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Abstract

A new boundary evaluation method is presented. It is based on
error-free Boolean operations on polyhedral solids. We
describe, in detail, an intersection algorithm that handles, in
a straightforward way, all the possible geometric cases. We
also describe a general data structure that allows an unified
storage of solid boundaries. The intersection algorithm
always runs to completion, producing consistent solids from
consistent operands. Numerical errors are handled at an
algorithm independent level: an original exact arithmetic that
performs only the necessary precise computations. Results
from our implementation of this CSG solver are discussed.

Keywords : Solid Modeling, Non-manifold Polyhedra,
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I. INTRODUCTION

Constructive Solid Geometry (CSG) and Boundary
Representation (BRep) are two well-established schemes
for specifying solid objects. Many solid modeling systems
combine the two schemes to satisfy a wide range of
applications. Converting a CSG representation of an
object to an equivalent boundary representation is known
as the Boundary FEvaluation problem [17]. It entails
computing the boundary of a solid that is the result of a
set-operation (intersection, union, or difference) applied to
two solids with known boundaries. Solids are closed
regular subsets of the Euclidean space, and set-theoretic
operations are replaced by their regularized versions [22].
Several algorithms exist for solving Boolean operations
on polyhedral solids, but not all satisfactorily address the
crucial problem of numerical errors that are inherent to
floating-point computations [7, 10, 11, 19, 20, 21].

In this paper, we present solutions that we have
experimented in the implementation of a solid modeler.
Our approach is based on a general algorithm and data
structure that naturally accommodate non-manifold
geometric cases.

Numerical errors are avoided by the use of a new kind
of exact arithmetic (called “Lazy Arithmetic”), that
performs only the necessary precise computations without
the algorithm having to foresee these computations.

Section II discusses the general difficulties in
boundary evaluation and gives a quick survey of the
known solutions. Section ITI describes the data structure
that we have used to store the boundary of polyhedral
solids. In Section IV we describe our intersection
algorithm and the way regularized union and difference
operations are solved in terms of intersection and
complement. Section V gives the principle of the “lazy”
rational arithmetic. Section VI discusses the way our
error-free polyhedral modeler may interface with other
modelers that do not rely on an exact arithmetic. Section
VII closes the paper by presenting some experimental
results.

Il. GENERAL DIFFICULTIES

I1.1. Reducing the amount of geometric
computations

To avoid unnecessary geometric computations (i.e.
intersection and classification), algorithms quickly seek a
sufficient list of candidate face pairs, that includes the
actually intersecting pairs. Usually, solids and faces are
boxed, and the potentially intersecting faces are determined
by testing their bounding boxes for intersection. There
exist Multidimensional searching techniques that find the
K intersecting box pairs in O(K+N.log?N) time, where N
is the total number of boxes [13]. Other methods use
more elaborated spatial directories [12]. For the need of
our algorithm we have used classical bounding boxes, as
in [10] and [19], even though many other techniques may
be devised here.

11.2. Dealing with degenerate cases

As pointed out in [14], geometric algorithms meet
troubles when intersecting geometric elements that are not
in “general position”. Each “special” (i.e. degenerate) case



need be represented and treated in a “special” way, leading
to complex data structures and algorithms. Moreover, one
has to keep in mind that degeneracy often creates
opportunities for inconsistencies. This led Edelsbrunner
and Miicke [3] to eliminate all degeneracies by slightly
perturbing the input data.

Our method has no more than exactly one “special”
case to deal with, it is the non-manifold situation (called
“isolated” vertex) treated in Section IV.5.

11.3. Dealing with numerical errors

The first attempt to cope with numerical errors consists in
the use of some empirical “epsilons”. This method cannot
always guarantee consistent results as pointed out in [10].

» Guibas, Salesin and Stolfi [6] describe a theoretical
framework that allows maintaining intervals in which
decisions may be taken safely. But how does one decide
outside these intervals ?

+ Segal and Sequin [18, 19, 20] impose a minimum
separation between each pair of primitives (faces, edges, or
vertices): any two primitives that are within less than a
chosen minimal distance must be either merged or pulled
apart to maintain the minimum separation.

» Hoffmann, Hopcroft and Karasick [7] also impose a
minimum separation, but they resort to an additional
symbolic reasoning to ensure a decision never contradicts
previous ones.

* Milenkovic [15] also places a higher priority on
topology. He describes a verifiable implementation of a
line arrangement algorithm, that maintains a consistent
geometrical data base.

* Mantyla and Sulonen [11] ensure topological
consistency in their GWB solid modeler by the strict use
of Euler operators. However, these operators do not avoid
contradictions between numerical and topological data.

* Sugihara and Iri [21] observe that if the original
geometric data are represented in a finite precision, the
relative topological configuration of two geometric
elements can be computed exactly in some finite
precision. They show how it is possible to build an error-
free polyhedral modeler based on trihedral primitives.

+ Karasick, Lieber and Nakman [8] rely on a rational
arithmetic, a clever use of intervals (of integers) and a
careful engineering design, to implement their error-free
Delaunay triangulation.

Our approach also relies on a rational arithmetic, but
unlike the previous approachs, the way numerical errors
are avoided is totally transparent from the algorithm point
of view. Moreover, the rational arithmetic used here, is
computationally far less expensive than traditional pure
rational arithmetics, for that only the strictly necessary
precise computations are performed, without the algorithm
having to presuppose these particular computations (see
Section V).

