
Solving With Or Without Equations

Dominique Michelucci

LE2I UMR6306, CNRS, Arts et Métiers,
Bourgogne Franche-Comté University, Dijon, France

1 Equations versus algorithms, back and forth

The pentahedron problem (§2) shows the proximity between Geometric Theorem
Proving (GTP) and Geometric Constraint Solving (GCS). However, the two
fields separate, due to specificities of GCS (§3), which prefers algorithms to
equations. Yet GCS still benefits from symbolic tools, like DAG (§4), and dual
numbers (§5). Finally, §6 conjectures that algorithms can be converted to systems
of equations.

E

A

D

F

C

B

I

A C

I

F
D

B

E

I

A C

B

F D

E E
F

B

C

D

A

I

A

B

C

D

E

F

I

Fig. 1. Pentahedra. 6 vertices, 5 faces, 9 edges. The lengths of all edges is known.

2 The Pentahedron problem

The pentahedron problem Fig.1 [1] is to find compatible coordinates for its 6
vertices ABCDEF . The planarity of the 3 quadrilateral faces provides 3 con-
straints, and the specified lengths of the 9 edges provide 9 other constraints. This
problem is well-constrained, up to 3D location and orientation. It is easy to solve
for the triangle ABC and to pin it in the Oxy plane. Then it remains a poly-
nomial system in 9 equations and 9 unknowns, the 3D coordinates of D,E, F .
This system can be solved, slowly, with an interval solver. A much better for-
mulation remarks that lines AD,BE,CF must be concurrent. Either they meet
at a common point I, or they are parallel. In the first case, the 3 lengths of
ID, IE, IF can be used as 3 unknowns xID, xIE , xIF of a smaller, and intrinsic

(coordinate-free) system of 3 equations and 3 unknowns: the law of cosines gives

the 3 equations, one per quadrilateral face; e.g., let α = D̂IE = ÂIB; then

cosα =
x2
ID + x2

IE − l2DE

2xIDxIE

=
(xID + lAD)2 + (xIE + lBE)

2 − l2AB

2(xID + lAD)(xIE + lBE)

gives the equation in xID, xIE for the quadrilateral face ABED. This system
is solved 42 times faster than the previous one. In the second case, the point I
is at infinity and a simple geometric construction shows that there are always
pentahedra with parallel edges AD,BE,CF , except when some triangular or
tetrahedric inequality is violated. Finally, there are 6 spurious roots, where the
pentahedron is flat, so edges AD,BE,CF need not be concurrent.

This problem illustrates many common issues to GCS and GTP: what is
the dimension of the manifold solution? Are there points at infinity? What is
the best way to pose equations? Are there any degenerate solutions, and what
is the topological dimension of the degenerate manifold? Indeed, in GTP, non
degeneracy conditions (the triangle must not be flat, vertices must be distinct,
etc) have to be specified in order to prove theorems. This example also shows
that GCS and GTP are close while all constraints are incidence, or distance,
or angle constraints between flats: points, lines, planes. But the latter are not
sufficient in CADCAM.

3 Specificities of GCS for CADCAM

The first specificity in GCS is the inaccuracy issue. The nullity of a number, the
equality of two numbers are no more decidable. The computation of the rank of
a set of vectors, or of a Jacobian, is no more guaranteed. The distinction between
x > 0 and x ≥ 0 becomes irrelevant. The equivalence x 6= 0 ⇔ ∃y |xy − 1 = 0
used in Gröbner bases becomes irrelevant as well.

Another specificity is the need for optimization and algorithms.
For example, there are many orthogonal projections of a point on a non linear

curve or surface but for distance constraints, only one is relevant. First order
conditions, like KKT (Karush-Kuhn-Tucker), are necessary but not sufficient to
fully characterize solutions. Solving KKT equations provides a superset of the
roots, and spurious ones (saddle points, local optima) must be cancelled with
some algorithm.

When computing the orthogonal projection of a point p to a composite object
(e.g., the union of a line and a conic), often used in CADCAM, the relevant
system of equations depends on the location of p. Again, some optimization
problem occurs. For the orthogonal projection on a part of an object, like a
segment, optimization can be avoided, but an algorithm and some if-then-else
are more convenient than equations.

CADCAM systematically uses piecewise polynomials (box splines, bsplines,
etc). They are not polynomials and standard tools of Computer Algebra (Gröbner
bases, Wu-Ritt method, resultants, GCD, fundamental theorem of algebra, Sturm’s
theorem, etc) no more apply. Idem for NURBS and piecewise rational functions.

Finally, Computer Graphics and CADCAM use algorithmic shapes, called
features or parametric objects, like staircases, gears and sprockets, etc. The
number of steps in a staircase is an integer (thus diophantine equations occur)
and depend on parameter values of length and height: the number of unknowns
and equations depend on parameter values. In passing, there is some similarity
with Steiner’s porism, or Poncelet’s porism, in GTP.

Worse, subdivision curves and subdivision surface have invaded Computer
Graphics: designers interactively define a coarse mesh, and a procedure rounds
vertices and edges. Most of the time, there is no equation for the limit surface.

