Bridging the Gap between CSG and Brep

via a Triple Ray Representation

M.O. Benouamer and D. Michelucci
FEcole des Mines, F/2023 Saint-Etienne 02
micheluc@emse. fr

Abstract

Computing intersections between algebraic surfaces is an
essential issue for Brep-based modellers, and a very diffi-
cult one. The more often, existing methods are not reliable,
and reliable ones are hairy. We think there is another and
simple-minded way which avoids this problem without loss
of practicalities. The key idea is computing a triple ray
representation by zbuffer, raytracing or whatever, and then
using the popular marching cubes algorithm with some local
improvements.

1 The gap between CSG and Brep

Breps [Hof89] describe solid objects by their boundary:
surface patches, edges and vertices with their connectiv-
ity relations. They typically use free-form patches, care-
fully sewn together to form the consistent boundary of a
solid which is then called a free-form (or sculptured) ob-
ject. The high geometric coverage of free-form surfaces and
their design flexibility are very appealing. In the other
hand, Boolean operations on solid objects are an essen-
tial practicality for end users. Unfortunately, performing
Boolean operations on Breps involve computing the inter-
section between algebraic surfaces, which is a very difficult
task. Existing methods are often not reliable, and when
they are, they are anyway exceedingly complicated: see
[Pat93, KM96, HPY96].

The CSG model [Hof89] represent solid objects by a tree
whose nodes carry Boolean operators and leaves carry alge-
braic half-spaces (algebraic inequalities: f(z,y,z) < 0). In
contrast to Breps, the CSG representation does not suffer
from reliability problems, and the surface to surface intersec-
tion problem is not a crucial issue. The raytracing method
permits to visualize CSG objects and to convert them to ray
representations (rayrep for short). The recursive space sub-
division method permits to evaluate (Ze to voxelize, or tesse-
late) them as in the SVLIS modeller [Bow95] or in Taubin’s
method [Tau93]. As long as a CSG modeller does not rely
on tesselation, the latter can even be locally inconsistent
without affecting the modeller. Note the divide and con-

quer approach basically relies on the possibility of quickly
and simply classifying a point with respect to an algebraic
half-space (by evaluating and testing the sign of the corre-
sponding formula f(z,y,z)). It is then possible to compute,
by an interval arithmetic (or some variant), ranges of the
function f for boxes (a box is a point whose coordinates
are intervals): a box B is classified inside if f(B) < 0 and
outside if f(B) > 0. Otherwise the box is subdivided (into
2 or 8 smaller ones, according to implementations). Such a
classification test is not available for free-form objects.

Unfortunately CSG does not support the full range of
free-form objects. Several attempts have been made to com-
bine appeals of CSG and Brep:

o Using soft objectsis mainly restricted to the Animation
field for the moment [15°95].

¢ In the CAD/CAM field, J. Menon & B. Guo [MG96]
use a restricted set of free-form surfaces, with a low degree
implicit form (2 or 3): each free-form patch is assigned a
companion tetrahedron which contains the patch, and whose
vertices are, in some way, its control points. These tetrahe-
dra permit to edit patches in an intuitive and interactive
way. This modeller allows a bilateral CSG/Brep conversion.

o A. Pasko & V. Adzhiev & A. Sourin & V. Savchenko
[PASS93] describe the interior of all geometric objects: al-
gebraic half-spaces, Boolean operations, sweeps, some kind
of deformations and blends, free-form volumes (sometimes
called cuboids) [MPS96]..., by a semi-algebraic inequality
f(z,y,2) <0,

None of the previous solutions fully integrate in the CSG
model all the free-form objects used in Brep-based mod-
ellers.

e A last approach combines CSG and Brep in that free-
form primitives are accepted at leaves of the CSG tree. How-
ever, the simplicity of the pure-CSG scheme is lost: these
modellers face the surface to surface intersection and the ro-
bustness problems. Recent works illustrating this tendency
are due to S. Krishnan & D. Manocha [KM96], and to C.-
Y. Hu & N. Patrikalakis & X. Ye [HPY96]. No doubt for
us that these modellers are masterpieces, tours de force of
geometric computing. But they are too much complicated.
Moreover, they do not cover all the possible cases: sweeps
(occurring for instance in NC-milling), blends or Minkowski
sums.

)

R

Figure 1: Left: Sampling only along one direction misses
curve portions. Right: this drawback is removed when sam-
pling along two directions, without increasing the number of
rays.

2 Bridging the gap between CSG and Brep

2.1 The principle

To summarize the CSG/Brep dilemma: either we use
CSG-based modellers, but we cannot enjoy free-form prim-
itives, or we use Brep-based modellers to enjoy free-form
surfaces and primitives, but we then face the fearful surface
to surface intersection problem. How to solve this dilemma?

The approach we promote is simple-minded, general and
easy to implement. Solid objects are represented by CSG
trees including classical Boolean operators and primitives
(algebraic half-spaces), extended to:

e objects obtained by sweeping any primitive (actually
any CSG node or leaf) whose motion is defined by some
function ¢t — M(t) where t is in [0,1] and M(t) is any in-
vertible 4x4 matrix,

e free-form primitives, described by a collection of free-
form surface patches, that is guaranteed to form a consistent
boundary of a solid object. The (u, v)-parameter domain of
a patch is the simple, initial one: either the square [0, 1]
for tensor product patches, or the triangle: u € [0,1] and
v € [0,1 — u]. Trimmed patches could be considered, but
they are not essential in our context: since free-form objects
with trimmed patches are Boolean combinations of free-form
objects with untrimmed patches (ie with simple parameter
domains), it suffices to keep them under the corresponding
CSG form.

