus
cannot “transfer” more than two degrees of displacement.

This enables us to remove the MRS and exchange the
three parameters y6, x7 and y7 with parameters x5 and y5

in the Jacobian matrix. The numerical values are not impor-
tant in this process: we consider that all the values of both
columns are non-zero. With this new matrix, one notices
that parameters x5, y5 and y4 form a reference for the dis-
placements and that by anchoring this reference, x3, y3 and
x4 are fixed, i.e. p3p4p5 is a rigid system. We continue this
algorithm by noticing that this system shares only one point
with the rest of the system, removing it and replacing it with
non-zero-filled columns x3 and y3 and thus identifying the
last MRS p1p2p3.

When the last identified MRS shares more than one point
with the rest of the system, two cases occur: either the
removal of the MRS leads to two disconnected graphs (i.e.
the MRS is in the middle of the articulated system) and one
thus continues the algorithm separately on each part of the
graph; or the MRS belongs to a non-rigid closed chain.

When one uses this algorithm on a GCS containing non-
rigid closed chains, it leads to cases where one cannot detect
the MRSs of the closed chains, because of the interdepen-
dance of the rigid subsystems of the chain: after identifying
the first MRS of the closed chain, the algorithm is stuck
because it is not possible to identify another system which
depends only on three parameters. In this case, we get back
to algorithm 2 to identify the different MRSs of the closed
chain.

Notice that this section is about identification of maximal
rigid subsystems but that since it is based on the anchor-
ing of references, one may adapt the algorithms to identify
maximal subsystems well-constrained modulo other trans-
formation groups than the displacements.

5. W-DECOMPOSITION OF A RIGID GCS
In the last section, we gave algorithms to identify all MRSs

of a GCS. Having such an algorithm leads to a natural
method to decompose a rigid geometric constraint system.
We call this method W-decomposition and a system which
can be decomposed by this method is said W-decomposable.
In this section, we explain the principles of W-decomposition
and give examples.

Algorithm 2 identifies maximal rigid subsystems, i.e. if
a MRS can be decomposed in several rigid subsystems, this
will not be detected. The basic idea of W-decomposition
is to remove edges from the constraint graph and see if
it breaks the MRS in non-trivial MRSs, i.e. MRSs which
are not limited to their border. If it does, then we use W-
decomposition on each non-trivial MRS. Algorithm 3 gives
the pseudo-code of the algorithm.

Algorithm 3 W-decomposition

Input: a rigid GCS S with
its constraint graph G = (V, E) and
a witness W of S

Output: a list of rigid subsystems
1: repeat
2: Delete an edge e
3: Identify MRSs of (V, E/{e}) with alg. 2
4: while each MRS is equivalent to its border do
5: Choose another edge e and identify MRSs of

(V, E/{e})
6: until all edges were tested or there is a MRS which is

not equivalent to its border
7: if no MRS bigger than its border was found then
8: return list [G] //G is W-indecomposable

9: else
10: remove all the constraints included in non-trivial

MRSs
11: add the border of all non-trivial MRSs // cf. sec-

tion 3.2

12: reintroduce edge e //this gives a rigid constraint system

13: recursively W-decompose the resulting system
14: recursively W-decompose all previously identified

MRSs
15: return the concatenation of the lists obtained in

the last two lines

Let us illustrate this algorithm on the example of figure 8a,
which represents the constraint graph of a rigid GCS. The
graph is 3-connected and has two K3,3 subgraphs, connected
by three “middle” edges. Algorithm 2 detects the rigidity of
the whole system. Let us consider the removal of two edges
at line 2 of algorithm 3: dotted edges e1 and e2.

If we remove edge e1, the use of algorithm 2 at line 3 iden-
tifies four MRSs: the rigid K3,3 subsystems, and each edge
between them. The latter are equivalent to their border.
Replacing the rigid hexagons by their borders and reintro-
ducing edge e1 leads to the graph of figure 8b (note that edge
e1 must be taken into account for the computation of the
borders). The recursive use of W-decomposition (line 14)
on each non-trivial MRS leads to the knowledge that they
are not W-decomposable, as does the recursive use on the
system of figure 8b (line 13).