Sometimes, equations are available but too huge to be symbolically expanded,
e.g., det(M(X)) = 0. Of course, a numerical algorithm can still compute det(M(V))
for a given numerical vector V . Another example is given by intersection curves
between rational surfaces: they are not rational but all geometric modelers ap-
proximate them with rational curves.

4 DAGs

Gouaty et al [2] solve such geometric constraints for CADCAM: equations are
replaced with algorithms. Constraints are represented with DAGs (Directed
Acyclic Graph). DAG is a popular data structure in Dynamic Geometry soft-
wares (where they are called Straight Line Programs) and in Computer Alge-
bra. In CADCAM, DAGs involve spline or NURBS functions, algorithms (for
rounding, for orthogonal projection), subdivision surfaces and other algorithmic
shapes. They are no more convertible into polynomials, and it is no more possi-
ble to compute the DAG of the derivative of a given DAG. But these DAG keep
some interesting features: they still can be evaluated for given values of param-
eters, thus it is still possible to solve; DAG can be interactively specified and
modified by users or designers who are not computer scientists, thus users can
still pose their problems; probabilistic tests for nullity or equality (up to some
tolerance) are still possible; and finally, exact computations (up to floating point
precision) of derivatives are still possible, after all, with dual numbers. This is
interesting because derivatives computed with finite differences are inaccurate,
which hampers the convergence of numeric solvers close to the solution.

5 Dual numbers

The idea is to attach an infinitesimal number ǫi to each unknown xi, with the
rule ǫ2i = ǫiǫj = 0. The addition is straightforward. The product, for one ǫ, is
given by:

(a+ b ǫ) × (a′ + b′ ǫ) = aa′ + (ab′ + ba′) ǫ
↓ ↓ ↓

(

a 0
b a

)

×

(

a′ 0
b′ a′

)

=

(

aa′ 0
ba′ + ab′ aa′

) (1)

and it is generalizable to many ǫi. The bijection between dual numbers and ma-
trices is an isomorphism: the matrice of the opposite (inverse) of a dual number
is the opposite (inverse) of the matrice of the dual number. Other rules are:

1

a+ b ǫ
=

1

a
−

b

a2
ǫ when a 6= 0 (2)

thus bǫ has no inverse (the associated matrice is not invertible). This rule is a
special case of:

(a+ bǫ)k = ak + kak−1b ǫ (3)

If P is a polynomial, then P (xv + ǫ) where xv is a floating-point number,
gives P (xv) and the derivative P ′(xv):

P (xv + ǫ) = a(xv + ǫ)3 + b(xv + ǫ)2 + c(xv + ǫ) + d
= a(x3

v + 3x2
v ǫ) + b(x2

v + 2xv ǫ) + c(xv + ǫ) + d
= (ax3

v + bx2
v + cxv + d) + (3ax2

v + 2bxv + c) ǫ
= P (xv) + P ′(xv) ǫ

(4)

It extends to multivariate polynomials: either we have only one ǫ and two eval-
uations are needed:

Q(xv + ǫ, yv) = Q(xv, yv) +Q′

x(xv, yv)ǫ
Q(xv, yv + ǫ) = Q(xv, yv) +Q′

y(xv, yv)ǫ
(5)

or each variable is attached its own ǫ and one evaluation suffices:

Q(xv + ǫx, yv + ǫy) = Q(xv, yv) +Q′

x(xv, yv)ǫx +Q′

y(xv, yv)ǫy

Dual numbers extend to non polynomial functions:

exp(a+ b ǫ) = ea + bea ǫ

cos(a+ bǫ) = cos(a)− b sin(a) ǫ

sin(a+ bǫ) = sin(a) + b cos(a) ǫ

tan(a+ bǫ) = tan(a) + b(1 + tan2(a)) ǫ

|a+ bǫ| = |a|+ (sgn(a)b+ (1− sgn(a)2)|b|) ǫ

Dual numbers permit to compute the derivative of D(X) = det(M(X)), for
square matrices M(X), even if entries of M are piecewise polynomials, or algo-
rithms: just replace floating point numbers with dual numbers and then use any
standard numerical method (Gauss pivot, LUP). There are also formulas.

Lemma: det(I + ǫM) = 1 + Trace(M) ǫ, where M ∈ Rn,n. Proof:

det(I + ǫM) = (1 +M11ǫ)(1 +M22ǫ) . . . (1 +Mnnǫ) +R = 1 + Trace(M) ǫ+R

where R represents other perfect matchings in I + ǫM . But other matchings use
at least two off-diagonal entries in I+ǫM , thus are multiples of ǫ2, thus are zero.