So we opt for the classical CSG model, but accept free-
form primitives and sweeps as possible CSG primitives.

Next, we compute three separate orthogonal ray repre-
sentations where rays are parallel to X-axis for the first,
Y-axis for the second, and Z-axis for the third. Such a
triple rayrep (3rayrep for short) is precisely what is needed
to bridge the gap between CSG and Brep, since it allows sim-
ply computing a polyhedral approximation for the boundary
of the CSG solid, via some variant of the popular "marching
cubes” algorithm (MC for short) [LC87].

To summarize: sample, then reconstruct.

2.2 Single rayrep versus triple rayrep

While J. Menon & R.J. Marisa & J. Zagajac [MMZ94]
and J. Menon & H.B. Voelcker [MV95] promote the use of
a single rayrep, our approach is based on a triple rayrep. In
our implementation of an NC-milling simulation module, we
have first used a single rayrep. As result, we met problems

with surface pieces which happen to be parallel or nearly
parallel to rays or with sharp corners lying between rays.
In such a case, the first solution that comes in mind is to
increase the resolution of the rayrep (ie to decrease the ray-
grid step), but we found that a 3rayrep with 3 x n’ rays
gives better results than a single rayrep with ([v/3]n)? rays.
A visual inspection of the produced Brep is our first argu-
ment. Moreover, to quote [MMZ94]: ”The discretization of
the boundary of the object A is sensitive to the ray direc-
tion, since ray intercepts of “on” segments or nearly ”on”
segments provide a poor sampling of JA...”.

We think a 3rayrep is much less ray-direction sensitive
than a single rayrep: Given the same total number of rays,
ray hits are likely to be better distributed over the surface
in a 3rayrep than in a single one (see Figure 1). Finally
the 3rayrep is more convenient as an input for the MC al-
gorithm.

2.3 Previous works

The concept of multiple rayreps is directly inspired and
precursed by J. Menon & R.J. Marisa & J. Zagajac [MMZ94],
and by J. Menon & H.B. Voelcker [MV95] who have already
pointed out the appeals of (enhanced) rayreps. However the
latter paper focuses on the completeness of the rayrep, not
on its particular use to bridge the gap between CSG and
Breps, nor on that it is a simple way to avoid the robustness
problems encountered with Boolean operations on Breps. In
[MMZ94], the authors suggest in passing (page 29) the use
of a multiple rayrep, but they actually use a single rayrep
for evaluating sweeps and Minkowski sums. Though they
do not treat free-form surfaces and primitives (except those
in J. Menon & B. Guo’s format [MG96], which have a low
degree implicit form and are easily raytraced), and do not
resort to the zbuffer and MC methods, our work is clearly
in their wake.

More recently, R.F. Tobler & T.M. Galla & W. Pur-
gatofer [TGP96] have used raytracing and MC methods for
meshing CSG trees with implicit surfaces at leaves. How-
ever, they do not consider free-form surfaces or primitives,
nor sweeps.

2.4 Advantages of our approach

e The difficult and unreliable process of surface to sur-
face intersection (necessary for direct CSG evaluation) is no
longer needed. It is replaced by easy-to-implement, reliable
and classical tools: zbuffer, raytracing, rayrep merging and
marching cubes. We already have all we need.

e Actually, any "raytracable” or ”zbufferable” object is
an acceptable primitive for our extended CSG model. For
instance, 3D data images (from Tomography, Scannography
or whatever) may also be accepted as primitives.

e For the modeller to support a new kind of primitive, it
suffices to provide the corresponding routine for zbuffering
or raytracing it (and, if possible, a routine for computing
a bounding box). Note if the modeller handles n types of
objects, only n ray/object intersection routines are needed,
instead of the n(n—1)/2 possible object/object intersection
routines. Thus extensions are easy.

e An enhanced rayrep or 3rayrep can even be complete
if the sampling is sufficient, as already pointed out by J.
Menon & H.B. Voelcker [MV95]: for instance, a polynomial
of degree d is completely defined by (d + 1) points, and
a limited bandwidth signal can be faithfully reconstructed

from regularly spaced samples when the Nyquist condition
is fulfilled.

e Since a faceted Brep is generated, it may be viewed
from any viewpoint, in contrast to T. Van Hook [Van86]
who rather generates a viewpoint dependent image.

e For well-formed objects, this Brep can even be the
ezact one (see 4.3) if the sampling is sufficient, and if some
local refinements (like those devised in [BF95, TGP96]) are
performed.

e Even when completeness is not achieved in a 3rayrep,
it 1s always simple and consistent, in contrast to Breps.

e Aslong as a CSG-based modeller does not rely on the
Brep (for example for set-member classification or Boolean
operations), the Brep may even be locally inconsistent: for
instance, we can ignore the popular ”ambiguous” cases of
the MC algorithm, possibly leaving holes in the Brep, or
displaying ambiguous cubes with some special color to warn
the user. This will not pose any reliability problem: This is
in contrast to the fragility of Brep-based modellers, where
such casualness will invariably lead to failures!

e The 3rayrep may be seen as a virtual vozmap (ie a
matrix of voxels) which is more accurate and more compact
than a traditional one.

¢ Finally, hardware implementations of the zbuffer method
are available. On the other hand, research is in progress for
implementing in hardware the raytracing method as well, for
instance the Ray Casting Engine (RCE) handles quadratic
half-spaces [MMZ94]. Thus interactivity and even real-time
should be achievable in the near future.

