
Bridging the Gap between CSG and Brepvia a Triple Ray RepresentationM.O. Benouamer and D. Michelucci�Ecole des Mines, F42023 Saint- �Etienne 02micheluc@emse.frAbstractComputing intersections between algebraic surfaces is anessential issue for Brep-based modellers, and a very di�-cult one. The more often, existing methods are not reliable,and reliable ones are hairy. We think there is another andsimple-minded way which avoids this problem without lossof practicalities. The key idea is computing a triple rayrepresentation by zbu�er, raytracing or whatever, and thenusing the popular marching cubes algorithm with some localimprovements.1 The gap between CSG and BrepBreps [Hof89] describe solid objects by their boundary:surface patches, edges and vertices with their connectiv-ity relations. They typically use free-form patches, care-fully sewn together to form the consistent boundary of asolid which is then called a free-form (or sculptured) ob-ject. The high geometric coverage of free-form surfaces andtheir design exibility are very appealing. In the otherhand, Boolean operations on solid objects are an essen-tial practicality for end users. Unfortunately, performingBoolean operations on Breps involve computing the inter-section between algebraic surfaces, which is a very di�culttask. Existing methods are often not reliable, and whenthey are, they are anyway exceedingly complicated: see[Pat93, KM96, HPY96].The CSG model [Hof89] represent solid objects by a treewhose nodes carry Boolean operators and leaves carry alge-braic half-spaces (algebraic inequalities: f(x;y; z) � 0). Incontrast to Breps, the CSG representation does not su�erfrom reliability problems, and the surface to surface intersec-tion problem is not a crucial issue. The raytracing methodpermits to visualize CSG objects and to convert them to rayrepresentations (rayrep for short). The recursive space sub-division method permits to evaluate (ie to voxelize, or tesse-late) them as in the SVLIS modeller [Bow95] or in Taubin'smethod [Tau93]. As long as a CSG modeller does not relyon tesselation, the latter can even be locally inconsistentwithout a�ecting the modeller. Note the divide and con-

quer approach basically relies on the possibility of quicklyand simply classifying a point with respect to an algebraichalf-space (by evaluating and testing the sign of the corre-sponding formula f(x; y; z)). It is then possible to compute,by an interval arithmetic (or some variant), ranges of thefunction f for boxes (a box is a point whose coordinatesare intervals): a box B is classi�ed inside if f(B) < 0 andoutside if f(B) > 0. Otherwise the box is subdivided (into2 or 8 smaller ones, according to implementations). Such aclassi�cation test is not available for free-form objects.Unfortunately CSG does not support the full range offree-form objects. Several attempts have been made to com-bine appeals of CSG and Brep:� Using soft objects is mainly restricted to the Animation�eld for the moment [IS'95].� In the CAD/CAM �eld, J. Menon & B. Guo [MG96]use a restricted set of free-form surfaces, with a low degreeimplicit form (2 or 3): each free-form patch is assigned acompanion tetrahedron which contains the patch, and whosevertices are, in some way, its control points. These tetrahe-dra permit to edit patches in an intuitive and interactiveway. This modeller allows a bilateral CSG/Brep conversion.� A. Pasko & V. Adzhiev & A. Sourin & V. Savchenko[PASS93] describe the interior of all geometric objects: al-gebraic half-spaces, Boolean operations, sweeps, some kindof deformations and blends, free-form volumes (sometimescalled cuboids) [MPS96]..., by a semi-algebraic inequalityf(x; y; z) � 0.None of the previous solutions fully integrate in the CSGmodel all the free-form objects used in Brep-based mod-ellers.� A last approach combines CSG and Brep in that free-form primitives are accepted at leaves of the CSG tree. How-ever, the simplicity of the pure-CSG scheme is lost: thesemodellers face the surface to surface intersection and the ro-bustness problems. Recent works illustrating this tendencyare due to S. Krishnan & D. Manocha [KM96], and to C.-Y. Hu & N. Patrikalakis & X. Ye [HPY96]. No doubt forus that these modellers are masterpieces, tours de force ofgeometric computing. But they are too much complicated.Moreover, they do not cover all the possible cases: sweeps(occurring for instance in NC-milling), blends or Minkowskisums.

Figure 1: Left: Sampling only along one direction missescurve portions. Right: this drawback is removed when sam-pling along two directions, without increasing the number ofrays.2 Bridging the gap between CSG and Brep2.1 The principleTo summarize the CSG/Brep dilemma: either we useCSG-based modellers, but we cannot enjoy free-form prim-itives, or we use Brep-based modellers to enjoy free-formsurfaces and primitives, but we then face the fearful surfaceto surface intersection problem. How to solve this dilemma?The approach we promote is simple-minded, general andeasy to implement. Solid objects are represented by CSGtrees including classical Boolean operators and primitives(algebraic half-spaces), extended to:� objects obtained by sweeping any primitive (actuallyany CSG node or leaf) whose motion is de�ned by somefunction t ! M(t) where t is in [0; 1] and M(t) is any in-vertible 4x4 matrix,� free-form primitives, described by a collection of free-form surface patches, that is guaranteed to form a consistentboundary of a solid object. The (u; v)-parameter domain ofa patch is the simple, initial one: either the square [0; 1]2for tensor product patches, or the triangle: u 2 [0; 1] andv 2 [0; 1 � u]. Trimmed patches could be considered, butthey are not essential in our context: since free-form objectswith trimmed patches are Boolean combinations of free-formobjects with untrimmed patches (ie with simple parameterdomains), it su�ces to keep them under the correspondingCSG form.So we opt for the classical CSG model, but accept free-form primitives and sweeps as possible CSG primitives.Next, we compute three separate orthogonal ray repre-sentations where rays are parallel to X-axis for the �rst,Y -axis for the second, and Z-axis for the third. Such atriple rayrep (3rayrep for short) is precisely what is neededto bridge the gap between CSG and Brep, since it allows sim-ply computing a polyhedral approximation for the boundaryof the CSG solid, via some variant of the popular "marchingcubes" algorithm (MC for short) [LC87].To summarize: sample, then reconstruct.2.2 Single rayrep versus triple rayrepWhile J. Menon & R.J. Marisa & J. Zagajac [MMZ94]and J. Menon & H.B. Voelcker [MV95] promote the use ofa single rayrep, our approach is based on a triple rayrep. Inour implementation of an NC-milling simulation module, wehave �rst used a single rayrep. As result, we met problems