I1l. BOUNDARY REPRESENTATION
Ill.1. Rational polyhedral solids

The difficulty of implementing a polyhedral solid modeler
depends, to a certain extent, on the underlying
representation (i.e. data structures). Our modeler is based
on a general data structure that is designed to represent any
polyhedral solid whose boundary is an orientable non-
manifold surface, that is to say there may be boundary
points whose neighbourhoods are not homeomorphic to a
disk (e.g. Fig. 1). Solids may have a bounded or an
unbounded volume, but their boundary must have a finite,
bounded surface area. In our solid modeler, the only
unbounded solids we deal with are those that are
temporarily created when evaluating a difference or a union
node of a CSG tree whose primitives are bounded solids,
in terms of intersection and complement operations. Thus,
these particular unbounded solid are always specified as the
regularized complements of bounded solids (Sect. IV.6).
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Figure 1. A non-manifold , multi-connected polyhedron

From now on, we assume rational polyhedral solids,
that are polyhedral solids represented by their boundary in
which the coordinates of the vertices and the coefficients
of the defining face plane equations are all available as
rational numbers, regardless of the way these numbers are
represented. A rational solid is always numerically
consistent ; for instance, each vertex coordinate triple
satisfies the plane equation of each incident face.

The central topological element of the BRep is a new
entity, called “flap”, that may be thought of as a “piece”
of some face which hangs on some oriented edge.
Formally, a flap is an explicit representation of a two-
dimensional edge-neighbourhood as defined in [17], that is
to say a neighbourhood, with respect to a face £, of points
in the interior of an edge e of £. We found the flap entity
yields the simplest boundary representation of non-
manifold polyhedral solids.

The BRep is made of two lists for edges and faces. A
face is specified as a list of flaps, where each flap belongs
to (i.e. it points to) a unique face and is incident to a
unique edge. Each edge has an even number of flaps
incident to it (see Fig. 2).

Figure 2. The adjacency graph of the BRep.



I11.2. Data structure

The data structure chosen for rational solids contains the
following records:

Solid-record

* A Boolean indicator that says whether the solid is
bounded or not (recall that, in our setting, an unbounded
solid is the regularized complement of some bounded
solid),

* the list of all faces of the solid,

* the list of all edges of the solid,

* the extent of the solid. It is simply the smallest 3D-
box whose sides are aligned with the coordinate axes, that
contains all the vertices of the solid.

Face-record

* A quadruple (a, b, ¢, d) of rational numbers that
define the equation (a.x + b.y + c.z + d = 0) of the face
plane. We assume oriented planes, so that the gradient
(a,b,c) always gives an outward normal for the face (i.e. a
vector directed from the interior to the exterior of the
solid). The defining quadruple is stored in a canonical form
(for instance, the first non null coordinate is +1 or -1),

* the list of all flaps of the face,

* the extent of the face. It is the smallest 3D-box
whose sides are aligned with the coordinate axes, that
contains all the vertices of the face.

Edge-record

* Two triples p; and p, of rational coordinates, that
define the left and the right endpoint of the edge, in the
sense that p; precedes p, in lexicographic (i.e. xyz-)
order. Edges are unique, they are always stored as ordered
pairs (py, P2),

* the list of pointers to all the incident flaps,

* a list of “splitting-points”: that are points at which
the edge will be split during the intersection algorithm
(see Section IV).

Flap-record
* a pointer to the attached edge e,
* a pointer to the attached face £,
* the side s of the flap: an integer (+1) defined below.

X

Figure 3. A flap incident to a manifold edge.

Consider the front face £ of the solid shown in Fig. 3,
where the edge e (= [p, q]) lies on the plane Q of £. For a
certain value s (= =1), the triple (e, £, s) defines a flap

of £, incident to e. The side value s identifies the half-
plane of Q (delimited by the extension line of e) that
contains the interior of £, in the immediate vicinity of e.
Let N be the outward normal of £, and E the tangent
vector of e, starting at p and ending at g. From now on,
the cross-product V= s* (E A N) will be called the flap-
vector of the flap (e, £, s). This vector is orthogonal to
E and has the following property: for a given point I €
(p, 9), any point like J = p + &*V is in the interior
of £, for a sufficiently small €>0. This unambiguously
defines the side value s.
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Figure 4. Flaps incident to a non-manifold edge.

It may happen a face £ lies on both sides of an
incident edge e, as in the non-manifold solid of Fig. 4. In
such case, the non-manifold edge e is assigned two
incident flaps with opposite sides (e, £, £1).

111.3. What is new in this BRep ?

As pointed out in [17], the face entity need be carefully
defined. In our BRep we assume “maximal” faces. Such a
face is the largest 2D-subset of the solid’s boundary, that
lies on a single plane so that the solid (i.e. the material) is
on the same side of the plane, in the immediate vicinity of
the face. The solid shown in Fig. 1 has exactly 20
maximal faces, and the front face (shaded) is made of 24
flaps.

Unlike the “star-edge” data structure used in [7], or the
one used in [19], our BRep has neither explicit “shells”
for the solid’s boundary, nor explicit “loops” for the
solid’s faces. The boundary of a solid is simply specified
as a list of small boundary pieces (the flaps), incident to
the solid’s edges. Faces need not be connected, they are
specified as maximal lists of coplanar flaps. There may be
voids in solids or holes in faces, but neither are explicitly
stated. Edges are unique and stored as ordered pairs of
endpoints. No particular order is assumed on the edges of
the solid, or on the flaps that belong to a given face or
that are incident to a given edge.

One may find this data structure very rudimentary
compared with the variants of the Baumgart’s “Winged-
Edge” [1]. This is a deliberate choice leading to a simple
and general data structure that allows unified treatment and
representation of multiple topological situations,
including the non-manifold ones. Topological
informations that are not explicitly stated may be
retrieved, on request, by means of linear scanning or by
simple geometric computations.



Remark : Strictly speaking, maximal faces are not
treated as a polygonal subsets of the boundary (i.e. ordered
sequences of coplanar edges and vertices). They are instead
artificial entities that simplify the intersection algorithm.
However, faces have an interior and an exterior in that the
parity algorithm holds for point/face classification [22].

