An Introduction to the Robustness Issue

D. Michelucci

Ecole Nationale Supérieure des Mines de Saint-Etienne
158 Cours Fauriel, 42023 Saint-Etienne cedex 02, France
micheluc@emse.fr

Abstract

Rounding of floating point arithmetic causes
failures or inconsistencies in geometric com-
putations. For Computational Geometry, the
only solution seems to be Fract Computing.
CADCAM and Computer Graphics have

mvestigated several approzimate approachs.

Keywords: Robustness, Inaccuracy, Interval,
Fuzzyness, Exactness, ¢ Heuristic, Lazyness.

1 The problem

Due to inaccuracy of floating point arithmetic,
geometric algorithms can enter in infinite
loops, take inconsistent decisions and crash,
or produce inconsistent topologies which will
confuse other methods [34, 11]. This lack of
robustness especially occurs with the most so-
phisticated methods, typically from Computa-
tional Geometry in opposition to brute force
ones, like ray casting; and with the most so-
phisticated data structures, typically BReps in
opposition to voxel arrays or CSG trees. It
1s due to the fact that sophisticated methods
propagate intermediate results (like a < b and
b < ¢ = a < ¢) which are sometimes wrong
due to inaccuracy; sophisticated data struc-
tures like BReps must fullfill integrity con-
straints (eg to be a planar graph), but are
built step by step as a succession of geomet-
ric decisions, sometimes wrong due to inaccu-
racy. Even when Euler operators are used to
ensure topological consistency, it is not enough
to guarantee the consistency between answers
to topological and geometric queries (does this
intersection vertex geometrically lie on the sur-
face it is topologically supposed to ?) and be-
tween geometric queries: for instance if points

Py, Ps, Ps are aligned, and P, P4, Ps too, then
pOiIltS P1P20P4P5, P2P30P5P6, P3P40P6P1
must also be collinear (Pappus’ Theorem): it
1s unlikely that this kind of property can be
encoded in the data structure itself, and float-
ing point arithmetic precludes its verification,
since 1t already precludes verification of trivial

1dentities like (\/5)2 =2ora+b—a=0.

Figure 1: The two generic configurations.

To give a simple example of inconsistency,
consider the three lines of Fig. 1. h is nearly
horizontal, m climbs up and has slope about
45 degrees, d goes down and has slope about
—45 degrees. Let the three intersection points
be i/ =dnm, m' =dnh,d = mnh. Exclud-
ing the degenerate case for simplicity, there are
two possible configurations, and in both i’ ab-
scissa 1s between d’ and m' ones. With a small
enough triangle, coordinates will differ only by
their least significant bits corrupted by round-
ing; so fp arithmetic will sometimes produce
non consistent triangles impossible to draw.

For a long time, programmers have hoped
that some heuristics would be sufficient (sec-
tion 2) against inaccuracy. Today Computa-
tional Geometers think that the only way to
save CG methods from inaccuracy ravages is
Exact Computation [6, 34] (section 3). Ex-
act computation i1s not realistic in Computer
Graphics and CADCAM; people prefer to ac-
count for inaccuracy at the modelling stage
(section 4.1), or to use more reliable methods

and data structures: it is the ”Approximate
Computation Paradigm” (section 4).

2 Heuristics

2.1 The ¢ trick

The most popular and the oldest trick is the ¢
heuristic, which declare equal numbers the rel-
ative difference of which is smaller than a pre-
scribed threshold classically called €. In prac-
tice, this trick works not so bad with the active
understanding of users. But the fine tuning of
€ is a never ending process since it introduces
new inconsistencies; for instance equality tran-
sitivity is lost since one may find a, b, c such
that ¢ = b,b =, ¢, but @ #. ¢, where =,
stands equal up to e.