with surface pieces which happen to be parallel or nearlyparallel to rays or with sharp corners lying between rays.In such a case, the �rst solution that comes in mind is toincrease the resolution of the rayrep (ie to decrease the ray-grid step), but we found that a 3rayrep with 3 � n2 raysgives better results than a single rayrep with (dp3en)2 rays.A visual inspection of the produced Brep is our �rst argu-ment. Moreover, to quote [MMZ94]: "The discretization ofthe boundary of the object A is sensitive to the ray direc-tion, since ray intercepts of "on" segments or nearly "on"segments provide a poor sampling of @A...".We think a 3rayrep is much less ray-direction sensitivethan a single rayrep: Given the same total number of rays,ray hits are likely to be better distributed over the surfacein a 3rayrep than in a single one (see Figure 1). Finallythe 3rayrep is more convenient as an input for the MC al-gorithm.2.3 Previous worksThe concept of multiple rayreps is directly inspired andprecursed by J. Menon & R.J. Marisa & J. Zagajac [MMZ94],and by J. Menon & H.B. Voelcker [MV95] who have alreadypointed out the appeals of (enhanced) rayreps. However thelatter paper focuses on the completeness of the rayrep, noton its particular use to bridge the gap between CSG andBreps, nor on that it is a simple way to avoid the robustnessproblems encountered with Boolean operations on Breps. In[MMZ94], the authors suggest in passing (page 29) the useof a multiple rayrep, but they actually use a single rayrepfor evaluating sweeps and Minkowski sums. Though theydo not treat free-form surfaces and primitives (except thosein J. Menon & B. Guo's format [MG96], which have a lowdegree implicit form and are easily raytraced), and do notresort to the zbu�er and MC methods, our work is clearlyin their wake.More recently, R.F. Tobler & T.M. Galla & W. Pur-gatofer [TGP96] have used raytracing and MC methods formeshing CSG trees with implicit surfaces at leaves. How-ever, they do not consider free-form surfaces or primitives,nor sweeps.2.4 Advantages of our approach� The di�cult and unreliable process of surface to sur-face intersection (necessary for direct CSG evaluation) is nolonger needed. It is replaced by easy-to-implement, reliableand classical tools: zbu�er, raytracing, rayrep merging andmarching cubes. We already have all we need.� Actually, any "raytracable" or "zbu�erable" object isan acceptable primitive for our extended CSG model. Forinstance, 3D data images (from Tomography, Scannographyor whatever) may also be accepted as primitives.� For the modeller to support a new kind of primitive, itsu�ces to provide the corresponding routine for zbu�eringor raytracing it (and, if possible, a routine for computinga bounding box). Note if the modeller handles n types ofobjects, only n ray/object intersection routines are needed,instead of the n(n�1)=2 possible object/object intersectionroutines. Thus extensions are easy.� An enhanced rayrep or 3rayrep can even be completeif the sampling is su�cient, as already pointed out by J.Menon & H.B. Voelcker [MV95]: for instance, a polynomialof degree d is completely de�ned by (d + 1) points, anda limited bandwidth signal can be faithfully reconstructed

from regularly spaced samples when the Nyquist conditionis ful�lled.� Since a faceted Brep is generated, it may be viewedfrom any viewpoint, in contrast to T. Van Hook [Van86]who rather generates a viewpoint dependent image.� For well-formed objects, this Brep can even be theexact one (see 4.3) if the sampling is su�cient, and if somelocal re�nements (like those devised in [BF95, TGP96]) areperformed.� Even when completeness is not achieved in a 3rayrep,it is always simple and consistent, in contrast to Breps.� As long as a CSG-based modeller does not rely on theBrep (for example for set-member classi�cation or Booleanoperations), the Brep may even be locally inconsistent: forinstance, we can ignore the popular "ambiguous" cases ofthe MC algorithm, possibly leaving holes in the Brep, ordisplaying ambiguous cubes with some special color to warnthe user. This will not pose any reliability problem: This isin contrast to the fragility of Brep-based modellers, wheresuch casualness will invariably lead to failures!� The 3rayrep may be seen as a virtual voxmap (ie amatrix of voxels) which is more accurate and more compactthan a traditional one.� Finally, hardware implementations of the zbu�er methodare available. On the other hand, research is in progress forimplementing in hardware the raytracing method as well, forinstance the Ray Casting Engine (RCE) handles quadratichalf-spaces [MMZ94]. Thus interactivity and even real-timeshould be achievable in the near future.3 Computing a ray representation3.1 The rayrep data structureFundamentally, a rayrep is a matrix of dexel lists. Eachlist represents the intersection of a given ray with the CSGobject, sorted by increasing depth values. Each dexel stores:the entering hit, the exiting hit, and the material present inthe dexel (possibly none). Storing the materials allows het-erogeneous objects with multiple layers of distinct material.Each hit corresponds to an intersection point between theray and the boundary of some primitive. The hit data struc-ture stores: the depth value (ie the abscissa along the ray ofthe intersection point), a pointer to the intersected surface,and additional �elds like: (u; v)-parameters in case of free-form surfaces, or application dependent informations liketool movement identi�ers needed for NC-milling simulationand veri�cation. These informations are su�cient to recoverthe coordinates of the hit point and its surface normal, whenneeded (one may prefer to explicitly store normals in datastructures).There are of course several ways to implement these datastructures in the computer.The dexel entity was �rst introduced by T. Van Hookfor real-time shaded NC-milling display [Van86]. It is alsoused by T. Saito & T. Takahashi [ST91] in their G-bu�ermethod.3.2 Available methodsTo build a rayrep one can use any of the following meth-ods, and freely combine them according to the nature of thegeometric objects at hand:� Raycasting.� Zbu�er.