Consider the shaded rectangular face £ of the non-
manifold solid of Fig. 4. This face is represented by six
flaps, two of which are incident to the non-manifold edge
e = [p, gq]. Given a point on the plane Q of £, how can it
be classified with respect to £? Cast a random ray starting
at the test point, and compute the number of times the ray
properly intersects the edges attached to the flaps of £ (if
the ray meets the endpoint of some edge, just cast an other
ray and redo the whole counting). Since the edge e has
exactly two incident flaps of £, a possible intersection
point between the ray and e will be computed and counted
exactly twice. Thus the parity (i.e. whether it is even or
odd) of the total number of intersection points will be the
same as if the edge e were omitted in the classification
(i.e. as if the face £ were an ordinary polygon).

I1l.4. Validity conditions of this BRep

To be valid, the BRep must satisfy the following three
conditions :

1) two distinct edges may neither overlap nor intersect
at a point which is not a common endpoint ;

2) two distinct faces may intersect only at edges that
are listed in the BRep ;

3) an edge must have an even number of flaps incident
to it. Useless edges, that have exactly two incident flaps
(of the same maximal face), must be deleted from the
BRep.

IV. INTERSECTION ALGORITHM

We now describe an algorithm for computing the rational
BRep of the solid S = ANB, given two consistent BReps
for two rational solids A and B. From now on, all the
necessary computations will be supposed error-free , so
that no topological inconsistency can arise from numerical
errors. Numerical consistency is guaranted by the use of a
particular rational arithmetic presented in Section V.

A quick survey

Given two rational solids A and B, with known
boundaries JdA and dB, our intersection algorithm follows
the general scheme described in [17] ; it roughly proceeds
in five steps :

1) it quickly searches for a sufficient list of candidate
face pairs, based on the classical method of bounding
boxes;

2) each candidate face pair is treated, and all the
informations needed for splitting the original boundaries
are collected, and adequately stored for later use ;

3) the original boundaries dA and JB are actually split
into non intersecting parts. An intermediate data structure
is used to store a superset of J(A/B) : the boundary of a
the intersection solid ;

4) each superset element is classified with respect to
AMB to find the actual members of d(ANB) ;

5) the final BRep of AMNB is generated, then is
“cleaned” by deleting the possible “useless” edges.

IV.1. Intersecting candidate faces

Three kinds of candidate face pairs need be distinguished :
1) “transversal” faces, whose planes strictly intersect along
some line L ; 2) “coplanar” faces, that lie on the same
geometric (i.e. non-oriented) plane ; and 3) “parallel”
faces, whose planes are strictly parallel. Obviously,
parallel faces can never intersect, and testing whether two
faces are strictly parallel is justifiable since we assume
error-free computations.

During this step we determine the cross-edges between
all pairs of candidate transversal faces. A cross-edge
between a face £ of A and a face g of B, is the largest
open line segment that lies entirely in the interior of each
face. The algorithm maintains a global list for all the
possible cross-edges, each being stored as a 4-field record
(p, 9, £, g) where p and g are computed coordinate triples
of the left and right endpoints, and £ and g are pointers to
the intersecting faces.

In addition, for each original edge of each solid, we
compute all the intersection points between this edge and
the faces of the other solid. These points will be used later
to split the edge into homogeneous sub-edges (Fig. 5). An
homogeneous sub-edge of an edge e of (say) A, is the
largest line segment of e that has a constant classification
with respect to the other solid B : the open segment lies
entirely in the exterior, or in the interior, or on the
boundary of B.

| g
i
P | k!
L R AREAK,
= _ |
/
/ B

Figure 5. The edge e = [p, q] of the solid A (not represented)
will be split at points K, u, v, and w, into five homogeneous
sub-edges. The sub-edge [u, v] need be stored with a reference
to the containing face g of the other solid B.

The splitting-points of each original edge e are stored as
the left endpoints of the future sub-edges, within a list
attached to e (as announced in Sect. I11.2). Each splitting-
point of e is represented as a 2-field record (p, g), where p
is a computed coordinate triple, and g is a pointer to the
possible face of B in the interior of which lies the sub-
edge of e which starts at p (e.g. [u, v] in Fig. 5).

Splitting-points, as well as cross-edge endpoints, may
coincide with endpoints of original edges of A and/or B ;
they may also result from a strict intersection between an
edge of one solid and an edge or a face of the other solid.
The algorithm need not distinguish the possible cases.



IV.1.1 Intersecting two coplanar faces

Intersecting coplanar faces is delicate since faces may be
arbitrarily complex. However, our algorithm need not deal
with coplanar faces, at all : the necessary work will be
done elsewhere, during the intersection of the transversal
faces. This is a consequence of our requirement that solids
have no “useless” edges, as stated in Section II1.4.

IV.1.2 Intersecting two transversal faces

Let £ and g be two transversal faces of A and B,
respectively. Since the two faces may intersect only along
the intersection line L of their face planes, the face/face
intersection can be reduced to a one dimension problem:
each face is intersected with the plane of the other face,
then the two results are merged to obtain £MNg. This
amounts to computing the membership classifications
MI[L, £] and M [L, g], then merging them to obtain
MI[L,£Ng] (see [22]).

Face/plane contacts

Let £ be a face of A, and Q a transversal plane that
intersects the plane of £ along some line L. The possible
intersection points between £ and Q will be called
face/plane “contacts”. A contact between an edge e (of £)
and Q may be either a strict intersection point between e
and Q or an endpoint of e (see Fig. 6). In both cases, the
contact is stored as a 4-field record (point, index, tangent-
edge-ptr, crossing-edge-ptr), that contains :

« the coordinate triple of the contact ;

+ an integer index (0 or +1) that describes the way the
edge e intersects the plane Q. A contact is (by convention)
assigned the index value +1 if the edge e has one endpoint
with a strictly positive signed distance, otherwise the
index value is set to 0.