2.2 Careful programming

Some computer scientists prefer to avoid the
€ heuristic and have settled a set of tricks:
— Check first in the data structures before
computing; for instance, before computing the
power of a vertex relatively to some line (sur-
face), verify first if the line (the surface) is
topologically incident to the vertex from the
involved data structures.
— Handle in a special way some particular
cases, for instance the intersection point be-
tween a vertical line and an oblique one. In
this case, assign the abscissa with the abscissa
of the vertical line, not with the expression
Az/A. Idem for special planes or surfaces.
— Never use several (algebraically equivalent)
formulas for the same value, since floating
point arithmetic would yield different results.
— The computation of abNed, abNde, baNed,
baNde (they are, for instance, segments in 2D)
generally give slightly different results. Before
computing an intersection, it is worth system-
atically orienting segments, so that a < b
and ¢ <p d and so on, by exchanging vertices
in order to ensure: abNed = abNde = baNed =
ba Nde.
— Use numerical input data rather than derived
(thus corrupted) numerical data.
— Prefer non redundant data structures, to
limit the probability of contradictions.
Quoting C. Hoffmann [11]: ” Conceptually
we view these heuristics as attempts to re-

1a<Lb<:>a$<bmora$:bmanday<by.

duce the logical interdependence of decisions
that are based on numerical computations.”
M. Iri and K. Sugihara [14] have used this
kind of approach for computing Voronoi’s di-
agrams. They ensure that their program will
never crash because of inaccuracy, that the re-
sulting graph is correct when there is no nu-
merical difficulty, and otherwise that the graph
is connected with all vertices having degree
3, like a correct Voronoi’s diagram. It is im-
pressive. However remains a great problem:
there is strictly no guaranty that another pro-
gram, mathematically correct, and using this
Voronoi’s diagram as an input, will not crash.

These stratagems show wits, but they can
only avoid the most obvious inconsistencies.
Avoiding more convoluted ones (for instance
the non respect of Pappus’s theorem) and
avoiding contradictions between several pieces
of software written by different programmers
using different conventions, notations and for-
mulas, is an impossible task.

3 Exact computation

Exact Computation seems the only way for
classical CG methods to work [6, 34]. Often, it
only needs an exact rational arithmetic, some-
times the square root, and rarely a general ex-
act algebraic arithmetic. Even when a rational
arithmetic is sufficient, naively using a ratio-
nal package is too slow, and people use filters,
presented in 3.1 and 3.2. When rational arith-
metics are not enough, CGers typically use gap
arithmetics (see 3.3), rather than others solu-
tions from Symbolic Algebraic Computation
(Ds, Grobner bases, resultants).

3.1 The LN library

The LN package of S. Fortune and C. van Wyk
[9] proceed in two steps: First the program is
pre-compiled and the minimum number of dig-
its needed for the exact arithmetic (the longest
integer generated by the algorithm, knowing
the data range and the arithmetic expressions
in the program) is determined. For each test
in the program, C++ code is automatically
generated: to compute the test in standard
fp arithmetic, using references to original data
only; to test if fp value is greater than the max-
imum possible error for the expression; finally,
to call the exact, long integer library to evalu-

ate the expression when the sign of the fp value
is not reliable.

Second, the program is then compiled and
linked with the exact library. Note that every
test must be made with reference to original
data. This permits a static (ie before running
time) computation of the maximum possible
error for each expression when evaluated in fp
arithmetic; so the error bound has not to be
computed at run time with intervals or what-
ever method. It speeds up execution, in a re-
markable way, but it is not always very conve-
nient for the user [4]; it forbids on-line and
reentrant algorithms, in which computation
depth is not a priori known, and it causes a
proliferation of types: for instance input points
and intersection points cannot be of the same
type; this proliferation is a programmer’s bur-
den, and sometimes a compiler’s one.

3.2 Lazy arithmetic

The lazy arithmetic computes with lazy ratio-
nal numbers. A lazy rational number is first
represented by an interval of two fp numbers,
guaranteed to bracket the rational number, be
it known (exactly evaluated) or not; and then
by a symbolic definition, to recover the ex-
act value of the underlying rational number,
if need be. The definition is either a standard
representation of a rational number (for exam-
ple 2 arrays or lists of digits in some basis, for
numerator and denominator), or the sum or
the product of two other lazy numbers, or the
reciprocal or opposite of another lazy number.
Thus each lazy number is the root of a tree,
whose nodes are binary (sum or product) or
unary (opposite or reciprocal) operators, and
whose leaves are usual rational numbers; ac-
tually, lazy numbers form a directed acyclic
graph rather than a tree, since any node or leaf
may be shared. Each operation is generally
performed in constant time and space: a new
cell 1s allocated for the number, its interval is
computed from the intervals of the operand(s),
and the definition field is filled (operation type,
and pointers to the operand(s)). Intervals are
more often than not sufficient during compu-
tations; the only cases in which they become
insufficient and thus the definition has to be
“evaluated” (ie with rational arithmetic) are:
when one wants to compare two lazy numbers
the intervals of which overlap, when one wants
a lazy number sign or reciprocal the interval

of which contains 0. A possible evaluation
method is the natural and recursive one. Us-
ing such a lazy library is transparent: classical
geometric methods need not to be modified.
The lazy library also provides hashing of lazy
numbers, using modular arithmetic [22].