� Rayrep merging, to trivially perform Boolean opera-tions on two rayreps with the same ray-grid [MMZ94].� Recursive Space Subdivision [Sny92, Tau94, Bow95]:This method is especially well suited for primitiveswhose interior is expressed by an available implicit for-mulation: f(x;y; z) � 0, and for CSG trees based onsuch primitives.� Marching cubes: Of course this method not only givesa rayrep, but also a faceted Brep! Again, it is moresuited for implicit primitives and induced CSG trees,and for 3D image data.We restrict ourselves to the �rst three methods. Obvi-ously zbu�er is quite imperative for free-form surfaces andprimitives, since it is then an order of magnitude faster thanraytracing. Conversely, raytracing is imperative for objectsknown only by an inequality f(x;y; z) � 0 (say soft objects).On the other hand, some primitives like cubes, quadrics andtorii have both an implicit form and a parametric form, sowe can freely choose.3.3 Combining zbu�er and raytracingTo compute a rayrep, one can use either raytracing orzbu�er. Several combinations may be considered, but thesimplest one resorts to merging two rayreps with the sameray-grid: for each node A op B in the CSG tree, compute therayrep of A: RA, the one of B: RB, then merge RA and RBaccording to the Boolean operator op, in the straightforwardway. Note the computation of RA and RB , when A and Bare CSG primitives, can be performed equally with raytrac-ing or zbu�er. This combining method is very exible, andworks on two active rayreps at a time (when merging RAand RB, RA is updated to account for RB), thus it is notvery space consuming.Remark 1: In NC Milling simulation, only one rayrepneed be maintained, since the CSG tree has here the specialform: (((:::(A� B1) � B2) � B3) : : :) � Bn. In our imple-mentation of a NC-milling simulation module, we actuallystart with the 3rayrep of the initial material block, then iter-atively subtract dexels resulting from successive tool move-ments.Remark 2: When computing a rayrep by raytracing, weneed cast only rays which are in relevant windows of the ray-grid, ie S-bounds de�ned by S. Cameron [Cam91]. Similarly,when using zbu�er, typically for a free-form surface, one caneliminate patches or triangles of the tesselation, that areoutside the relevant boxes. Obviously one cannot eliminateback faces or patches.The whole previous section holds for the computation ofa single rayrep. When computing a 3rayrep, the simplestapproach is to naively use three times the same method.But it is also possible to use the �rst rayrep to speed upthe computation of the two others. Using a rayrep to speedup raytracing is classical [Van86]: the idea is to trace theray from pixel to pixel into the rayrep, testing each objectpresent in the pixel for intersection with the ray, until thehit is met.3.4 Zbu�ering free-form surfaces and primitivesA recent method for zbu�ering free-form surfaces is dueto S. Kumar & D. Manocha & A. Lastra [KML95]. We di�erfrom it in two details: by the fact we cannot eliminate backpatches and triangles, and by the treatment for preventing

Figure 2: Left: tesselating the interior of 4 contiguouspatches. Right: sewing triangles along the shared edges inreal space, and around the shared vertex.cracks between contiguous patches. We have preferred thefollowing simple-minded approach (Figure 2):First, we tesselate each patch independently, keeping athin strip along the boundary of the parameter domain: forinstance, for tensor product patches with domain [0; 1]2, wetesselate (roughly like D. Manocha et al) the part [�; 1� �]2with typically � = 0:005. We proceed similarly for trian-gular patches. Next, we use the non tesselated strip alongedges for sewing triangles between contiguous patches. Wealso generate sewing triangles between corners of contiguouspatches.3.5 Zbu�ering and raytracing sweeps3.5.1 Special casesA special case is when the surface of the sweep is de�nedby an available algebraic equation f(x;y; z; t) = 0, where tis the time variable. The projection onto the (x; y; z)-spaceof this hypersurface obeys: f(x;y; z; t) = @f@t (x; y; z; t) = 0.Using, say, Sylvester's resultant, it is possible to eliminatethe t variable between the two equations, and obtain a ma-trix with polynomials entries in x; y; z, whose determinantnullity de�nes the sweep. Using the matricial form of the re-sultant, instead of symbolically expanding its determinant,is an idea due to D. Manocha & J. Canny [MC91]. By re-placing, for each ray, x; y; z by their values x = x0 + �a,y = y0 + �b, z = z0 + �c, where � (the abscissa along theray) is the unique unknown, we obtain an equation in �, ex-pressed as the nullity of the determinant of a square matrixwith polynomial entries in �. We then proceed as usual,computing an eigen-decomposition of the matrix to �nd �and then x;y; z. Finally, we �nd t by computing the ker-nel of the matrix: t is generally needed to check whether itreally belongs to some interval.If the surface of the moving object is described by someequation f(x; y; z) = f(X) = 0, and the motion by a func-tion: t ! M(t) where t 2 [0; 1] and M(t) is an invertible4 � 4 matrix (typically with polynomial entries in t), thenthe surface of the sweep is de�ned by: f(XM(t)�1) = 0.This equation can be obtained with some symbolic com-putations, yielding an equation similar to the one derivedpreviously. These symbolic computations are a little costlybut they are done only once and for all rays.3.5.2 General caseThere is a brute-force and general method, not relyingon a particular shape of the moving object. This method