If we do not remove edge e1 but e2 instead, the left K3,3

subsystem is no longer rigid. The identification of non-
trivial MRS thus only identifies the right hexagon. Once

e1

e2

a

b c

Figure 8: a: 3-connected constraint graph made of
two K3,3 graphs connected with 3 constraints; b and
c: graphs obtained by replacing MRSs identified by
algorithm 3 by their border with respectively edges
e1 and e2 removed.

it is replaced by its border, we obtain the system shown on
figure 8c. The recursive use of W-decomposition will then
lead, after removal of one of the three “middle” edges, to the
identification of the second rigid hexagon and thus to the
system shown on figure 8b.

Efficiency of the execution depends on the choice of the
edge to remove. In the worst case, all edges are tested:
2× n− 3 uses of algorithm 2 are made, this the complexity
is O(n4).

Our algorithm is more powerful than algorithms found in
the literature, for several reasons:

• first of all, it is independent of the connectivity of the
constraint graph. For instance, figure 9a gives an ex-
ample of a 4-connected constraint graph which is W-
decomposable, no matter what is inside the inner blue
part as long as it is rigid,

• second, it is also not based on a cluster formation.
Since the graph of figure 9b is not decomposable by
current graph decomposition methods, the system of
figure 9a, with the inner part replaced by figure 9b, will
also lead to a decomposition failure for these methods,
whereas it is W-decomposable.

Unfortunately, it is easy to construct an infinite family of
W-indecomposable constraint systems like the one depicted
on figure 9c.

6. CONCLUSION
After proposing a way to generate a witness, we showed

in this paper how the witness method could be used to de-
tect over-constrained systems without any additional com-
putational cost, through an incremental Gauss-Jordan elim-
ination in the Jacobian matrix at the witness. This allows
use to ensure the robustness of decomposition methods by
a computation of a well-constrained border.

We gave algorithms to identify all maximal well-constrai-
ned subsystems of a GCS, i.e. the system itself if it is well-
constrained, or its rigid parts if it is articulated. From this

a b

c

Figure 9: Examples for the W-decomposition: each
vertex is a point and each edge represents a distance
constraint. a: W-decomposable 4-connected GCS
(the blue subsystem is rigid); b: W-indecomposable
system; c: there are W-indecomposable systems
with an arbitrary number of points.

algorithm, we deduced a method, called W-decomposition,
to decompose a rigid GCS into the set of all its non-trivial
rigid subsystems, based on the removal of a constraint and
the computation of the new maximal rigid subsystems.

The method to detect over-constrainedness is efficient (the
computation of the reduced row echelon form of the Jacobian
matrix is performed in O(n3)) and is not tricked by math-
ematical theorems, even when these theorems are unknown
to the developper. The MRS identification is also efficient
(O(n3) with algorithm 2) and works as well with other trans-
formation groups than the displacements. W-decomposition
is performed in O(n4) in the worst case.

Further research needs to be done in order to find heuris-
tics for the optimization of W-decomposition. The example
of figure 8 shows that some edges are better than others
for the removal (line 2 of algorithm 3). We believe that a
promising track is that of the computation of a minimum
chain covering and the research of edges which appear in
few chains.

We also intend to further investigate the overconstrained-
ness detection method. Indeed, when a constraint is iden-
tified as redundant, the user may want to know why it is
redundant, that is to say what are the minimal sets of vec-
tors needed to generate the redundant one.

7. REFERENCES
[1] J. Canny. The Complexity of Robot Motion Planning.

MIT Press, Cambridge, MA, 1988.

[2] S.-C. Chou and X.-S. Gao. Ritt-wu’s decomposition
algorithm and geometry theorem proving. In
CADE ’90: Proceedings of the tenth International
Conference on Automated Deduction, volume 449 of
Lecture Notes in Computer Science, pages 207–220,
Kaiserslautern, Germany, 1990. Springer.