The lazy version of a boolean solver between
polyhedra is 10 or 15 times slower than the
pure floating point version (when the latter
succeeds) and 100 or 1000 times faster than
the pure rational version.

Contrarily to LN, the lazy library is fully
dynamic and so equally applies to on-line and
reentrant algorithms: the computation depth
needs not to be known a prior:. In compensa-
tion, LN when usable should be (2 or 3 times)
faster than the lazy library.

3.3 Gap arithmetic

The € trick i1s based on a correct mathemati-
cal intuition which has given rise to gap arith-
metics. The latters are exact arithmetics
which exploit gap theorems, like Canny’s one:
Let x1, ®9...x, be the solutions of an alge-
braic system of n equations and n unknowns,
having a finite number of solutions, with maz-
wmal total degree d, with relative integer co-
efficients smaller or equal to M wn absolute
value. Then, for alli € [1,n], either ; = 0 or
|| > €. where

1
(3Md)nd"

€ =

This theorem gives a way to prove nu-
merically that a number is zero: compute a
(guaranteed) interval containing it, with range
smaller than ¢.. As soon as the interval does
not contain 0, the number is clearly not 0 and
its sign is known. Otherwise, if the interval
contains 0 and has range less than ., the num-
ber can only be 0. See [18] for other gap the-
orems or references. Note that gap thresholds
are much smaller than the ones used in the
€ heuristic, and that some bigfloat library is
needed.

3.4 Exact algebraic arithmetic

Recently in CADCAM field, D. Manocha and
some of his students [17] used an exact al-
gebraic arithmetic to reliably compute inter-
sections between algebraic parameterized sur-
faces of low degree (2-4: eg quadrics and torii).

They use Dixon’s resultants for Elimination,
with Milne’s multivariate Sturm’s sequences in
order to locate roots. A number of improve-
ments is needed to speed up this approach:
for instance modular arithmetic speeds up the
calculation of resultant coefficients, and inter-
vals with rational endpoints that isolate roots
are computed as lazily as possible. For the
moment, it 1s doubtful that extensions to im-
plicit surfaces and to higher standard degrees
are possible, due to the intrinsic exponential
cost of the involved symbolic computations.
Other exact algebraic arithmetic use Grob-
ner’s bases [11], Ds ideas [7, 10], resultants
[32]. See [21] for a real quadratic arithmetic.

3.5 Pros and cons

Good reasons to use exact computations are:
when usable (roughly, when an exact rational
arithmetic is sufficient), it really solves the ro-
bustness problem, at the arithmetical level, ie
classical CG methods do not need to be mod-
ified. It is even possible to remove degenera-
cies (another burden for the programmer) at
this arithmetic level, with symbolic, infinitely
small, perturbation. It opens interesting new
problems, like exactly computing signs of de-
terminants [3].

AR E(A) F(B) B(E)

DH

Figure 2: Place 9 points A, B...I so that
only the following subsets (and all couples) are
collinear: ABEF, ADG, AHI, BCH, BGI,
CFI, DEI, DFH. This configuration is not
realizable in Q°; it is in Q[v/5]2.

However, maybe the true reason is: it post-
pones heartbreaking reappraisals. Exact com-
putations have serious limitations: algebraic
arithmetics are very slow, relatively to fp ones,
but intersection between curved lines or sur-
faces, or just rotations, introduce irrational
numbers; moreover some configurations (Fig.

2, from [11]) need algebraic numbers to be ex-
actly represented; last, incremental modifica-
tions of shapes, or on-line creations (use this
intersection point between two circles as the
centre of a new circle) increase algebraic de-
grees; geometric rounding becomes sooner or
latter unavoidable to break the exponential de-
gree growth, and also to communicate with
the outside fp world. But rounding polygons
and polyhedra without introducing self inter-
sections is NP-complete [23]; Fortune’s solu-
tion [8] is to accept self-intersecting polyhedra.
Admittedly, but it means classical CG meth-
ods cannot be used. ..