can be combined equally with either raytracing or zbu�er.Let A be the moving object, the motion of which isdescribed, like above, by some function: t ! M(t), witht 2 [0; 1]. The main idea is to approximate the sweep by thediscrete union: A(0)[A(�t)[A(2�t) : : :[A(1) where A(t)is the object obtained by applying M(t) to A.For instance, to simulate material removal in multi-axismilling, developers often discretize the sweeps of tools alongNC tool-paths. For each linear tool movement, the sweptvolume is replaced by a certain number of discrete "instancesof motion" to avoid the computational expense of raytracingcomplex swept volumes [HO94]. The discretization step (to-gether with the ray-grid step) is chosen according to somemachining tolerance and other parameters owing to speci�cmilling requirements (like cutter geometry and feed rate).This approach is common in practical NC-milling softwares.It allows real-time and realistic simulation without sacri�c-ing accuracy. The Figure 3 illustrates this approach in 3-axismilling. dr eFigure 3: Computing the discretization step d for tool move-ments: Let r be the tool radius and e a user-de�ned toler-ance for the "undercut" error due to discretization. Con-sidering two consecutive instances of motion yields (d2)2 +(r � e)2 = r2, thus d = 2pe(2r � e) or, equivalently,dr = 2p1� (1� er)2. Now, if c1 and c2 are the initial and�nal locations in the tool movement, the linear sweep betweenc1 and c2 is decomposed into (n+1) evenly spaced tool posi-tions ci = c1+ in (P2 �P1), i = 0; n, so that nd = jjc2� c1jj.Note it is possible to improve the computed hit of theray. If the hit involves A(k�t), then the exact hit is be-tween A((k�1)�t) and A((k+1)�t): resample this interval.When the sweep is also described by an available system ofequations, another improvement is to use the computed hitas an initial guess for some Newton iterations.As already noticed in [MMZ94], when A is lengthy toraytrace, a good solution is to compute, once and for all,a rayrep (or a 3rayrep) for A. Then the rayrep is used tospeed up the intersection between A and any ray {not onlyrays with X-, Y - or Z-direction: see [Van86] and Section3.3.4 From 3rayrep to Brep4.1 The marching cubes algorithmThe MC algorithm was initially designed for surface re-construction from 3D medical data (obtained by ComputerTomography or Magnetic Resonance techniques). Funda-mentally, the space is partitioned into small cubes, each

vertex of which carries the value of a certain scalar �eld(say a temperature or a density). The goal is to constructan isosurface whose points have �eld-values less or equalto a given threshold. Each cube is examined to trace theisosurface by comparing the �eld-values at each pair of ver-tices forming an edge of the cube. If one vertex satis�es thethreshold (such vertex is denoted IN) while the other doesnot (OUT vertex) then clearly the isosurface intersects thecurrent edge (at least once), somewhere between the twovertices. The key assumption in the original MC algorithmis that cubes are small enough so that there is at most oneintersection point on each edge. Moreover, since �eld-valuesare known only at cube vertices, intersection points are usu-ally computed by interpolating vertex �eld-values. Finally,intersection points, in each cube, are connected together toform polygonal faces of the isosurface (Figure 4).The original MC algorithm su�ers from the well known"ambiguous cubes". Such a cube has a face with two IN ver-tices and two OUT vertices, vertices with the same statusbeing on a diagonal of the face. The ambiguity comes fromthere are two distinct ways to connect the four intersectionpoints (Figure 4). To treat this problem, B. Wyvill & C.McPheeters & G. Wyvill [WMW86] examine the average�eld-value at the center of the ambiguous face, while J. Wil-helms & A. Van Gelder [WG90b] use the more sophisticatedGradient Heuristic method.Storage and performance issues are also addressed by us-ing explicit octrees [WG90a], or variable size cubes [MS93].More recently, R.F. Tobler & T.M. Galla & W. Purgatopher[TGP96] combine octrees and raytracing in their adaptativeCSG meshing algorithm, baptized ACSGM. They use nor-mals at vertices to deal with ambiguous voxels.Z XYFigure 4: Left: A possible con�guration for a marching cubeand an associated local triangulation: Bold vertices denote"in" vertices. Middle and Right: two possible ways to con-nect intersection points in an ambiguous face.R.F. Tobler & T.M. Galla & W. Purgatopher [TGP96]use raytracing to get the exact intersection points betweenrays and edges of the marching cubes. However they con-sider only implicit surfaces at leaves of their input CSG trees.Moreover they resort to a recursive subdivision by means ofan octree, whereas we prefer working on a (possibly recur-sive) matrix of pixels. Our choice is motivated by the factthat, anyway, the �rst levels of the octree have generally tobe expanded (especially for NC-milling applications), andthat using arrays permits enjoying the zbu�er method.In the original MC algorithm [LC87] W. Lorensen & H.Cline enumerate 256 possible con�gurations where a surfaceintersects a cube (assuming it intersects each edge at mostonce). This number is reduced to 14 really distinct (amongwhich 6 ambiguous) cases, by considering symmetry. Thus,to triangulate the isosurface, they use a look-up table: an8-bit index (one bit per vertex) is created for each case,