+ a pointer to e if both endpoints of e lie on Q: in
such case a contact is created at each endpoint of e, and
the left contact carries a pointer to e (then called a
tangent-edge) ;

+ a pointer to e if the endpoints of e lie in opposite
sides of Q (e is then called a crossing-edge).

Note that the contact-record has actually two distinct
pointer-fields, and at most one of them has a non null
value. From now on, the symbol & will stand for any
null pointer value.

e5

el @ e4

Figure 6. Contacts. Edge el yields (i, 1, &, el) that stores
el as a crossing-edge ; e2 yields (3,0, J, &) ; e3 yields two
contacts (3j, 0, e3, &) and (k, 0, &, &), the left one stores e3
as a rangent-edge ; e4 yields (k, 1, @, &) ; e5 yields no
contact. Here, we assume that points located “above” the
plane Q have positive signed distances.

The pseudo-code below shows how to compute and
store (in an intermediate list Lc) all the possible contacts
between f and Q. For each edge e of £, the signed
distances (with respect to Q) of both endpoints are
computed, and their signs tested to detect a possible
contact.

IntersectFacePlane (£: Face, Q: Plane)
{ Lc:= O, /* the £/Q contact list */
for each flap of £ do
{ /*Lete (=[p,q)]) the attached edge */

a := SignedDistance (p, Q) ;

B :=SignedDistance (g, Q) ;

if (o and B have opposite signs) then

{ /* Compute Q =[p,gq]NQ; */

Ai=—a /(B-a);
Q=p+A*(g-p);
AddContact (Q, +1,J, e)}

else if (o =0 and § > 0) then
AddContact (p, +1, &, D) ;

else if (o =0 and p <0) then
AddContact (p, 0, J, &) ;

else if (o >0 and § =0) then
AddContact (q, +1, &, D) ;

else if (o <0 and  =0) then
AddContact (q, 0, I, D) ;

else if (oo =0 and f =0) then
{ AddContact (p, 0, e, &) ;

AddContact (q, 0, I, ) }
else /* do nothing */ }
return Lc

}

Face/Plane intersection

Next, all contacts are sorted lexicographically along the
line L, by their coordinate triples. Contacts that have
identical coordinates (they coincide with endpoints of
some edges of f) are merged into a single contact which
inherits: the common coordinate triple, an index that is
the sum of the indices, and the possible non null edge-
pointer (unique if any) of the merged contacts. The upper
part of Fig. 7, below, shows the final index values of the
merged contacts.

1
INf ' ONf ' OUTf '  INf

Figure 7. Classifying L with respect to f.

Now, two consecutive contacts i and j implicitly
define some line segment [i, j] of L, that has a constant
classification with respect to f£: the open segment lies



entirely in the interior, or in the exterior, or on the
boundary of £. To classify each segment with respect to
f, we just apply the parity principle, as follows: if i
carries a non null tangent-edge pointer e, then the
segment is classified ON £ (it coincides with the
referenced edge e) ; otherwise the segment is classified IN
(OUT) £ if the sum of the indices of all the contacts that
precede j is odd (even). The index field of each contact-
record is reused to store the classification result (See the
bottom of Fig. 7).

Merging two Face/Plane intersections

Assume each face has been intersected with the plane of
the other face, as shown above. The resulting contact lists
are now merged to obtain the largest line segments of L,
that have a constant classification with respect to £Ng.
These homogeneous segments are obtained through a
simultaneous scanning of the two lists. The classification
of each segment [p, q] (with respect to £MNg) is deduced
from its classifications with respect to each face, as
follows:

* If [p, gl is IN £ and IN g, it yields a cross-edge
between £ and g. The coordinates of p and q are available.
A contact record (p, g, £, g) is created and added to the
global cross-edge list. Note that, since faces may be
multi-connected, several (maximal) cross-edges may exist
between £ and g. However, each cross-edge is computed
and stored exactly once.

* If [p, g] is ON (say) £ and IN g, it is a sub-edge of
a certain edge e of £, that lies in the interior of g. In such
case, a splitting-point record (p, g) is created and added to
that edge e.

* If [p,g]is ON £ and ON g, then there are two
edges of £ and g that overlap along [p, g]. A splitting-
point record (p, &) is created and added to both edges.

* In each case above, if the contact at p carries a non
null crossing-edge pointer then the referenced edge e of
(say) £ strictly intersects the other face g, at p. In such
case, a splitting-point record (p, &) is created and added to
that edge e. If an other contact (of g) exists at p, that
carries a non null crossing-edge pointer e’, then a similar
splitting-point record is added to the referenced edge e’.

Geometrically coincident splitting-points of the same
original edge are merged into a single record that inherits
the common coordinate triple, and the possible non null
face-pointer (unique if any) of the merged splitting-points.

The whole intersection process of £ and g, is done in
O(N.logN) time in the total number N of flaps of the two
faces.

1V.2. Splitting the original boundaries

At this stage, all candidate transversal faces of A and B
have been intersected. All the possible cross-edges have
been determined, and each original edge of each solid has
now a complete list of splitting-points.

In this step, all this information is used to split the
original boundaries of A and B into non-intersecting parts.

An intermediate data structure is used to store a superset of
Jd(ANB), consisting in all cross-edges and homogeneous
sub-edges of the two solids. From now on, both kinds of
edges will be called superset edges, to indicate that they
include the future edges of ANB.