When A is inversible, det(M(x+ ǫ)) = det(A+ ǫB) is:

det(A+ ǫB) = det(A(I + ǫA−1B))
= det(A) det(I + ǫA−1B)
= det(A)(1 + Trace(A−1B) ǫ)

(6)

When A is not inversible, we use its SVD : A = UΣV t (with Σ diagonal and
U, V unitary):

det(A+ ǫB) = det(UΣV t + ǫB)
= det(U(ΣV t + ǫU tB))
= det(U(Σ + ǫU tBV)V t)
= det(Σ + ǫU tBV)

(7)

equals the product of diagonal entries of Σ + ǫU tBV . It is 0 when there are at
least two null singular values in Σ. Otherwise it is

(σ1 + k1ǫ) . . . (σn−1 + kn−1ǫ)(0 + knǫ) = 0 + σ1 . . . σn−1kn ǫ (8)

The extension to many ǫ is lengthy but easy.
Dual numbers provide exact (up to floating point precision) derivatives even

when equations are not available and are replaced with algorithms. Thus they
make possible to use Newton method for solving, Euler method for following an
homotopy curve, BFGS method for optimizing.

It is possible to compute Taylor expansions beyond degree 1 (using ǫ4 = 0),
which eases Runge Kutta method for homotopy. It has a cost, reducible with
the sparsity of ǫ expansions. ǫ expansions are sortable [3] with compatible orders
used in Gröbner bases.

In passing, an algebraic construction φ starting from R gives the quaternions,
which represent 3D rotations. If φ is applied to R + ǫR, it gives biquaternions,
aka dual quaternions, which represent both 3D rotations and translations.

6 From algorithms to systems of equations

Algorithms are more convenient than equations to express constraints. But
maybe algorithms can be automatically converted into systems of equations,
and algorithms are just a convenience to pose equations?

Let a ∈ R, and s = sgn(a) be the sign of a: a = 0 ⇒ s = 0, a 6= 0 ⇒ s = |a|/a.
Then the system of equations below is such that S(a, s) = 0 ⇔ s = sgn(a).







0 = s3 − s ⇔ s ∈ {0,−1, 1}
0 = a− sy2 ⇔ y2 = |a| except when a = 0
0 = y2z − 1 ⇔ y2 6= 0 Remark that 0 = yz − 1 also works

The reader can check that when a > 0, there is only one real solution y2 =
|a| = a, s = 1, z = 1/a. When a < 0, there is only one real solution y2 =
|a| = −a, s = −1, z = −1/a. Finally, if a = 0, then s = 0 and y2 is free; for
uniqueness, add the equation: (1 − s2)(y − 1) = 0. It changes nothing if a 6= 0.

Otherwise, if a = 0, the only real solution is s = 0, y = z = 1. Then it is easy to
build systems S(a,R) for defining |a|, the positive (negative) part a+ (a−), etc:

R = |a| = sa
R = a+ = max(0, a) = (a+ |a|)/2 = (a+ sa)/2
R = a− = min(0, a) = a−max(0, a) = (a− |a|)/2 = (a− sa)/2
R = max(a, b) = (a+ b)/2 + |b− a|/2
R = min(a, b) = (a+ b)/2− |b− a|/2

Then we can convert the if-then-else instruction: F = (if x > 0 then P else
if x < 0 then N else Z) into equations:

F = sgn(x+)P + sgn(x−)N + (1− (sgn(x+) + sgn(x−))Z

For translating the arithmetic constraint x ∈ Z into equations, we can use
the equation sin(πx) = 0, which indeed describes Z, but it is not algebraic. An
algebraic system is: x = x0+2x1+ . . . 2nxn and xi(1−xi) = 0 for all i ∈ [[0, n]].
The system has logarithmic size in 2n, but it describes only integers in [[0, 2n−1]].
The naive representation: x(x− 1) . . . (x− 2n − 1) = 0 is exponential size.

After functional programming, assignments and iterations are useless. It is
sufficient to consider fixpoints : F (F (...(X))), where F is some algorithm. As-
sume the program Y = F (X) is represented with some system of equations:
S(X,Y) = 0. Then fixpoints of F are solutions of the system S(X,X) = 0. The
latter clearly shows that the sizes of X and Y must be equal. It is untrue for
some algorithm F , e.g., for subdivision curves, the size of Y is twice the size of
X.

We only sketched this conversion: we did not treat the conversion of function
calls, or of data structures like Lisp pairs. Assume this conversion is possible un-
der mild assumption. Then Computer Algebra applies to resulting polynomial
systems, e.g., ideals and radicals concepts become relevant for piecewise polyno-
mials after all. We can deduce equations from algorithms, e.g., for the distance
between a point and a segment, or for canceling spurious roots. Thus algorithms
are just a convenient way to pose equations. Is it possible to find (Gröbner bases
of) polynomial preconditions for the algorithm to work, and to fail?

References

1. Barki, H., Cane, J.M., Garnier, L., Michelucci, D., Foufou, S.: Solving the pentahe-
dron problem. Computer-Aided Design 58, 200–209 (2015)

2. Gouaty, G., Fang, L., Michelucci, D., Daniel, M., Pernot, J.P., Raffin, R., Lanquetin,
S., Neveu, M.: Variational geometric modeling with black box constraints and dags.
Computer-Aided Design 75, 1–12 (2016)

3. Michelucci, D.: An epsilon-arithmetic for removing degeneracies. In: 12th Sympo-
sium on Computer Arithmetic. p. 230. IEEE (1995)