serving as a pointer into an edge-table that gives all the edgesintersected in a given cube con�guration. B. Wyvill & C.McPheeters & G. Wyvill [WMW86] avoid the look-up tableby simply connecting all the intersection points in a cubeto their centroid (even such a triangulation method doesnot work for polygons in general, the authors claim that itworks well for polygons involved in their algorithm). As in[LC87], we have used a look-up table based triangulation inour current implementation.4.2 The MC algorithm in the context of 3rayrepsOur �rst implementation of the MC algorithm is veryclose to the original one, except in the following points:� The 3rayrep permits to examine only the relevant march-ing cubes, ie those that are actually traversed by the isosur-face.� A new kind of ambiguity arises when there are morethan one intersection point along an edge of a marchingcube. This occurs when the resolution is not su�cient, or inpresence of non manifold situations (even they do not appearin machinable objects). Our �rst implementation assumesthis problem does not appear with a reasonable sampling,and we just tag ambiguous cubes to warn the user.� Finally, combining three rayreps rises consistency prob-lems due to numerical errors: see 5.2.4.3 Towards the exact BrepWe plan to obtain the exact Brep by the following ap-proach: Voxels (ie marching cubes) are subdivided untilthey are "small" enough or "simple", by computing a local3rayrep (typically 32 � 32 � 32), the CSG tree being sim-pli�ed to its active part. The active part may be computedin several ways. The �rst and the simplest one restricts theCSG tree to the primitives whose boundary intersects theedges of the voxel. This simpli�cation is fast and the moreoften su�cient, but may sometimes miss thin or small ob-jects. A more conservative method makes use of Cameron'sS-bounds [Cam91] or interval analysis [Mit90].A voxel is "simple" if it contains no boundary, or onlyone surface, or only a single intersection curve and its (typi-cally two) incident surfaces, or only one vertex and its (typ-ically three) incident surfaces. The boundary in a simplevoxel can be approximated by a more accurate triangula-tion, as J. Bloomenthal & K. Ferguson [BF95] or R.F. To-bler & T.M. Galla & W. Purgatofer [TGP96] already did.Concerning the "small" residual voxels, which contain sin-gularities (where the jacobian matrix has not full rank) ornear-singularities, we may simply opt for a reasonable trian-gulation (for instance the averaging method in [WMW86]),or just tag them to warn the user.When there are no such residual voxels (it is the casewhen the object has no detail smaller than the size of a min-imal voxel), or when they are small enough to be assimilatedto vertices, we may argue we have actually got the "exact"Brep, at least topologically, since we can recover intersec-tion curves between surfaces, maximum pieces of surfaces(ie trimmed patches of free-form surfaces, and pieces of im-plicit surfaces), and all their connectivity relations: this isnothing else than the exact Brep.5 About inconsistenciesOur approach is simple and robust. To be honest, wenow detail the remaining possible sources of inconsistency:

we show how to solve them, or that they have immaterialconsequences.5.1 Passing through two contiguous trianglesRBAFigure 5: The hit point R is very close to edge AB. Due toinaccuracy and ill luck, R may be found at the left of AB,and at the left of BA too. Conversely R may be found at theright of both AB and BA.Preventing cracks has already been addressed in Section3.4. But another classical misfortune (we were "unlucky"enough to meet) may happen. Due to numerical oating-point inaccuracy, computing whether a point P lies on theleft or on the right side of an oriented edge AB may contra-dict the result of classifying P with respect to BA (Figure 5):a ray R, very close to an edge AB, can either miss the twoincident triangles or hit both. A similar problem is possiblewith the zbu�er method. A well known solution is to alwaysconsider the same oriented edge in the two incident triangles(ie do not use edge AB in the �rst triangle and edge BAin the second!), for instance sort endpoints in lexicographicorder of their coordinates.5.2 Inconsistencies in 3rayreps
Figure 6: Left: the circled vertex is found OUT for the X-ray, but IN for the Y -ray. Right: a local perturbation elimi-nates the inconsistency (exaggerated in the Figure).Combining three rayreps inevitably rises another kind ofinconsistency, due exclusively to numerical errors. In our3rayrep, the marching cubes have their vertices (implicitly)de�ned as the intersection of three rays with distinct di-rections (X;Y; Z). Thus, when classifying the vertices (todetermine their IN or OUT status with respect to a givenmaterial) it may happen that the same vertex is found INwith respect to some X-ray, while it is found to be OUTwith respect to some Y - and/or Z-ray(s) (Figure 6). Toensure consistency, our solution is brute-force and simple:it consists in a preprocessing step which eliminates possi-ble ambiguous vertices all at once. Each time an ambiguousvertex is detected, the dexels immediately around the vertex