[3] J.-F. Dufourd, P. Mathis, and P. Schreck. Geometric
construction by assembling solved subfigures. Artificial
Intelligence, 99(1):73–119, 1998.

[4] A. Fabre and P. Schreck. Combining symbolic and
numerical solvers to simplify indecomposable systems

solving. In SAC ’08: Proceedings of the 23rd ACM
Symposium on Applied Computing, pages 1838–1842,
Fortaleza, Brazil, 2008. ACM.

[5] S. Foufou, D. Michelucci, and J.-P. Jurzak. Numerical
decomposition of geometric constraints. In SMA ’05:
Proceedings of the tenth ACM Symposium on Solid
and physical modeling, pages 143–151, Cambridge,
Massachusetts, USA, 2005. ACM.

[6] I. Fudos and C. M. Hoffmann. A graph-constructive
approach to solving systems of geometric constraints.
ACM Transactions on Graphics, 16(2):179–216, 1997.

[7] C. Fuenfzig, D. Michelucci, and S. Foufou. Nonlinear
systems solver in floating point arithmetic using LP
reduction. In SMA ’09: Proceedings of the
SIAM/ACM joint conference on Geometric and
Physical Modeling, pages 123–134, San Francisco,
California, USA, 2009. ACM.

[8] X.-S. Gao, C. M. Hoffmann, and W.-Q. Yang. Solving
spatial basic geometric constraint configurations with
locus intersection. Computer-Aided Design,
36(2):111–122, 2004.

[9] X.-S. Gao, Q. Lin, and G.-F. Zhang. A C-tree
decomposition algorithm for 2D and 3D geometric
constraint solving. Computer-Aided Design,
38(1):1–13, 2006.

[10] C. M. Hoffmann and R. Joan-Arinyo. Symbolic
constraints in constructive geometric constraint
solving. Journal of Symbolic Computation,
23(2-3):287–299, 1997.

[11] C. M. Hoffmann and R. Joan-Arinyo. A brief on
constraint solving. Computer-Aided Design and
Applications, 2(5):655–663, 2005.

[12] C. M. Hoffmann, A. Lomonosov, and M. Sitharam.
Finding solvable subsets of constraint graphs. In CP
1997: Proceedings of the third International
Conference on Principles and Practice of Constraint
Programming, volume 1330 of Lecture Notes in
Computer Science, pages 463–477, Hagenberg Castle,
Austria, 1997.

[13] C. M. Hoffmann, M. Sitharam, and B. Yuan. Making
constraint solvers more usable: overconstraint
problems. Computer-Aided Design, 36(4):377–399,
2004.

[14] C. Jermann, B. Neveu, and G. Trombettoni.
Algorithms for identifying rigid subsystems in
geometric constraint systems. In IJCAI ’03:
Proceedings of the eighteenth International Joint
Conference on Aritificial Intelligence, pages 233–238,
Acapulco, Mexico, 2003. Morgan Kaufmann.

[15] C. Jermann, G. Trombettoni, B. Neveu, and
P. Mathis. Decomposition of geometric constraint
systems: a survey. International Journal on Computer
Graphics and Application, 16(5,6):379–414, 2006.

[16] R. Joan-Arinyo and A. Soto-Riera. A correct
rule-based geometric constraint solver. Computer and
Graphics, 5(21):599–609, 1997.

[17] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and
J. Vilaplana-Pasto. Transforming an
under-constrained geometric constraint problem into a
well-constrained one. In SMA ’03: Proceedings of the
eighth ACM symposium on Solid modeling and
applications, pages 33–44, New York, New-York, USA,

2003. ACM Press.

[18] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and
J. Vilaplana-Pasto. Revisiting decomposition analysis
of geometric constraint graphs. Computer-Aided
Design, 36(2):123–140, 2004.

[19] P. Jörg, M. Sitharam, Y. Zhou, and J. Fan.
Elimination in generically rigid 3D geometric
constraint systems. In Algebraic Geometry and
Geometric Modeling, Mathematics and Visualization,
pages 205–216, Nice, France, 2004. Springer-Verlag.