The intermediate data structure

Superset elements to be considered are vertices, edges and
flaps. The original faces disappear : what remains from
each face is the defining quadruple of the oriented plane it
lies on.

* Vertices (original edge-endpoints or new intersection
points) are now unique, they are records that store a
coordinate triple and a list of pointers to all incident edges.

* Edges (cross-edges or sub-edges) remain unique, they
are records that store pointers to the left and right vertices
and a list of pointers to all incident flaps.

* Flaps are unique entities that still need a “side” and
an edge-pointer, but the face-pointer is replaced by the
plane quadruple of some original face of A or B. An
additional field stores a pointer to the solid (i.e. A or B)
the flap belongs to.

The Fig. 8 below shows the underlying adjacency
graph (the numbers above the arrows indicate how many
elements may be attached to a given element).

2 2n
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Figure 8. Adjacency graph of the superset BRep.

Generating the intermediate data structure

To generate the superset data structure, the pseudo-code
below uses the following three primitives:

* AddVertex takes a coordinate-triple and returns a
pointer to a unique vertex. Vertices are made unique by
means of a hash-table that takes coordinate-triples as
search keys ;

* AddEdge creates an edge between two vertices and adds
it to the incident-edge list of each argument vertex. A
pointer to the edge is then returned ;

* AddFlap creates a flap from a tuple (side, edge-ptr,
solid-ptr, plane-quadruple) and adds it to the incident-flap
list of the argument edge. Flaps of distinct solids, that are
incident to a shared sub-edge and have identical sides and
plane-quadruples, are merged into a unique flap. The solid-
pointer of the flap is set to a particular value (for instance,
) to mark it “shared”. Such flaps are detected by means
of a hash-table that takes plane quadruples as search keys.

The superset BRep generation is done in three steps:



First, each cross-edge is created with four incident
flaps, two from each solid, as follows:

for each cross-edge record (p, q, £, g)
{ /* Let Q¢ and Qg be the face planes */
v, := AddVertex (p) ;
v, := AddVertex (@) ;
e = AddEdge (v, v») ;
AddFlap (-1, e, A, Q¢) ;
AddFlap (+1, e, A, Q¢) ;
AddFlap (-1, e, B, Qqg) ;
AddFlap (+1, e, B, Qq)
}

Next, the remaining superset edges are generated by
splitting the original edges of A and B. This requires
sorting in lexicographic order, by their coordinate triples,
the splitting-point list of each original edge. The
following treatment is applied to each solid, successively :

SplitSolid (A : Solid)
{ for each original edge e of A do
{ Sort the splitting-point list of e ;
/* Let (plil)i=1, n be the ordered list */
v, := AddVertex (p[1]) ;
fori:=1 to(n-1) do
{ v, := AddVertex (p[i+1]) ;
h := AddEdge (vy, v») ;
for each original flap of A , incident to e do
{ /* the flap has a side value s, and belongs
to some face £ of A, that lies on Q¢ */
AddFlap (h, s, A, Qf)
}
if p[i] carries a non null face-pointer g then
{/* h lies in the interior of a face g of B, that
lies on Qg */
AddFlap (-1, h, B, Qg) ;
AddFlap (+1, h, B, Qg )

V=V,
}

¥
}

IV.3. Classifying the superset elements

In this step, each superset flap is classified with respect to
ANB, to determine whether it belongs or not to the
boundary of A/NB. A new field is added to the flap-record
to store this membership information (coded ON or OFF).
Before dealing with the classification we first give some
necessary definitions :

IV.3.1. Definitions

Shared/Self edges : A superset edge will be said shared
if it has at least one incident flap that belongs to A, and at
least one incident flap that belongs to B. An edge which is
not shared will be said self: its incident flaps all belong to
the same solid, and only to it. For the sake of
conciseness, flaps that are incident to an edge which is
itself incident to a given vertex, will be said incident to

this vertex. Similarly, a vertex will be said self if its
incident flaps all belong to the same solid, and only to it.

Neighbouring flaps : Each flap of (say) A, incident to
some edge e of A, may be assigned a neighbour at each
vertex v of e. The neighbour is defined as the unique flap
of A incident to v, that has the same plane-quadruple Q as
the considered flap. In addition, no other flap, satisfying
these conditions, exists “between” the flap and its
neighbour: the two flaps enclose the interior or some
original face of A, that lies on Q. Each flap has exactly
two neighbours that are incident to the left and right
vertex of the attached edge, respectively (Fig. 9).

Figure 9. Each pair (Uj, Wi) gives two neighbouring flaps,
incident to the same vertex v.

The candidate flaps (i.e. the possible neighbours) can
be easily retrieved by scanning the incident-edge list of v,
and retaining for each incident edge e, the incident flaps
that belong to the same solid and have the same plane
quadruple as the considered flap. In most cases, this leads
to only two flaps, one of which is the desired neighbour.
Otherwise, the neighbour is determined by sorting radially
around v, the coplanar edges that are incident to v.
Hoffmann and al. [7] proceed in a similar way.

Remark : There is a convenient way for radial sorting,
that specifies angles by means of rational numbers. Each
vector V (with rational coordinates x and y) to be sorted,
is assigned a rational number in the interval [0, 8[, acting
as the polar angle of V with respect to the x-axis. This
rational number has the following value: (y/x) if Osy=x ;
(2-x/y) if 0=y and Ixl<y ; (4+y/x) if x<0 and lyl<Ixl ;
(6-x/y) if y=0 and Ixl=lyl ; (8+y/x) if y<0=x and lyl<x.