(at most six, two from each direction) are slightly shortenedor lengthened so that the vertex becomes consistent, possi-bly merging some dexels to preserve consistency in the dexellists.Note we have not met this inconsistency yet, but we men-tion it for the sake of completeness. Anyway the solution isshort and easy.5.3 Inconsistencies with implicit primitives
Figure 7: Numerically indiscernible cases, with an odd num-ber of roots.Raytracing implicit primitives boils down to solving apolynomial equation f(t) = 0, t being the abscissa along theray. We recursively solve f 0(t) = 0, stopping the recursionwhen reaching degree 1 or 2. In each interval de�ned bysuccessive roots of f 0, f has at most one root which may belocalized by dichotomy and then made more precise by someNewton iterations.It is essential to avoid miscalculating the parity (evenor odd) of the number of ray/surface intersections, which isachieved by our method. Apart this, confusions between two"odd" cases (Figure 7), or confusions between two "even"cases (Figure 8) are inevitable in some cases. Note that aninterval arithmetic will detect the indetermination, contrar-ily to the blind oating-point arithmetic, but anyway it willnot be able to solve it (Figure 9).Figure 8: Numerically indiscernible cases, with an evennumber of roots.These confusions have immaterial consequences: they oc-cur when the ray is tangent or almost tangent to the surface.Their sole e�ect is to slightly and locally move the outlineof the object.Another error occurs when raytracing exceedingly thinprimitives (like the two ellipsoids of the Figure 10). For in-stance a very thin ellipsoid will be sometimes missed by theray, sometimes not, apparently at random. Note the mod-eller does not crash, and that, again, this problem will occureven with an interval arithmetic: the latter will detect theindetermination (contrarily to the oating-point arithmetic)but will not be able to solve it (Figure 9). Actually, thisproblem is irrelevant, since such objects are rather modelledby laminar ones (here disks instead of ellipsoids).

Figure 9: Interval arithmetic detects that this intervalquadratic polynomial may have 0 or 2 single roots, or a dou-ble root, but gives no way to decide.
Figure 10: Two raytraced ellipsoids, with radius 1, and thick-ness 10�5 for the left one, 10�7 for the right one. The latteris so thin that some intersections are missed.6 Examples of NC-milling simulationOur �rst implementation was realized for the simulationneeds of a French commercial software, WorkNC, for NC-milling. The Figures 12, 13 and 14 give experimental results.For details see annotations therein. The Figure 12 showsthe e�ect of ray-direction when using a single rayrep or a3rayrep with the same resolution (ie the number of rays).The Figure 13 illustrates the e�ect of the ray-grid resolutionin 3rayreps. The Figure 14 involves a 1:2 meter long part.All experiments are realized on a PC (Pentium 90 processorwith 32 Megabytes of Memory), which of course restricts themaximal resolution.All the shown examples are rendered by at shading.However, since we supply normals at vertices, the Phongshading may be used as well. The tesselation can be ren-dered from any viewpoint, in real- or interactive-time oncurrent Graphic Workstations. Moreover, our method alsoallows wireframe display by producing planar constant X-,Y - or Z-contours that are very useful in NC-milling appli-cations (Figure 14.(c)). In contrast, contours generated byY. Huang & J.H. Oliver [HO94] are less accurate than ourssince they use only a single rayrep.Remark: Actually, the 3rayreps themselves (rather thanBreps) are stored on disk, which allows multi-stage simu-lation processes: a milled part may be reconstructed fromthe saved 3rayrep and then milled with other NC paths andtools.7 Interval analysis and 3rayrep qualityWhat is the quality of the approximation of a given

5 3 xy x'y'5 3Figure 11: Interval analysis can delimit a curve betweentwo lines, inside a pixel.3rayrep ? Interval methods may help answer this question,by providing conservative bounds inside each voxel of the(virtual) voxmap induced by the 3rayrep.For simplicity, we discuss only a 2D example. Considera pixel x 2 [x0� �x2 ; x0+ �x2], y 2 [y0� �y2 ; y0+ �y2] crossedby an algebraic curve f(x; y) = 0. We want to get an ideaof the areas of the pixel covered by the regions f � 0 andf � 0. To �x our ideas, let us consider the example (Figure7):f(x; y) = y2�x2(x+1) = 0 , �x = �y = 2 , x0 = 3 , y0 = 4 .It is convenient to introduce two new variables x0 andy0 2 [�1; 1], then replace x by x0 + �x2 x0 = 3+ x0, and y byy = y0 + �y2 y0 = 5+ y0. Actually, x0; y0 are the local coordi-nates within the pixel. Next, we evaluate f(x;y) inside thepixel by:f(x; y) = f(3 + x0; 5 + y0)= (5 + y0)2 � (3 + x0)2(3 + x0 + 1)= �11� 33x0 + 10y0 + (�x03 � 10x02 + y02)f(x; y) 2 �11� 33x0 + 10y0 + [�11; 2]Thus, �22 � 33x0 + 10y0 � f(x; y) � �9 � 33x0 + 10y0.So, inside the pixel, the curve is located between the twolines: y0 = 3:3x0 + 0:9 and y0 = 3:3x0 + 2:2. It is then easyto compute bounds for area of the pixel parts covered byf(x; y) � 0 and by f(x;y) � 0.This technique resembles the a�ne interval arithmeticproposed by L.H. de Figueiredo and J. Stol� [dFS95], thoughthey don't use it to delimit curves (surfaces) between parallellines (planes) inside a pixel (voxel). This technique may beeasily extended to 3D and to parametric forms.8 Improvements, open questions and further worksWe are currently implementing a more general prototypeto test more deeply our ideas:� Updating: when the CSG to raytrace is modi�ed, dur-ing (say) the design stage, it is better not to redo all thework from scratch, since a few minutes may be needed. Itis possible to compute a "background" 3rayrep for the nonmodi�ed part of the object, and recompute the 3rayrep forthe modi�ed part only. Merging two 3rayreps with the sameray-grid is easy and fast. In this way, it is possible to achieverefreshing rates compatible with interaction, if not real-time.