3 Computing a ray representation

3.1 The rayrep data structure

Fundamentally, a rayrep is a matrix of dezel lists. Each
list represents the intersection of a given ray with the CSG
object, sorted by increasing depth values. Fach dexel stores:
the entering hit, the exiting hit, and the material present in
the dexel (possibly none). Storing the materials allows het-
erogeneous objects with multiple layers of distinct material.
Each hit corresponds to an intersection point between the
ray and the boundary of some primitive. The hit data struc-
ture stores: the depth value (ie the abscissa along the ray of
the intersection point), a pointer to the intersected surface,
and additional fields like: (u,v)-parameters in case of free-
form surfaces, or application dependent informations like
tool movement identifiers needed for NC-milling simulation
and verification. These informations are sufficient to recover
the coordinates of the hit point and its surface normal, when
needed (one may prefer to explicitly store normals in data
structures).

There are of course several ways to implement these data
structures in the computer.

The dexel entity was first introduced by T. Van Hook
for real-time shaded NC-milling display [Van86]. It is also
used by T. Saito & T. Takahashi [ST91] in their G-buffer
method.

3.2 Available methods

To build a rayrep one can use any of the following meth-
ods, and freely combine them according to the nature of the
geometric objects at hand:

e Raycasting.
o Zbuffer.

e Rayrep merging, to trivially perform Boolean opera-
tions on two rayreps with the same ray-grid [MMZ94].

¢ Recursive Space Subdivision [Sny92, Tau94, Bow95]:
This method is especially well suited for primitives
whose interior is expressed by an available implicit for-
mulation: f(z,y,z) <0, and for CSG trees based on
such primitives.

e Marching cubes: Of course this method not only gives
a rayrep, but also a faceted Brep! Again, it is more
suited for implicit primitives and induced CSG trees,
and for 3D image data.

We restrict ourselves to the first three methods. Obvi-
ously zbuffer is quite imperative for free-form surfaces and
primitives, since it is then an order of magnitude faster than
raytracing. Conversely, raytracing is imperative for objects
known only by an inequality f(z,y,z) < 0 (say soft objects).
On the other hand, some primitives like cubes, quadrics and
torii have both an implicit form and a parametric form, so
we can freely choose.

3.3 Combining zbuffer and raytracing

To compute a rayrep, one can use either raytracing or
zbuffer. Several combinations may be considered, but the
simplest one resorts to merging two rayreps with the same
ray-grid: for each node A op B in the CSG tree, compute the
rayrep of A: R4, the one of B: Rp, then merge R4 and Rp
according to the Boolean operator op, in the straightforward
way. Note the computation of R4 and Rz, when A and B
are CSG primitives, can be performed equally with raytrac-
ing or zbuffer. This combining method is very flexible, and
works on two active rayreps at a time (when merging Ra
and Rp, Ra is updated to account for RB)7 thus it is not
very space consuming.

Remark 1: In NC Milling simulation, only one rayrep
need be maintained, since the CSG tree has here the special
form: (((...(A— B1) — B2) — B3)...) — By. In our imple-
mentation of a NC-milling simulation module, we actually
start with the 3rayrep of the initial material block, then iter-
atively subtract dexels resulting from successive tool move-
ments.

Remark 2: When computing a rayrep by raytracing, we
need cast only rays which are in relevant windows of the ray-
grid, ée S-bounds defined by S. Cameron [Cam91]. Similarly,
when using zbuffer, typically for a free-form surface, one can
eliminate patches or triangles of the tesselation, that are
outside the relevant boxes. Obviously one cannot eliminate
back faces or patches.

The whole previous section holds for the computation of
a single rayrep. When computing a 3rayrep, the simplest
approach is to naively use three times the same method.
But it is also possible to use the first rayrep to speed up
the computation of the two others. Using a rayrep to speed
up raytracing is classical [Van&6]: the idea is to trace the
ray from pixel to pixel into the rayrep, testing each object
present in the pixel for intersection with the ray, until the
hit is met.

3.4 Zbuffering free-form surfaces and primitives

A recent method for zbuffering free-form surfaces is due
to S. Kumar & D. Manocha & A. Lastra [KML95]. We differ
from it in two details: by the fact we cannot eliminate back
patches and triangles, and by the treatment for preventing

Figure 2: Left: tesselating the interior of 4 contiguous
patches. Right: sewing triangles along the shared edges in
real space, and around the shared vertex.

cracks between contiguous patches. We have preferred the
following simple-minded approach (Figure 2):

First, we tesselate each patch independently, keeping a
thin strip along the boundary of the parameter domain: for
instance, for tensor product patches with domain [0, 1]%, we
tesselate (roughly like D. Manocha et al) the part [e, 1 — €]?
with typically ¢ = 0.005. We proceed similarly for trian-
gular patches. Next, we use the non tesselated strip along
edges for sewing triangles between contiguous patches. We
also generate sewing triangles between corners of contiguous
patches.

3.5 Zbuffering and raytracing sweeps
3.5.1 Special cases

A special case is when the surface of the sweep is defined
by an available algebraic equation f(z,y,z,t) = 0, where ¢
is the time variable. The projection onto the (z,y, z)-space
of this hypersurface obeys: f(z,y,z,t) = %(m, y,z,t) = 0.
Using, say, Sylvester’s resultant, it is possible to eliminate
the ¢ variable between the two equations, and obtain a ma-
trix with polynomials entries in z,y, z, whose determinant
nullity defines the sweep. Using the matricial form of the re-
sultant, instead of symbolically expanding its determinant,
is an idea due to D. Manocha & J. Canny [MC91]. By re-
placing, for each ray, x,y, z by their values * = z¢ + Aa,
Yy = yo + Ab, 2 = z0 + Ac, where A (the abscissa along the
ray) is the unique unknown, we obtain an equation in A, ex-
pressed as the nullity of the determinant of a square matrix
with polynomial entries in A. We then proceed as usual,
computing an eigen-decomposition of the matrix to find A
and then z,y, z. Finally, we find ¢ by computing the ker-
nel of the matrix: ¢ is generally needed to check whether it
really belongs to some interval.