IV.3.2. Classifying a superset flap

There are four methods to determine the membership
information (ON/OFF) of a given flap. They are listed
below in increasing computational cost :

* a shared flap is always marked ON : no computation
is needed (recall that a shared flap has a null solid pointer);

« if a flap is incident to a self edge of (say) A, that has
at least one vertex outside the bounding box of the other
solid B, then the flap is marked ON (OFF) depending on
whether the solid B is unbounded (bounded) : just test the
“boundedness” field of B (see Section I11.2) ;

* for a shared edge e, form the list of the flap-vectors
attached to all the flaps incident to e (flap-vectors have
been defined in Section III.2). Next, sort these vectors
radially around e, within the plane Q that is orthogonal to
e and that passes through the middle of e. Within this



plane, consecutive flap-vectors of the same solid enclose
“sectors” (see Fig. 10) that are alternately in the interior or
in the exterior of the solid (to decide, consider the outward
normal vectors carried by the flaps).

A B ANB
Figure 10. Cross sections of A and B around a shared edge.

Next, a Boolean intersection between the sectors of A
and those of B, yields sectors of Q that have a constant
classification with respect to A/B. Each flap incident to
e is then marked ON (OFF) depending on whether the
corresponding flap-vector delimits some sector which is in
the interior (exterior) of ANB.

* it remains to deal with a self edge e of (say) A, that
has no vertex outside the bounding box of the other solid
B. In this case, there is no way to compute the
membership information by local computations only :
some interior point of e (e.g. the middle) need be
classified with respect to B. Classically, this amounts to
counting the number of times a random ray starting at this
point, properly intersects (the interior) of the faces of B.
Each flap incident to e is then marked ON (OFF)
depending on whether the number of ray/face intersections
is odd (even), i.e. whether the test point is in the interior
(exterior) of B .

IV.3.3. Propagating the membership information

There are three simple rules that allow propagating the
membership information through the boundary of ANB :

* flaps that are incident to the same self edge have
necessarily the same classification ;

* flaps that are incident to the same self vertex have
necessarily the same classification ;

* two flaps that are neighbours (of each other) at some
vertex have necessarily the same classification.

To compute the membership information of all flaps,
we proceed as follows: while there still exist flaps not yet
classified, select a flap whose classification is the most
easily determined, compute the membership information,
then propagate it by means of the three rules above.
Propagation technique allows a substantial reduction in
computation ; it is also exploited in [10] and [19].

Remark: To avoid a redundant computation of the
neighbour of the same flap at the same vertex, one may
use the so-called “attribute-function” technique. Two fields
are added to the flap-record to store pointers to the left and
right neighbours of the flap. Each time the neighbour
function is called, it first checks whether the desired
neighbour is already computed. If not, the neighbour is
determined and stored in the corresponding field.

IV.4. Generating the BRep of AN B

To complete the algorithm, superset flaps that are marked
OFF are deleted from the intermediate data structure. The
remaining flaps (marled ON) are used to build the BRep of
final solid S = AMNB. In order to generate (for S) a data
structure like the one of A or B (see Section III.2), we
need to construct the maximal faces of S. This is done by
simply grouping together flaps that have identical plane
quadruples.

Finally, the resulting BRep is “cleaned” by deleting the
possible “useless” edges the algorithm may have produced.
Such edges are easily detected because they have exactly
two incident flaps that belong to the same maximal face.
These edges are deleted together with their incident flaps.

IV.5. Treating isolated vertices

For the sake of clarity, isolated vertices (announced in
Sect. I1.2) were deliberately omitted in the presentation of
the algorithm. An isolated vertex of a solid A is the
endpoint of some edge of A, that lies in the interior of
some face £ of A. Omitting such a vertex during the
intersection of A with an other solid B may lead to an
invalid result ANB. Suppose A is the non-manifold solid
shown in Fig. 11, that has an isolated vertex v in a face
f. Let g be a face of B (not represented), that transversally
intersects f£. During the intersection of £ and g, a cross-
edge [p, q] is created even though it contains the vertex v,
leading to an invalid edge [p, g] for ANB (see Sect. II1.4).

Figure 11. An isolated vertex v.

There is a simple method for treating isolated vertices.
Assume that for each face £ of each solid, we maintain a
list S(£) for all isolated vertices in £ (each being
represented by a coordinate triple). Each time the
intersection algorithm detects a cross-edge [ p, q] between
a face £ of A and a transversal face g of B, it checks
whether J(£) or J(g) contains some vertex v that lies on
the intersection line L of the face planes, somewhere
between p and q. If so, the cross-edge is stored as two
valid cross-edges (p, v, £, g) and (v, p, £, g), then v is
deleted from the corresponding list.

The necessary informations to maintain isolated vertex
lists are available as transversal faces are intersected. Note
that this “special” treatment requires only minor additions
to the general algorithm and data structure.

IV.6. Evaluating the boundary of CSG solids

We have actually implemented a solid modeler based on
the intersection algorithm above. It takes as input a CSG
expression that combines simple and bounded polyhedral



solids (like cubes, or polyhedral approximations of
cylinders, spheres, cones, or tori) through regularized
Boolean operators (M, U, or —) and rigid motions.

To evaluate the whole CSG tree, we used the
incremental evaluation strategy [17]. The well known De
Morgan’s laws make it possible to implement the
difference and union operators in terms of the regularized
intersection and complement.

Complementing a solid consists simply in : inverting
the “boundedness” field of the solid ;inverting the
orientation of each face plane of the solid (i.e. the signs of
the four coefficients) ; and inverting the “side” value of
each flap of each face of the solid.