4 Approximate approachs

CADCAM and Computer Graphics have tried
several approximate approachs, I will mention:
fuzzy boundaries in section 4.1, CSG, interval
analysis and recursive space subdivision in sec-
tion 4.2, CSG and marching methods in 4.3,
ray tracing and ray representations in 4.4, dis-
cretization in section 4.5.

4.1 Fuzzy boundaries

The € heuristic loses the order transitivity (it
is possible to have a =, b, b =, ¢ and a #. ¢),
so inconsistencies remain possible. In such a
case, a solution is to give up the distinction
between @, b and ¢, and to merge them into
another larger entity, actually an interval. The
example in Fig. 1 will become something like
in Fig. 3.

This approach has been investigated in solid
modelling by M. Segal [27], by D. Jackson [15],
by Patrikalakis’s team [13]. In 3D, geometric
elements (vertices, edges or arcs, surfaces) are

Figure 3: Three lines with thewr halos, incident
to a fuzzy point (the circle).

surrounded by a thin halo of imprecision; two
distinct and not adjacent elements must not
have overlapping halos. During (typically) the
computation of some boolean set operation,
two elements the halos of which overlap must
be cut or merged to restore the data structure
consistency.

One can notice that two close but non over-
lapping entities have to be merged when a
third entity that overlaps both former ones is
introduced. One can deplore this information
loss (the distinction between the first two en-
tities has been lost though they are not mod-
ified), and fear that existing geometric algo-
rithms will not spontaneously withstand such
a non monotonic logic. But this is the spirit
of this approach.

The main advantages of this approach are
that it applies not only to ”linear” problems
but also to algebraic ones, and that it does
not rely on an exact arithmetic; so it is fast.
Moreover, it is intuitive. Finally, it can handle
inaccurate data from sensors, and machining
tolerances, in a natural way: up to now, this
1s the only approach that can represent fuzzy
data.

When we want to know if the halos of
two geometric entities overlap, their distance
can be computed in several but algebraically
equivalent ways; with a first formula, one may
find that the elements do not overlap, but
they will with another formula. Thus it 1is
not clear for the moment that this approach
1s completely free of contradictions and that it
definitively solves the robustness problem. Pa-
trikalakis et al [13] do not claim that it does:
7 Wath the wnterval representations of objects,
topological violations due to numerical pertur-
bation of fp arithmetic can often be avoided.”
Not always? The non monotonicity of these
methods does not facilitate their proof and
study, too.

4.2 CSG, interval, subdivision

Interval Analysis [16] can compute conserva-
tive (and rather accurate [13, 24]) bounds for
a function range on an interval. When the in-
terval for f(B) where B = [xg, 1] X [0, 11] X
[20, #1] does not contain 0, one knows whether
the box B is inside or outside the primitive ob-
ject f(z,y,z) > 0. When the box is cut by the
boundary: f(z,y,z) = 0, other sophisticated
tests [28] from Interval Analysis can detect if

the surface is simple enough in the box, for in-
stance if one coordinate 1s an implicit function
of the two other coordinates. It is also possible
to detect if a box contains a single intersection
curve between two surfaces, simple enough, or
a regular intersection point between three sur-
faces. In a cell containing a single surface (re-
spectively a single intersection curve between
two surfaces), it is also possible to bracket it
between two (respectively four) planes.

Otherwise, but if the box is too small ac-
cording to an a priort threshold, the box is
divided in 2 or 8 depending on the imple-
mentations, and the sub-boxes are studied the
same way. Filiations between boxes may be
stored in an octree. Such a method find boxes
strictly inside CSG object, strictly outside, cut
by a boundary in a simple way, or residual.
Such residual boxes have smaller size than the
prescribed threshold, and they usually con-
tain or are very close to singularities or near-
singularities. The robustness of this method
may be obvious. SVLIS modeller [2] uses such
a method. These methods can be used beyond
R3: this ”dimensionality paradigm” (the name
is due to C.M. Hoffmann [12]) has been ex-
ploited by J. Woodwark for Feature Recogni-
tion, by K.D. Wise and A. Bowyer for Spatial
Planning [33], by C.M. Hoffmann for Surface
Interrogations [12]. Unfortunately, it seems
difficult to account for free form surfaces in
this framework, more fitted for CSG.

4.3 CSG and marching methods

Figure 4: A 2D curve and its piecewise linear
approximation.