If the surface of the moving object is described by some
equation f(z,y,z) = f(X) = 0, and the motion by a func-
tion: ¢ — M(t) where ¢ € [0,1] and M (¢) is an invertible
4 x 4 matrix (typically with polynomial entries in t), then
the surface of the sweep is defined by: f(XM(t)™!) = 0.
This equation can be obtained with some symbolic com-
putations, yielding an equation similar to the one derived
previously. These symbolic computations are a little costly
but they are done only once and for all rays.

3.5.2 General case

There is a brute-force and general method, not relying
on a particular shape of the moving object. This method

can be combined equally with either raytracing or zbuffer.

L.et A be the moving object, the motion of which is
described, like above, by some function: ¢ — M(t), with
t €[0,1]. The main idea is to approximate the sweep by the
discrete union: A(0)UA(At)UA(2AL)...UA(1) where A(¢)
is the object obtained by applying M (¢) to

For instance, to simulate material removal in multi-axis
milling, developers often discretize the sweeps of tools along
NC tool-paths. For each linear tool movement, the swept
volume is replaced by a certain number of discrete ”instances
of motion” to avoid the computational expense of raytracing
complex swept volumes [HO94]. The discretization step (to-
gether with the ray-grid step) is chosen according to some
machining tolerance and other parameters owing to specific
milling requirements (like cutter geometry and feed rate).
This approach is common in practical NC-milling softwares.
It allows real-time and realistic simulation without sacrific-
ing accuracy. The Figure 3 illustrates this approach in 3-axis
milling.

Figure 3: Computing the discretization step d for tool move-
ments: Let r be the tool radius and e a user-defined toler-
ance for the "undercut” error due to discretization. Con-
stdering two conseculive instances of motion yields (g)2 +

(r —e)® = r?, thus d = 24/e(2r —e) or, equivalently,
g =2,/1—-(1- %)2 Now, if ¢c1 and c2 are the initial and
final locations in the tool movement, the linear sweep between

c1 and ¢z is decomposed into (n+ 1) evenly spaced tool posi-
tions c; = c1 + %(PQ — P1), 1=0,n, so that nd = ||c2 —c1]].

Note it is possible to improve the computed hit of the
ray. If the hit involves A(kAt), then the ezact hit is be-
tween A((k—1)At) and A((k+1)At): resample this interval.
When the sweep is also described by an available system of
equations, another improvement is to use the computed hit
as an initial guess for some Newton iterations.

As already noticed in [MMZ94], when A is lengthy to
raytrace, a good solution is to compute, once and for all,
a rayrep (or a 3rayrep) for A. Then the rayrep is used to
speed up the intersection between A and any ray —not only
rays with X-, Y- or Z-direction: see [Van86] and Section
3.3.

4 From 3rayrep to Brep

4.1 The marching cubes algorithm

The MC algorithm was initially designed for surface re-
construction from 3D medical data (obtained by Computer
Tomography or Magnetic Resonance techniques). Funda-
mentally, the space is partitioned into small cubes, each

vertex of which carries the value of a certain scalar field
(say a temperature or a density). The goal is to construct
an isosurface whose points have field-values less or equal
to a given threshold. Each cube is examined to trace the
isosurface by comparing the field-values at each pair of ver-
tices forming an edge of the cube. If one vertex satisfies the
threshold (such vertex is denoted IN) while the other does
not (OUT vertex) then clearly the isosurface intersects the
current edge (at least once), somewhere between the two
vertices. The key assumption in the original MC algorithm
is that cubes are small enough so that there is at most one
intersection point on each edge. Moreover, since field-values
are known only at cube vertices, intersection points are usu-
ally computed by interpolating vertex field-values. Finally,
intersection points, in each cube, are connected together to
form polygonal faces of the isosurface (Figure 4).

The original MC algorithm suffers from the well known
”ambiguous cubes”. Such a cube has a face with two IN ver-
tices and two OUT vertices, vertices with the same status
being on a diagonal of the face. The ambiguity comes from
there are two distinct ways to connect the four intersection
points (Figure 4). To treat this problem, B. Wyvill & C.
McPheeters & G. Wyvill [WMWS&6] examine the average
field-value at the center of the ambiguous face, while J. Wil-
helms & A. Van Gelder [WG90b] use the more sophisticated
Gradient Heuristic method.

Storage and performance issues are also addressed by us-
ing explicit octrees [WG90a), or variable size cubes [MS93].
More recently, R.F. Tobler & T.M. Galla & W. Purgatopher
[TGP96] combine octrees and raytracing in their adaptative
CSG meshing algorithm, baptized ACSGM. They use nor-

mals at vertices to deal with ambiguous voxels.

Figure 4: Left: A possible configuration for a marching cube
and an assoctated local triangulation: Bold vertices denote
7in” vertices. Middle and Right: two possible ways to con-
nect intersection points in an ambiguous face.