� Aliasing and undersampling problems: even when am-biguous voxels are subdivided, a too large initial ray-gridstep may cause the raytracing or the zbu�er method missthin or small objects. A solution is to stamp and to force thesubdivision of voxels containing thin or small objects. Thelatters may be detected by using conservative bounds likethe S-bounds of Cameron fCameron:1991:EBC, or intervalanalysis [Mit90]. We have not experimented it yet, for wehave not met this problem in our NC-milling application.� Curves: Wire-like objects are sometimes representedby curves. Of course, the naive raytracing method will misssuch curves. A solution is to assign them a thickness of (say)2 pixels. One may �nd this is cheating, but assigning thick-ness to streets or rivers in geographical maps is usual: it ishere the same idea. There are no problems with surfacesrepresenting laminar objects, since the raytracing methodwill not miss them. Note J. Bloomenthal and K. Fergu-son [BF95] have already polygonized non-manifold implicitsurfaces.� Other kinds of primitives: for instance, as alreadypointed out in [MMZ94], rayreps enable the computationof Minkowski sums, o�sets, blends and �llets.9 ConclusionWe have proposed a very simple framework for robustfree-form solid modelling. Our approach naturally suppressesthe necessity of sophisticated (and often unreliable) meth-ods for intersecting and classifying complex curves, surfacesand objects: all the di�culty is handled by raytracing orzbu�ering. This is done without loss of practicalities: sinceit is now su�cient to raytrace or zbu�erize a primitive, itbecomes easy to handle a new kind of objects in geometricmodellers. Our approach relieves developers of the burdenof surface to surface intersection and robustness-related is-sues. We believe it signi�cantly helps in repairing the di-vorce between CSG and Brep models. We are consciousthat our approach is brute-force and simple-minded, whencompared with the most sophisticated ones. However, sincethe hardware is in constant improvement, brute-force meth-ods become viable and take over because of the simplicityof implementation.AcknowledgementsWe would like to thank the anonymous referees for theirremarks, and the LISSE team (�Ecole des Mines de St-�Etienne,France) for helpful discussions.References[BF95] J. Bloomenthal and K. Ferguson. Polygoniza-tion of non-manifold implicit surfaces. In RobertCook, editor, SIGGRAPH 95 Conference Pro-ceedings, Computer Graphics Proceedings, An-nual Conference Series, pages 309{316. ACMSIGGRAPH, Addison Wesley, August 1995. heldin Los Angeles, California, 06-11 August 1995.[Bow95] A. Bowyer. SVLIS { Introduction and UserManual. Information Geometers Ltd, 47 Stock-ers Avenue, Winchester, SO22 5LB, UK, secondedition, 1995.[Cam91] S. Cameron. E�cient bounds in constructivesolid geometry. IEEE Computer Graphics andApplications, 11(3):68{74, May 1991.

[dFS95] L.H. de Figueiredo and J. Stol�. Adaptive enu-meration of implicit surfaces with a�ne arith-metic. In Proceedings EurographicsWorkshop onImplicit Surfaces, pages 161{170. INRIA, 1995.[HO94] Y. Huang and J.H. Oliver. NC milling error as-sessment and tool path correction. In AndrewGlassner, editor, Proceedings of SIGGRAPH '94(Orlando, Florida, July 24{29, 1994), ComputerGraphics Proceedings, Annual Conference Se-ries, pages 287{294. ACM SIGGRAPH, ACMPress, July 1994. ISBN 0-89791-667-0.[Hof89] C. M. Ho�mann. Geometric and Solid Modeling:An Introduction. Morgan Kaufmann, 1989.[HPY96] C.-Y. Hu, N. Patrikalakis, and X. Ye. Robustinterval solid modelling. part 1: Representations.part 2: Boundary evaluation. CAD, 28(10):807{817, 819{830, 1996.[IS'95] Implicit Surfaces'95. Inria, Grenoble, France,18-19 avril 1995. Proceedings of EurographicsWorkshop.[KM96] S. Krishnan and D. Manocha. E�cient repre-sentations and techniques for computing b-repsof csg models with nurbs primitives. In Infor-mation Geometers Ltd, editor, Proceedings ofCSG96, pages 101{122, Winchester, UK, April1996.[KML95] S. Kumar, D. Manocha, and A. Lastra. Interac-tive display of large-scale NURBS models. In PatHanrahan and Jim Winget, editors, 1995 Sym-posium on Interactive 3D Graphics, pages 51{58.ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7.[LC87] W. E. Lorensen and H. E. Cline. Marchingcubes: A high resolution 3D surface constructionalgorithm. In Maureen C. Stone, editor, Com-puter Graphics (SIGGRAPH '87 Proceedings),volume 21, pages 163{169, July 1987.[MC91] D. Manocha and J.F. Canny. A new approachfor surface intersection. International Journalof Computational Geometry and Applications,1(4):491{516, 1991. Special Issue on Solid Mod-elling.[MG96] J.P. Menon and B. Guo. A framework for sculp-tured solids in exact csg representation. In In-formation Geometers Ltd, editor, Proceedings ofCSG96, pages 141{157, Winchester, UK, April1996.[Mit90] Don P. Mitchell. Robust ray intersection withinterval arithmetic. In Proceedings of GraphicsInterface '90, pages 68{74, May 1990.[MMZ94] J. Menon, R.J. Marisa, and J. Zagajac. Morepowerful solid modeling through ray representa-tions. IEEE Computer Graphics and Applica-tions, 14(3):22{35, May 1994.[MPS96] K.T. Miura, A.A. Pasko, and V.V. Savchenko.Parametric patches and volumes in the func-tional representation of geometric solids. In In-formation Geometers Ltd, editor, Proceedings of