[20] G. Laman. On graphs and rigidity of plane skeletal
structures. Journal of Engineering Mathematics,
4(4):331–340, 1970.

[21] R. S. Latham and A. E. Middleditch. Connectivity
analysis: a tool for processing geometric constraints.
Computer-Aided Design, 28(11):917–928, 1996.

[22] A. Mantler and J. Snoeyink. Banana spiders: a study
of connectivity in 3D combinatorial rigidity. In
CCCG ’04: Proceedings of the 16th Canadian
Conference on Computational Geometry, pages 44–47,
Montréal, Québec, Canada, 2004.

[23] P. Mathis and S. E. B. Thierry. A formalization of
geometric constraint systems and their decomposition.
Formal Aspects of Computing, Online first, 2010.

[24] D. Michelucci and S. Foufou. Interrogating witnesses
for geometric constraint solving. In SMA ’09:
Proceedings of the SIAM/ACM joint conference on
Geometric and Physical Modeling, pages 343–348, San
Francisco, California, USA, 2009. ACM.

[25] D. Michelucci, S. Foufou, L. Lamarque, and
D. Ménegaux. Another paradigm for geometric
constraints solving. In CCCG ’06: Proceedings of the
18th Annual Canadian Conference on Computational
Geometry, pages 169–172, Queen’s University,
Ontario, Canada, 2006.

[26] M. Michelucci and S. Foufou. Geometric constraint
solving: The witness configuration method.
Computer-Aided Design, 38(4):284–299, 2006.

[27] A. Noort, M. Dohmen, and W. F. Bronsvoort. Solving
over- and underconstrained geometric models. In
B. Brüderlin and D. Roller, editors, Geometric
Constraint Solving and Applications, chapter 2, pages
107–127. Springer, 1998.

[28] J.-J. Oung, M. Sitharam, B. Moro, and A. Arbree.
FRONTIER: fully enabling geometric constraints for
feature-based modeling and assembly. In SMA ’01:
Proceedings of the sixth ACM symposium on Solid
Modeling and Applications, pages 307–308, Ann
Arbor, Michigan, USA, 2001. ACM.

[29] J. C. Owen. Algebraic solution for geometry from
dimensional constraints. In SMA ’91: Proceedings of
the first ACM symposium on Solid modeling
foundations and CAD/CAM applications, pages
397–407, Austin, Texas, United States, 1991. ACM.

[30] P. Schreck and P. Mathis. Geometrical constraint
system decomposition: a multi-group approach.
International Journal of Computational Geometry and
Application, 16(5,6):431–442, 2006.

[31] M. Sitharam. Well-formed systems of point incidences
for resolving collections of rigid bodies. International
Journal of Computational Geometry and Application,
16(5,6):591–615, 2006.

[32] G. Sunde. A CAD system with declarative
specification of shape. In Proceedings of the first
Eurographics Workshop on Intelligent CAD systems,
pages 90–104, Noorwijkerhout, Netherlands, 1987.
Springer-Verlag.

[33] G. Trombettoni and M. Wilczkowiak. GPDOF: a fast
algorithm to decompose under-constrained geometric
constraints: Application to 3D modeling. International
Journal of Computational Geometry and Applications,
16(5-6):479–511, 2006.

[34] H. A. van der Meiden and W. F. Bronsvoort. A
non-rigid cluster rewriting approach to solve systems
of 3D geometric constraints. Computer-Aided Design,
42(1):36–49, 2010.

[35] L. Yang. Solving geometric constraints with
distance-based global coordinate system. In
International Workshop on Geometric Constraint
Solving, Beijing, China, 2003.

[36] C. Yap. Fundamental problems in algorithmic algebra.
Oxford University Press, 2000.

[37] G.-F. Zhang and X.-S. Gao. Well-constrained
completion and decomposition for under-constrained
geometric constraint problems. International Journal
on Computer Graphics and Application, 16(5,6):18–35,
2006.