V. A LAZY RATIONAL ARITHMETIC

In a first implementation we used a pure rational
arithmetic supplied in [16], that has resulted in a very
slow program. The reason stems from that a considerable
amount of precise computation is performed even though
the exact values are not used subsequently. More
precisely, the straightforward use of a rational arithmetic
has the following two inconvenients :

First, many numerical data (e.g. signed distances,
determinants,...) are computed exactly to make geometric
decisions based on a sign determination (e.g. testing
whether a given point lies on a given plane,...). However,
the computed value, itself, need not be known if we
assume there is some way in which the sign may be
safely induced. Karasick and al. [8] use intervals (of
integers) to surround their determinants, so that an interval
which does not contain zero yields the sign of the
underlying determinant with no help of the exact value.
Gangnet and al. [4] combine floating-point intervals and
exact arithmetic.

Second, many geometric data (e.g. vertex coordinates,
and plane coefficients) are computed and stored in data
structures, even though they are “thrown” away at the end
(e.g. for they are found “irrelevant” to the final result).

To take into account the two points above, we have
developped a so-called “lazy”! rational arithmetic [2], that
is based on the following evaluation scheme : delay any
precise computation until it becomes either useless or
indispensable. Roughly, each number is assigned a double
representation : a surrounding interval (i.e. two floating-
point numbers) that contains the (possibly unknown)
exact value, and a symbolic definition that allows
computing the exact value, when needed.

A definition is either a pure rational number
(represented in some way), or it is an unevaluated
expression which represents the Sum, the Product, the
Opposite, or the Reciprocal of other lazy numbers.
Strictly speaking, lazy numbers form a Directed Acyclic
Graph (DAG) rather than a tree, since some nodes may be
shared.

Each basic operation is generally done in constant
time and space: it simply consists in creating a new DAG
node that stores the operator, pointer(s) to the operand(s),

1 The concept of lazy arithmetic is different from the lazy
evaluation paradigm used by some functional langages.

and a correct interval that contains the result. The interval
is obtained from those of the operands, through simple
composition rules rooted from interval arithmetic [9].

In most cases, intervals are sufficient to compare lazy
numbers. The exact value of a number is never computed,
except in the following three cases: 1) we need to
determine the sign of a lazy number whose interval
contains zero ; or more generally, when we need to
compare two lazy numbers with overlapping intervals ; 2)
we need to compute the reciprocal of a lazy number whose
interval contains zero ; and 3) we need to compute an
ancestor (within the DAG) of the considered lazy number.

Such a lazy rational arithmetic is never more
expensive than a pure rational one: in the worst case, all
computations are performed exactly ; in the best case it
performs no exact computation, at all. Anyway, only the
necessary precise computations are done, without the
algorithm having to foresee these computations. As
result, the task of avoiding numerical errors (and thus,
inconsistencies they cause) is transparently handled at a
lower level, totally independent on the algorithm. The full
details on the lazy arithmetic library may be found in [2].

VI. INTERFACING OTHER MODELERS

Our boundary evaluation method relies on error-free
Boolean operations, that combine rational solid operands
to produce rational solid results. Therefore, to interface
with existing modelers, there must be ways to convert
consistent rational descriptions of solids to consistent
“floating-point” ones, and vice versa.

VI.1. From rational to floating-point solids

This problem is delicate: two distinct rational vertices that
are close to each other may produce numerically
indiscernible floating-point vertices. Thus, degenerate
faces and edges may appear, that destroy the consistency of
the BRep. The solution may be the so called
“consolidation” devised by Segal and Sequin [18].
Roughly, it consists in reorganizing the BRep so that
“too small features” are eliminated: any boundary element
(i.e. face, edge, or vertex) that is within a small region
around another element, must be either merged with this
new element, or pulled apart to maintain a minimum
separation from it.

Vi.2. From floating-point to rational solids

Our solution consists in triangulating the faces of each
primitive of the input CSG tree. The initial vertices (with
floating-point coordinates) are “rounded” (i.e. forced) to the
nearest vertices with rational coordinates. Each triangular
facet lies on a unique plane whose equation may be
computed (exactly) from the three rounded vertices. The
resulting BRep is a rational approximation of the initial
primitive BRep.

Sugihara and Iri [21] use the dual solution: they
assume trihedral primitives so that each vertex is specified
by three concurrent planes. This method requires smaller
integers for the coordinates of new intersection points, but
we found it is not convenient for traditional primitives
like cones.



Rational approximations of floating-point numbers
may be obtained through one of the following three
possible methods :

Using a discrete integral 3D-grid

The initial vertices are snapped to the nearest points of a
regular, integral, 3D-grid whose spacing depends on the
desired precision (as in [5] or [14]). This method always
yields rational numbers that are bounded. Assume for
simplicity, that the grid has a spacing of 1, and that the
initial coordinates lie in the interval [0, G], for some big
enough integer G. Each computed plane equation has
coefficients (a, b, ¢, d) such that: Max (lal, Ibl, Icl) < 2G2
and ldl = 6G3. Each computed intersection point has
rational coordinates p/g such that : Ipl < 48G9 and Igl =
144G7. These bounds do not depend on the size of the
CSG tree. We found that for G = 10° (i.e. for a precision
of Imm in a universe of 1km3), the biggest integer that
may be encountered cannot exceed 144*1042, which is
less than 2147, In these conditions, a fixed length 256-bit
integer arithmetic would be sufficient. However, we found
more convenient to let open the range of the possible data
by allowing unbounded integers, represented as lists of
digits in some basis.

Using the continued fraction algorithm

The continued fraction algorithm allows any real number
x to be represented by a sequence of rational numbers 7y,
that converges to x. The sequence is finite if, and only if,
x is a rational number. In practice, the expansion is
stopped at some rank k that achieves some desired
precision ¢ (i.e. when Ix - ril / Ir. | < g). The higher the
precision is, the finer the rational approximation will be,
but the bigger the size of the resulting rational number
will be.