R.F. Tobler & T.M. Galla & W. Purgatopher [TGP96]
use raytracing to get the ezact intersection points between
rays and edges of the marching cubes. However they con-
sider only implicit surfaces at leaves of their input CSG trees.
Moreover they resort to a recursive subdivision by means of
an octree, whereas we prefer working on a (possibly recur-
sive) matrix of pixels. Our choice is motivated by the fact
that, anyway, the first levels of the octree have generally to
be expanded (especially for NC-milling applications), and
that using arrays permits enjoying the zbuffer method.

In the original MC algorithm [L.C87] W. Lorensen & H.
Cline enumerate 256 possible configurations where a surface
intersects a cube (assuming it intersects each edge at most
once). This number is reduced to 14 really distinct (among
which 6 ambiguous) cases, by considering symmetry. Thus,
to triangulate the isosurface, they use a look-up table: an
8-bit index (one bit per vertex) is created for each case,

serving as a pointer into an edge-table that gives all the edges
intersected in a given cube configuration. B. Wyvill & C.
McPheeters & G. Wyvill [WMWS&6] avoid the look-up table
by simply connecting all the intersection points in a cube
to their centroid (even such a triangulation method does
not work for polygons in general, the authors claim that it
works well for polygons involved in their algorithm). As in
[L.C87], we have used a look-up table based triangulation in
our current implementation.

4.2 The MC algorithm in the context of 3rayreps

Our first implementation of the MC algorithm is very
close to the original one, except in the following points:

e The 3rayrep permits to examine only the relevant march-
ing cubes, ¢e those that are actually traversed by the isosur-
face.

e A new kind of ambiguity arises when there are more
than one intersection point along an edge of a marching
cube. This occurs when the resolution is not sufficient, or in
presence of non manifold situations (even they do not appear
in machinable objects). Our first implementation assumes
this problem does not appear with a reasonable sampling,
and we just tag ambiguous cubes to warn the user.

¢ Finally, combining three rayreps rises consistency prob-
lems due to numerical errors: see 5.2.

4.3 Towards the exact Brep

We plan to obtain the ezact Brep by the following ap-
proach: Voxels (ie marching cubes) are subdivided until
they are ”small” enough or ”simple”, by computing a local
3rayrep (typically 32 x 32 x 32), the CSG tree being sim-
plified to its active part. The active part may be computed
in several ways. The first and the simplest one restricts the
CSG tree to the primitives whose boundary intersects the
edges of the voxel. This simplification is fast and the more
often sufficient, but may sometimes miss thin or small ob-
jects. A more conservative method makes use of Cameron’s
S-bounds [Cam91] or interval analysis [Mit90].

A voxel is "simple” if it contains no boundary, or only
one surface, or only a single intersection curve and its (typi-
cally two) incident surfaces, or only one vertex and its (typ-
ically three) incident surfaces. The boundary in a simple
voxel can be approximated by a more accurate triangula-
tion, as J. Bloomenthal & K. Ferguson [BF95] or R.F. To-
bler & T.M. Galla & W. Purgatofer [TGP96] already did.
Concerning the ”small” residual voxels, which contain sin-
gularities (where the jacobian matrix has not full rank) or
near-singularities, we may simply opt for a reasonable trian-
gulation (for instance the averaging method in [WMWS86]),
or just tag them to warn the user.

When there are no such residual voxels (it is the case
when the object has no detail smaller than the size of a min-
imal voxel), or when they are small enough to be assimilated
to vertices, we may argue we have actually got the ”exact”
Brep, at least topologically, since we can recover intersec-
tion curves between surfaces, maximum pieces of surfaces
(ie trimmed patches of free-form surfaces, and pieces of im-
plicit surfaces), and all their connectivity relations: this is
nothing else than the exact Brep.

5 About inconsistencies

Our approach is simple and robust. To be honest, we
now detail the remaining possible sources of inconsistency:

we show how to solve them, or that they have immaterial
consequences.

5.1 Passing through two contiguous triangles

A

Figure 5: The hit point R is very close to edge AB. Due to
inaccuracy and il luck, R may be found at the left of AB,
and at the left of BA too. Conversely R may be found at the
right of both AB and BA.

Preventing cracks has already been addressed in Section
3.4. But another classical misfortune (we were "unlucky”
enough to meet) may happen. Due to numerical floating-
point inaccuracy, computing whether a point P lies on the
left or on the right side of an oriented edge AB may contra-
dict the result of classifying P with respect to BA (Figure 5):
a ray R, very close to an edge AB, can either miss the two
incident triangles or hit both. A similar problem is possible
with the zbuffer method. A well known solution is to always
consider the same oriented edge in the two incident triangles
(ie do not use edge AB in the first triangle and edge BA
in the second!), for instance sort endpoints in lezicographic
order of their coordinates.

5.2 Inconsistencies in 3rayreps

Figure 6: Left: the circled vertex is found OUT for the X -
ray, but IN for the Y-ray. Right: a local perturbation elim:-
nates the inconsistency (exaggerated in the Figure).

Combining three rayreps inevitably rises another kind of
inconsistency, due exclusively to numerical errors. In our
3rayrep, the marching cubes have their vertices (implicitly)
defined as the intersection of three rays with distinct di-
rections (X,Y, 7). Thus, when classifying the vertices (to
determine their IN or OUT status with respect to a given
material) it may happen that the same vertex is found IN
with respect to some X-ray, while it is found to be OUT
with respect to some Y- and/or Z-ray(s) (Figure 6). To
ensure consistency, our solution is brute-force and simple:
it consists in a preprocessing step which eliminates possi-
ble ambiguous vertices all at once. Fach time an ambiguous
vertex is detected, the dexels immediately around the vertex

(at most six, two from each direction) are slightly shortened
or lengthened so that the vertex becomes consistent, possi-
bly merging some dexels to preserve consistency in the dexel
lists.