To approximately triangulate objects defined
by CSG trees within a given tolerance pu
[25, 31], the space R? is first partitioned with
a regular cubic lattice, sided p. Each cube is
then partitioned into (5 or 6) tetrahedra; for

all vertices v = (z, y, z) of the lattice, the value
of CSG tree at v is computed: for a primitive
described by an inequality f(z,y,z) < 0, it is
f(v); for nodes AN B and AU B, it is respec-
tively max(A(v), B(v)) and min(A(v), B(v))
where A(v) and B(v) recursively stand for the
value of A and B CSG trees in point v. The
object surface cut a given tetrahedron when
the values in the 4 vertices have opposite signs.
These 4 values define, by linear interpolation,
a unique linear map [(z,y, z) from R? to R,
and the plane [(z,y,z) = 0 is considered as a
good enough approximation of the object con-
tour inside the tetrahedron: it gives a trian-
gle or a quadrilateral. The same is done for
all tetrahedra. This technique is illustrated in
2D in Fig. 4. Marching methods are not sensi-
tive to inaccuracy: in the worst cases, a vertex
value is close to 0, and fp evaluations may yield
a wrong sign for the value, but the only and
immaterial consequence will be to move the
approximation surface a little.

The true object topology and the one of its
linear piecewise approximation may be differ-
ent. Small components, with size less than
the threshold, can be missed. In the vicinity of
singularities and quasi-singularities of the true
object boundary, the approximation remains
manifold. This filtering can be considered as
an advantage, a simplification. Geometrically
(in opposition to topologically), the object and
its approximation are close, up to p.

Of course, it is faster to not consider all
lattice cells, eg by some interval computations
[5, 30] or by using continuity: once a starting
tetrahedron crossed by the surface is known,
the sides by which the contour surface leaves
the tetrahedron are easily computed and the
contour surface is then followed in the neigh-
boring tetrahedron. It is also possible to better
approximate the intersection curve between
two surfaces in a cell. All the variants and
optimizations are beyond the scope of this ar-
ticle, the main thing being marching methods
reliability is preserved. Thus an approximate
BRep (and all its precious informations) can
be obtained from a CSG tree, without having
to perform boolean set operations on BReps,
which is a very unreliable process. Unfortu-
nately again, free form surfaces do not natu-
rally enter this framework.

/

Figure 5: Three indiscernible cases.

~

Figure 6: Three indiscernible cases.

4.4 Ray tracing and RayReps

Ray Casting is a very robust method. The
difficult part is the numeric resolution of al-
gebraic equations, like F'(t) = 0, by interval
analysis [16] or whatever numerical methods.
Obviously fp and interval arithmetics cannot
reliably decide in some ambiguous intervals:
for instance they cannot distinct between the
three cases in Fig. 5. Idem for the three cases
in Fig. 6. However, the main thing is not to
make a mistake on the parity of the number
of roots in such ambiguous intervals, that is to
say not to confuse a case in Fig. b (even par-
ity) with one in Fig. 6 (odd parity). It is eas-
ily achieved. Assuming the parity is correct,
mistakes have immaterial consequences on the
final picture since they occur only when the
ray is tangent or almost tangent to a surface.
Thus the only effect is to move slightly and lo-
cally the object outline. Useless to indicate, a
ray tracer never crashes due to these numerical
errors, and mistakes are not propagated from
pixels to pixels. This robustness against errors
contrasts with the CG methods behaviour, or
boolean operations between BReps.

Figure 7 shows an extreme (and rather arti-
ficial) case, where an ellipsoid is so thin it can
be missed by rays. The classical solution is to
change the modelling, and to use a disk (pos-
sibly carrying some thickness function) rather
than an ellipsoid.

Ray tracing gives rise to the "ray represen-
tation” (rayreps for short): the object is sam-
pled by an array of parallel lines. They be-
come fashionable data structures in CADCAM
[19, 20, 26, 1] due to their simplicity, versa-

Figure 7: Two ray-traced ellipsoids, radius 1,
thickness 10> and 1077.

tility and robustness. A rayrep can be com-
puted by any visualization method:. ray trac-
ing but also the well-known Z-buffer method,
or by merging two other rayreps with the same
family of lines. It is possible to compute this
way boolean operations between two rayreps
(which have possibly been computed with dif-
ferent methods). Finally, to account for a new
kind of geometric object, it suffices to imple-
ment the corresponding visualization routine.