Using the binary floating-point format

Floating-point numbers are rational numbers encoded in
the specific binary format of the computer at hand. Thus,
it is always possible to translate this format to any other
format chosen for rational numbers. In this way one may
capture the whole precision of a floating-point number.
However, this method yields very big rational numbers.
On the other hand, one must keep in mind that floating-
point numbers are just approximations of the real data.

VIl. EXPERIMENTS AND RESULTS

We have implemented our solid modeler in C++, under
Domain Os Ver. 10.4, on an HP/apollo Workstation
(CPU 68040, 33 MHz and 16 Mo of RAM). For testing
purposes, the modeler exists in three distinct versions : a
pure floating-point version (F), a pure rational version
(R), and a lazy version (L). The goal of this triple version
is to estimate how fast is the lazy version compared with
the rational version, and how big is the overhead for
“laziness” as opposed to the standard floating-point
computation. Performance evaluation involves several
(possibly conflicting) parameters. Thus, we’ll only focuse
on two main parameters : the size of the modeled scene
and the precision at which the initial floating-point
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coordinates are rounded to rational numbers (via the
continued fraction algorithm CFA).

While the rational and lazy versions always run to
completion and produce consistent results, the floating-
point version often crashes when the scene contains
“special” cases (e.g. horizontal or vertical faces, or very
close ties). Sometimes, a slight perturbation of the input
geometric data (e.g. a small rotation of the CSG tree) is
sufficient to eliminate all degeneracies. Anyway, the
expected behaviour of the lazy version is performing only
the necessary exact computations (those that are needed to
solve the “special” cases).

To compare the three versions, we have performed a
serie of tests that consist in computing the intersection of
a variable number n of cubes centered at the origin and
randomly oriented in space, for different precisions. The
Figure 12 shows the resulting objects for n =2, 8 and 20.
The tables of Fig. 13 (together with the charts of Fig. 14)
summarize the execution time (in seconds) of each
version, for n = 2, 4, ..., then 20, and for an increasing
precision €= 10-3, 106, 10-9, then 10~12. The Fig. 14
also includes charts to show the variation of the three
possible time ratios (R/F, R/L and L/F).

Obviously, the execution time increases as the scene
grows in size (Charts 14a, 14b, 14c). Moreover, increasing
the precision considerably affects the rational version
(Chart 14b). Rational numbers quickly grow in size as
rational operations are performed (they reach 170 digits in
their numerators or denominators, radix 32768).
Asymptotically, the rational version is 1000 (resp. 3000,
5000, 9000) times slower than the floating-point version,
for £ = 10-3 (resp. 1076, 10-9,10-12) (see Chart 14d).

In return, the precision does not affect the lazy version
(superposed curves in Chart 14¢). Since only a few exact
operations are performed, the biggest rational numbers
encountred do no exceed 7 digits. Asymptotically, the lazy
version runs 100 (resp. 300, 600, 1200) times faster than
the rational version, for € = 103 (resp. 10'6, 10'9,10'12)
(see Chart 14e).

An interesting result is that the L/F time ratio, itself,
does not depend on the precision (nearly superposed curves
in Chart 14f). For small scenes (n = 6), the execution
time in lazy version is dominated par a fixed cost (due to
various initializations). Then, as n increases, the L/F time
ratio asymptotically decreases towards some constant value
(= 8), the fixed cost being compensated by the size of the
modeled scene.

To complete, we have also performed the classical test
described in [10] : consider the unit-cube A centered at the
origin, whose sides are aligned with the coordinate axes,
and an other cube B obtained by rotating A around each
coordinate axis, by a small angle . The modeler is
executed to compute A/MNB for different values of a.
Polyhedral solid modelers that accommodate coplanar faces
can handle an angle a = 0 degrees as well as large angles,
but as pointed out in [10], many commercial modelers fail
when a drops below 2 degrees. More specifically, above a
certain angle a,, a correct result is obtained, and below a



certain angle o; (<a;), A and B are so similar that the
modeler cannot distinguish them (see also [7], [19], [20]).

Our lazy solid modeler never breaks (there is no critical
angle a,), while o; may be made as small as desired, and
even zero if we assume the “exact” rounding method
described in Section VI : the only limitation is due to the
precision (always finite) of the initial floating-point vertex
coordinates. We found that in order to make a; = 1074, it
is sufficient to take & =10-0.

VIlIl. CONCLUSION

Boundary evaluation algorithms are delicate to implement.
Tricky degenerate cases are indirect sources for numerical
errors, and thus for topological inconsistencies. Despite a
careful engineering design, commercial solid modelers
often break or fail in producing consistent results. We
hope the solutions proposed in this paper will help in
reducing the burden of ensuring consistency in the solid
modeling area. In particular, we think the concept of lazy
arithmetic can broaden the application domain of exact
arithmetics, especially in geometric algorithms.
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TESTS AND RESULTS

n=2 n=8 n=20
Figure 12. Intersecting n cubes centered at the origin and randomly oriented in space

Figure 13. Execution time (in seconds) of each version.

a. Float b. Rational c. Lazy

d. Rational/Float e. Rational/Lazy f. Lazy/Float

Figure 14. Charts to show the variation of time and ratios as n varies.
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Figure 15. Union, Intersection, and Difference of two groups of four prisms.

a b
Figure 16. a) Union of 5 cubes Ck inscribed in a regular dodecahedron. Cq is centred at the origin, while
Ck (k= 1,2,3,4) is obtained by rotating Cg by ak = 2kn/5 around the axis (1, ¢, 0), where ¢ = (1+V5) /2
(the golden number). b) Same as in a, but each cube Ck is replaced by a cubic wireframe, by substracting
three prisms.

Figure 17. A fractal object (the so-called Figure 18. An architectural shape modeled as
Menger’s sponge). a CSG combination of prisms and cylinders
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