CSG96, pages 217{231, Winchester, UK, April1996.[MS93] H. Muller and M. Stark. Adaptive generation ofsurfaces in volume data. The Visual Computer,9(4):182{199, January 1993.[MV95] J. Menon and H. Voelcker. On the complete-ness and conversion of ray representations ofarbitrary solids. In Chris Ho�man and JarekRossignac, editors, Solid Modeling '95, pages175{186, May 1995.[PASS93] A. Pasko, V. Adzhiev, A. Sourin, andV. Savchenko. Function representation in geo-metric modeling: concepts, implementation andapplications. The Visual Computer, 11(8):429{446, 1993.[Pat93] N.M. Patrikalakis. Surface-to-surface intersec-tions. IEEE Computer Graphics and Applica-tions, 13(1):89{95, jan 1993.[Sny92] J.M. Snyder. Interval analysis for computergraphics. Computer Graphics, 26(2):121{130,july 1992.[ST91] T. Saito and T. Takahashi. NC machining withG-bu�er method. In Thomas W. Sederberg, ed-itor, Computer Graphics (SIGGRAPH '91 Pro-ceedings), volume 25, pages 207{216, July 1991.[Tau93] G. Taubin. An accurate algorithm for rasterizingalgebraic curves. In Second Symposium on SolidModeling and Applications, ACM/IEEE, pages221{230, May 1993.[Tau94] G. Taubin. Rasterizing algebraic curves and sur-faces. IEEE Computer Graphics and Applica-tions, 14(2):14{23, mar 1994.[TGP96] R.F. Tobler, T.M. Galla, and W. Purgatofer.Acsgm{an adaptative csg meshing algorithm. InInformation Geometers Ltd, editor, Proceedingsof CSG96, pages 17{31, Winchester, UK, April1996.[Van86] Tim Van Hook. Real-time shaded NC millingdisplay. In David C. Evans and Russell J. Athay,editors, Computer Graphics (SIGGRAPH '86Proceedings), volume 20, pages 15{20, August1986.[WG90a] J. Wilhelms and A. Van Gelder. Octrees forfaster isosurface generation extended abstract.In Computer Graphics (San Diego Workshop onVolume Visualization), volume 24, pages 57{62,November 1990.[WG90b] J.Wilhelms and A. Van Gelder. Topological con-siderations in isosurface generation extended ab-stract. In Computer Graphics (San Diego Work-shop on Volume Visualization), volume 24, pages79{86, November 1990.[WMW86] B. Wyvill, C. McPheeters, and G. Wyvill. Datastructure for soft objects. The Visual Computer,2(4):227{234, 1986.

a b

c d
XYZ

Figure 12: The workpiece has size: 109 � 120 � 68 mm, the NC path consists of 21; 553 tool movements, and the tool is aballend with a radius of 4 mm. (a) shows a single rayrep with a resolution of 163 � 179 Z-rays. The rayrep computationtook about 0.6 mn. (b) shows a 3rayrep with resolution 110 � 121 � 69, which involves approximately the same number ofrays (29,249). Raytracing took about 1.8 mn. MC algorithm took 6 seconds to build the faceted Brep. (c) shows a wireframedisplay of constant-X contours. (d) shows constant-Y contours. Note the poor sampling in regions where the surface is nearlyparallel to Z axis.

a b

c d
XYZ

Figure 13: The same part, tool and tool path as in Figure 12. But the 3rayrep has a �ner resolution of 146� 161� 91, whichinvolves a total of 51; 443 rays. Raytracing took about 4:6 mn. MC algorithm took 11 seconds. (a) shows the NC tool pathgenerated by WorkNC (21; 553 tool movements). (b) shows the tesselated 3rayrep. Note the better aspect of the surface thanin Figure 12.a and 12.b. (c) shows a zoomed detail of the upper part. (d) shows the milled part from another viewpoint.

a b

c d

ZYX

Figure 14: The workpiece has size 600� 1200� 150 mm. The tool is a ballend of radius 10 mm. (a) shows the NC path with9; 141 tool movements. Due to symmetry, the simulation has been performed only on half the part. (b) shows the 3rayrep ofa roughing result, with resolution 301� 251 � 76. Raytracing took about 3:23 mn. MC algorithm took 36 seconds. The totalnumber of marching cubes is 5; 625; 000, only 11% of which are actually crossed by the surface. (c) shows a detail of the upperleft corner in (b) through constant X and Y contours. (d) is a at shading display of the same detail.