Note we have not met this inconsistency yet, but we men-
tion it for the sake of completeness. Anyway the solution is
short and easy.

5.3 Inconsistencies with implicit primitives

Figure 7: Numerically indiscernible cases, with an odd num-
ber of roots.

Raytracing implicit primitives boils down to solving a
polynomial equation f(¢) = 0, t being the abscissa along the
ray. We recursively solve f'(t) = 0, stopping the recursion
when reaching degree 1 or 2. In each interval defined by
successive roots of f’, f has at most one root which may be
localized by dichotomy and then made more precise by some
Newton iterations.

It is essential to avoid miscalculating the parity (even
or odd) of the number of ray/surface intersections, which is
achieved by our method. Apart this, confusions between two
7odd” cases (Figure 7), or confusions between two ”even”
cases (Figure 8) are inevitable in some cases. Note that an
interval arithmetic will detect the indetermination, contrar-
ily to the blind floating-point arithmetic, but anyway it will
not be able to solve it (Figure 9).

(VARVARVY

Figure 8: Numerically indiscernible cases, with an even
number of roots.

These confusions have immaterial consequences: they oc-
cur when the ray is tangent or almost tangent to the surface.
Their sole effect 1s to slightly and locally move the outline
of the object.

Another error occurs when raytracing exceedingly thin
primitives (like the two ellipsoids of the Figure 10). For in-
stance a very thin ellipsoid will be sometimes missed by the
ray, sometimes not, apparently at random. Note the mod-
eller does not crash, and that, again, this problem will occur
even with an interval arithmetic: the latter will detect the
indetermination (contrarily to the floating-point arithmetic)
but will not be able to solve it (Figure 9). Actually, this
problem is irrelevant, since such objects are rather modelled
by laminar ones (here disks instead of ellipsoids).

Figure 9: Interval arithmetic detects that this interval
quadratic polynomial may have 0 or 2 single roots, or a dou-
ble root, but gives no way to decide.

Figure 10: Two raytraced ellipsoids, with radius 1, and thick-
ness 107° for the left one, 1077 for the right one. The latter
s so thin that some intersections are missed.

6 Examples of NC-milling simulation

Our first implementation was realized for the simulation
needs of a French commercial software, WorkNC, for NC-
milling. The Figures 12, 13 and 14 give experimental results.
For details see annotations therein. The Figure 12 shows
the effect of ray-direction when using a single rayrep or a
3rayrep with the same resolution (7e the number of rays).
The Figure 13 illustrates the effect of the ray-grid resolution
in 3rayreps. The Figure 14 involves a 1.2 meter long part.
All experiments are realized on a PC (Pentium 90 processor
with 32 Megabytes of Memory), which of course restricts the
maximal resolution.

All the shown examples are rendered by flat shading.
However, since we supply normals at vertices, the Phong
shading may be used as well. The tesselation can be ren-
dered from any viewpoint, in real- or interactive-time on
current Graphic Workstations. Moreover, our method also
allows wireframe display by producing planar constant X-,
Y- or Z-contours that are very useful in NC-milling appli-
cations (Figure 14.(c)). In contrast, contours generated by
Y. Huang & J.H. Oliver [HO94] are less accurate than ours
since they use only a single rayrep.

Remark: Actually, the 3rayreps themselves (rather than
Breps) are stored on disk, which allows multi-stage simu-
lation processes: a milled part may be reconstructed from
the saved 3rayrep and then milled with other NC paths and
tools.

7 Interval analysis and 3rayrep quality

What is the quality of the approximation of a given

y
y7
15
- x’
3 b 3
| |
Figure 11: Interval analysis can delimit a curve between

two lines, inside a pizvel.

3rayrep 7 Interval methods may help answer this question,
by providing conservative bounds inside each voxel of the
(virtual) voxmap induced by the 3rayrep.

For simplicity, we discuss only a 20} example. Consider
a pixel x € [zo— %, o + %], y € [yo— %, Yo + %] crossed
by an algebraic curve f(z,y) = 0. We want to get an idea
of the areas of the pixel covered by the regions f > 0 and
f < 0. To fix our ideas, let us consider the example (Figure

7):
f(x,y):y2—x2(x—|—1):0,Ax:Ay:27x0:3,y0:4.

It is convenient to introduce two new variables ' and
y' € [—1,1], then replace = by xo + %x' =344, and y by
Yy =1yo+ %y' =54y, Actually, &',y are the local coordi-
nates within the pixel. Next, we evaluate f(=z,y) inside the
pixel by:

flz,y) fB3+a"5+y")

= G+y)V-B+2)VB+2"+1)
= —11-332" 4+ 10y + (=2" = 102" 4 y*)
flw,y) € —11—133z"+10y +[-11,2]

Thus, —22 — 33z’ + 10y’ < f(z,y) < =9 — 33z’ + 10y.
So, inside the pixel, the curve is located between the two
lines: y' = 3.32" + 0.9 and vy = 3.30" 4+ 2.2. It is then easy
to compute bounds for area of the pixel parts covered by
f(z,y) > 0 and by f(z,y) <0.

This technique resembles the affine interval arithmetic
proposed by L.H. de Figueiredo and J. Stolfi [dFS95], though
they don’t use it to delimit curves (surfaces) between parallel
lines (planes) inside a pixel (voxel). This technique may be
easily extended to 3D and to parametric forms.