An inconvenient of rayreps is anisotropy:
surfaces parallel or nearly parallel to ray di-
rections are less sampled than the ones per-
pendicular or nearly perpendicular to the ray
direction. The obvious solution is to use a
triple rayrep, ie three rayreps with three or-
thogonal directions, like Oz, Oy and Oz. A
triple rayrep [1] induces a regular cubic lattice
in which a marching method can then built
an approximate triangulation of the bound-
ary. Here again, an approximate BRep can
be safely obtained from a CSG tree, with-
out unreliable computations of boolean oper-
ations over BReps. Moreover, triple rayreps
also treat sculptured solids (the boundary of
which is made of free form surfaces) in a very
natural way.

4.5 Discretization

Boundary representations are basically used to
”evaluate” more or less accurately the bound-
ary of a CSG object. It is the standard and
historical way. Discretization is another solu-
tion: the space is represented by a 3D array of
points, ie ”"voxels”. This discrete representa-
tion makes trivial the most frequent geomet-
ric problems (estimating mass properties, in-
terference detection, boolean operation, etc)
and 1t virtually removes the inaccuracy prob-

lem. Nowadays, Computer Tomography and
Magnetic Resonance Imaging make it possi-
ble to acquire such image data in 3D. At
the other end, from such a voxel-based rep-
resentation, Rapid Prototyping [29] can pro-
duce real tactile plastic prototypes for manu-
facturers, chemists or biologists with ”printing
in 3D”, ie with stereolithography. Moreover,
at this level of precision, the voxel-based rep-
resentation is also the most precise one: this
is in contrast with the not so old reluctance
of some theorists for this discrete representa-
tion, which they considered as a trivial and
very rough approximation of "exact” models.
Last, the voxel-based representation is always
the simplest one, obviously.

It is worth comparing the history of space
representation with the one of pictures. In the
beginning of Computer Graphics and CAD-
CAM, more than twenty years ago, pictures
were usually not represented by discrete rep-
resentations, ie 20 arrays of pixels, but by
BReps, because discrete representations were
too cumbersome at this time, and available
devices only provided wire frame display for
which BReps are best suited. Related al-
gorithms, for removing hidden parts for in-
stance, already had trouble with inaccuracy.
Nowadays, pictures are represented by discrete
representations, and everybody has forgotten
these algorithms and their inaccuracy prob-
lems. One can wonder if, similarly, the time
has not come for discrete representations of
space to supplant boundary representations of
solids, and to remove the inaccuracy problem
in geometric computations.

5 Conclusion

Unrobustness of geometric computations is
still an open issue. Today CGers investigate
Exact Computing: fortunately, exact arith-
metics on integer or rational numbers are very
often sufficient for CG. They are not for CAD-
CAM, and algebraic arithmetics are too ex-
pensive. Thus people prefer approximated ap-
proachs which can be classified in two trends:
— use some exact "reference description” (eg
CSG-like, or feature-based) and evaluate it
when needed, up to some prescribed accuracy,
with some reliable method from section 4.2,
43,44 45.

— account for inaccuracy in the geometric

model itself, typically maintain some fuzzy or
interval BRep (section 4.1).

Unfortunately, lack of space prevents a
more accurate comparison.

References

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M.O. Benouamer and D. Michelucci. Bridg-
ing the Gap between CSG and Brep via a
Triple Ray Representation. In Solid Model-
ing, 1997.

A. Bowyer. SVLIS — Introduction and User
Manual. Information Geometers Ltd, 1995.

H. Bronnimann, C. Burnikel, and S. Pion.
Interval Arithmetic Yields Efficient Dynamic
Filters for Computational Geometry. In
Symp. on CG, 165-174, 1998.

J.D. Chang and V. Milenkovic. An Experi-
ment Using LN for Exact Geometry Compu-
tations. In Canad. Conf. on CG, 67-72, 1993.

LL.H. de Figueiredo and J. Stolfi. Adaptive
Enumeration of Implicit Surfaces with Affine
Arithmetic. In Furographics Workshop on
Implicit Surfaces, 161-170. 1995.

T. Dubé and C.K. Yap. The Exact Compu-
tation Paradigm. In World Scientific Press,
Computing in Fuclidean Geometry, 1995.