8 Improvements, open questions and further works

We are currently implementing a more general prototype
to test more deeply our ideas:

e Updating: when the CSG to raytrace is modified, dur-
ing (say) the design stage, it is better not to redo all the
work from scratch, since a few minutes may be needed. It
is possible to compute a ”background” 3rayrep for the non
modified part of the object, and recompute the 3rayrep for
the modified part only. Merging two 3rayreps with the same
ray-grid is easy and fast. In this way, it is possible to achieve
refreshing rates compatible with interaction, if not real-time.

e Aliasing and undersampling problems: even when am-
biguous voxels are subdivided, a too large initial ray-grid
step may cause the raytracing or the zbuffer method miss
thin or small objects. A solution is to stamp and to force the
subdivision of voxels containing thin or small objects. The
latters may be detected by using conservative bounds like
the S-bounds of Cameron {Cameron:1991:EBC, or interval
analysis [Mit90]. We have not experimented it yet, for we
have not met this problem in our NC-milling application.

o Curves: Wire-like objects are sometimes represented
by curves. Of course, the naive raytracing method will miss
such curves. A solution is to assign them a thickness of (say)
2 pixels. One may find this is cheating, but assigning thick-
ness to streets or rivers in geographical maps is usual: it is
here the same idea. There are no problems with surfaces
representing laminar objects, since the raytracing method
will not miss them. Note J. Bloomenthal and K. Fergu-
son [BF95] have already polygonized non-manifold implicit
surfaces.

e Other kinds of primitives: for instance, as already
pointed out in [MMZ94], rayreps enable the computation
of Minkowski sums, offsets, blends and fillets.

9 Conclusion

We have proposed a very simple framework for robust
free-form solid modelling. Our approach naturally suppresses
the necessity of sophisticated (and often unreliable) meth-
ods for intersecting and classifying complex curves, surfaces
and objects: all the difficulty is handled by raytracing or
zbuffering. This is done without loss of practicalities: since
it is now sufficient to raytrace or zbufferize a primitive, it
becomes easy to handle a new kind of objects in geometric
modellers. Our approach relieves developers of the burden
of surface to surface intersection and robustness-related is-
sues. We believe it significantly helps in repairing the di-
vorce between CSG and Brep models. We are conscious
that our approach is brute-force and simple-minded, when
compared with the most sophisticated ones. However, since
the hardware is in constant improvement, brute-force meth-
ods become viable and take over because of the simplicity
of implementation.

Acknowledgements

We would like to thank the anonymous referees for their
remarks, and the LISSE team (Ecole des Mines de St-Etienne,
France) for helpful discussions.

References
[BF95] J. Bloomenthal and K. Ferguson. Polygoniza-
tion of non-manifold implicit surfaces. In Robert
Cook, editor, SIGGRAPH 95 Conference Pro-
ceedings, Computer Graphics Proceedings, An-
nual Conference Series, pages 309-316. ACM
SIGGRAPH, Addison Wesley, August 1995. held
in Los Angeles, California, 06-11 August 1995.

[Bow95] A. Bowyer. SVLIS - Introduction and User
Manual. Information Geometers Ltd, 47 Stock-
ers Avenue, Winchester, SO22 5L.B, UK, second
edition, 1995.

[Cam91] S. Cameron. Efficient bounds in constructive

solid geometry. [IEFE Computer Graphics and
Applications, 11(3):68-74, May 1991.

[dFS95]

[HO94]

[Hof89]

[HPY96]

[15°95]

[KMO96]

[KMLO5]

[LCST]

[MC91]

[MG96]

[Mito0]

[MMZ94]

[MPS96]

L..H. de Figueiredo and J. Stolfi. Adaptive enu-
meration of implicit surfaces with affine arith-
metic. In Proceedings Eurographics Workshop on
Implicit Surfaces, pages 161-170. INRIA, 1995.

Y. Huang and J.H. Oliver. NC milling error as-
sessment and tool path correction. In Andrew
Glassner, editor, Proceedings of SIGGRAPH ’94
(Orlando, Florida, July 24-29, 1994), Computer
Graphics Proceedings, Annual Conference Se-
ries, pages 287-294. ACM SIGGRAPH, ACM
Press, July 1994. ISBN 0-89791-667-0.

C. M. Hoffmann. Geometric and Solid Modeling:
An Introduction. Morgan Kaufmann, 1989.

C.-Y. Hu, N. Patrikalakis, and X. Ye. Robust
interval solid modelling. part 1: Representations.
part 2: Boundary evaluation. CAD, 28(10):807—
817, 819-830, 1996.

Implicit Surfaces’95. Inria, Grenoble, France,
18-19 avril 1995. Proceedings of Furographics
Workshop.

S. Krishnan and D. Manocha. Efficient repre-
sentations and techniques for computing b-reps
of csg models with nurbs primitives. In Infor-
mation Geometers Ltd, editor, Proceedings of
CSG96, pages 101-122, Winchester, UK, April
1996.

S. Kumar, D. Manocha, and A. Lastra. Interac-
tive display of large-scale NURBS models. In Pat
Hanrahan and Jim Winget, editors, 1995 Sym-
posium on Interactive 3D Graphics, pages 51-58.
ACM SIGGRAPH, April 1995. ISBN 0-89791-
736-7.

W. E. Lorensen and H. E. Cline. Marching
cubes: A high resolution 3D surface construction
algorithm. In Maureen C. Stone, editor, Com-
puter Graphics (SIGGRAPH 87 Proceedings),
volume 21, pages 163-169, July 1987.

D. Manocha and J.F. Canny. A new approach
for surface intersection. International Journal
of Computational Geometry and Applications,
1(4):491-516, 1991. Special Issue on Solid Mod-
elling.

J.P. Menon and B. Guo. A framework for sculp-
tured solids in exact csg representation. In In-
formation Geometers Ltd, editor, Proceedings of
CSG96, pages 141-157, Winchester, UK, April
1996.

Don P. Mitchell. Robust ray intersection with
interval arithmetic. In Proceedings of Graphics
Interface ’90, pages 68-74, May 1990.

J. Menon, R.J. Marisa, and J. Zagajac. More
powerful solid modeling through ray representa-
tions. [EEF Computer Graphics and Applica-
tions, 14(3):22-35, May 1994.

K.T. Miura, A.A. Pasko, and V.V. Savchenko.
Parametric patches and volumes in the func-
tional representation of geometric solids. In In-
formation Geometers Ltd, editor, Proceedings of

[MS93]

[MV95]

[PASS93]

[Pat93]

[Sny92]

[ST91]

[Tau93]

[Tau94]

[TGPY6]

[Van&6]

[WG90a]

[WG90b]

[WMWS6]

CSG96, pages 217-231, Winchester, UK, April
1996.

H. Muller and M. Stark. Adaptive generation of
surfaces in volume data. The Visual Computer,
9(4):182-199, January 1993.

J. Menon and H. Voelcker. On the complete-
ness and conversion of ray representations of
arbitrary solids. In Chris Hoffman and Jarek
Rossignac, editors, Solid Modeling °95, pages
175-186, May 1995.

A. Pasko, V. Adzhiev, A. Sourin, and
V. Savchenko. Function representation in geo-
metric modeling: concepts, implementation and
applications. The Visual Computer, 11(8):429—
446, 1993.

N.M. Patrikalakis. Surface-to-surface intersec-
tions. [EEF Computer Graphics and Applica-
tions, 13(1):89-95, jan 1993.

J.M. Snyder. Interval analysis for computer
graphics. Computer Graphics, 26(2):121-130,
july 1992.

T. Saito and T. Takahashi. NC machining with
G-buffer method. In Thomas W. Sederberg, ed-
itor, Computer Graphics (SIGGRAPH '91 Pro-
ceedings), volume 25, pages 207-216, July 1991.

G. Taubin. An accurate algorithm for rasterizing
algebraic curves. In Second Symposium on Solid
Modeling and Applications, ACM/IEEE, pages
221-230, May 1993.

G. Taubin. Rasterizing algebraic curves and sur-
faces. IFEE Computer Graphics and Applica-
tions, 14(2):14-23, mar 1994.

R.F. Tobler, T.M. Galla, and W. Purgatofer.
Acsgm—-an adaptative csg meshing algorithm. In
Information Geometers Ltd, editor, Proceedings
of CSG96, pages 17-31, Winchester, UK, April
1996.

Tim Van Hook. Real-time shaded NC milling
display. In David C. Evans and Russell J. Athay,
editors, Computer Graphics (SIGGRAPH 86
Proceedings), volume 20, pages 15-20, August
1986.

J. Wilhelms and A. Van Gelder. Octrees for
faster isosurface generation extended abstract.
In Computer Graphics (San Diego Workshop on
Volume Visualization), volume 24, pages 57—62,
November 1990.

J. Wilhelms and A. Van Gelder. Topological con-
siderations in isosurface generation extended ab-
stract. In Computer Graphics (San Diego Work-
shop on Volume Visualization), volume 24, pages
79-86, November 1990.

B. Wyvill, C. McPheeters, and G. Wyvill. Data
structure for soft objects. The Visual Computer,
2(4):227-234, 1986.

Figure 12: The workpiece has size: 109 x 120 x 68 mm, the NC path consists of 21,553 tool movements, and the tool is a
ballend with a radius of 4 mm. (a) shows a single rayrep with a resolution of 163 x 179 Z-rays. The rayrep computation
took about 0.6 mn. (b) shows a 3rayrep with resolution 110 x 121 x 69, which involves approzimately the same number of
rays (29,249). Raytracing took about 1.8 mn. MC algorithm took 6 seconds to build the faceted Brep. (c) shows a wireframe

display of constant-X contours. (d) shows constant-Y contours. Note the poor sampling in regions where the surface is nearly
parallel to 7 axis.

Figure 13: The same part, tool and tool path as in Figure 12. But the 3rayrep has a finer resolution of 146 x 161 x 91, which
involves a total of 51,443 rays. Raytracing took about 4.6 mn. MC algorithm took 11 seconds. (a) shows the NC tool path
generated by WorkNC (21,553 tool movements). (b) shows the tesselated 3rayrep. Note the better aspect of the surface than
in Figure 12.a and 12.b. (¢) shows a zoomed detail of the upper part. (d) shows the milled part from another viewpoint.

Figure 14: The workpiece has size 600 x 1200 x 150 mm. The tool is a ballend of radius 10 mm. (a) shows the NC path with
9,141 tool movements. Due to symmetry, the simulation has been performed only on half the part. (b) shows the Srayrep of
a roughing result, with resolution 301 x 251 x 76. Raytracing took about 3.23 mn. MC algorithm took 36 seconds. The total
number of marching cubes is 5,625,000, only 11% of which are actually crossed by the surface. (c) shows a detail of the upper
left corner in (b) through constant X and Y contours. (d) is a flat shading display of the same detail.