D. Duval. Handling Algebraic Numbers in
Computer Algebra. In [SS5AC’89, 1989.

S. Fortune. Polyhedral Modelling with Ex-
act Arithmetic. In Solid Modeling, 225-233,
1995.

S. Fortune and C. Van Wyk. Efficient Exact
Arithmetic for Comp. Geometry. In Symp.
on CG, 163-172, 1993.

T. Gomez-Diaz. Quelques applications de
l"évaluation dynamique. PhD thesis, Univer-
sité de Limoges, 1994.

C. M. Hoffmann. Geometric and Solid Mod-
eling: An Introduction. Morgan Kaufmann,
1989.

C.M. Hoffmann. A Dimensionality Paradigm
for Surface Interrogations. CAGD, 7:517-532,
1990.

C.-Y. Hu, N. Patrikalakis, and X. Ye. Robust
Interval Solid Modelling. CAD, 28(10):807—
817, 819-830, 1996.

M. Iri and K. Sugihara. Construction of the
Voronoi Diagram for One Million Genera-

tors in Single-precision Arithmetic. In Canad.
Conf. on CG, 1989.

D. Jackson. Boundary Representation Mod-
elling with Local Tolerances. In Solid Model-
ing, 247-253, 1995.

R.B. Kearfott. Rigorous Global Search: Con-

tinuous Problems. Kluwer, 1996.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[28]

[29]

[30]

[31]

[32]

33]

[34]

J. Keyser, S. Krishnan, and D. Manocha. Ef-
ficient Brep Generation of Low Degree Sculp-
tured Solids using Exact Arithmetic. In Solid
Modeling, 1997.

K. Mehlhorn, C. Burnikel, R. Fleischer, and
S. Schirra. A Strong and Easily Computable
Separation Bound In SODA97, 702-709,
1997.

J. Menon, R.J. Marisa, and J. Zagajac. More
Powerful Solid Modeling through Ray Rep-
resentations. [FEFE Comp. Grap. & App.,
14(3):22-35, 1994.

Jai Menon and Herbert Voelcker. On the
Completeness and Conversion of Ray Repre-
sentations of Arbitrary Solids. In Solid Mod-
eling, 175-186, 1995.

D. Michelucci. A Quadratic non Standard
Arithmetic. In Canad. Conf. on CG, 1997.

D. Michelucci and J-M. Moreau. Lazy Arith-
metic. IEEE Tran. on Comp., 46(9):961-975,
1997.

V.J. Milenkovic and LL.R. Nackmann. Find-
ing Compact Coordinate Representations for
Polygons and Polyhedra. IBM J. of Research
& Development, 34(5):753-769, 1990.

J-M. Muller and M. Daumas. Qualité des cal-

culs sur ordinateur Masson, 1997.

R.M. Persiano and A. Apolinario. Bound-
ary Evaluation of CSG Models by Adapta-
tive Triangulation. In CSG 94, Information
Geometers Ltd, 1994.

M.G. Prisant. Application of the Ray-
Representation to Problems of Protein Struc-
ture and Function. In CSG 96, Informa-
tion Geometers Ltd, 33-47, 1996.

M. Segal. Using Tolerances to Guarantee
Valid Polyhedral Modeling Results. SIG-
GRAPH 90, 24(4):105-114, 1990.

J.M. Snyder. Interval Analysis for Computer
Graphics. Comp. Grap., 26(2):121-130, 1992.
P. Stucki, J. Bresenham, and R. Earnshaw.
Computer Graphics in Rapid Prototyping
Technology. IEEE Comp. Grap. & App.,
15(6):17-19, 1995.

G. Taubin. An Accurate Algorithm for Ras-
terizing Algebraic Curves. In Solid Modeling,
221-230, 1993.

R.F. Tobler, T.M. Galla, and W. Purgatofer.
ACSGM-an Adaptative CSG Meshing Algo-
rithm. In CSG 96, Information Geometers
Ltd, 17-31, 1996.

Chionh Eng Wee and Ronald N. Goldman.
Elimination and Resultants. [TEEFE Comp.
Grap. & App., 69-77, 1995.

K.D. Wise and A. Bowyer. Using CSG Mod-
els to Map where Things Can and Cannot
Go. In CSG 96, Information Geometers Ltd,
359-376, 1996.

Chee K. Yap. Robust Geometric Computa-
tion. In Handbook in CG. CRC Press, 1997.

