
An Introduction to the Robustness IssueD. Michelucci�Ecole Nationale Sup�erieure des Mines de Saint-�Etienne158 Cours Fauriel, 42023 Saint-�Etienne cedex 02, Francemicheluc@emse.frAbstractRounding of 
oating point arithmetic causesfailures or inconsistencies in geometric com-putations. For Computational Geometry, theonly solution seems to be Exact Computing.CADCAM and Computer Graphics haveinvestigated several approximate approachs.Keywords: Robustness, Inaccuracy, Interval,Fuzzyness, Exactness, � Heuristic, Lazyness.1 The problemDue to inaccuracy of 
oating point arithmetic,geometric algorithms can enter in in�niteloops, take inconsistent decisions and crash,or produce inconsistent topologies which willconfuse other methods [34, 11]. This lack ofrobustness especially occurs with the most so-phisticated methods, typically from Computa-tional Geometry in opposition to brute forceones, like ray casting; and with the most so-phisticated data structures, typically BReps inopposition to voxel arrays or CSG trees. Itis due to the fact that sophisticated methodspropagate intermediate results (like a < b andb < c ) a < c) which are sometimes wrongdue to inaccuracy; sophisticated data struc-tures like BReps must full�ll integrity con-straints (eg to be a planar graph), but arebuilt step by step as a succession of geomet-ric decisions, sometimes wrong due to inaccu-racy. Even when Euler operators are used toensure topological consistency, it is not enoughto guarantee the consistency between answersto topological and geometric queries (does thisintersection vertex geometrically lie on the sur-face it is topologically supposed to ?) and be-tween geometric queries: for instance if points

P1; P3; P5 are aligned, and P2; P4; P6 too, thenpoints P1P2\P4P5, P2P3\P5P6, P3P4\P6P1must also be collinear (Pappus' Theorem): itis unlikely that this kind of property can beencoded in the data structure itself, and 
oat-ing point arithmetic precludes its veri�cation,since it already precludes veri�cation of trivialidentities like �p2�2 = 2 or a+ b� a = b.
md

h’

h

m’

d m

h

d’

h’

m’

d’Figure 1: The two generic con�gurations.To give a simple example of inconsistency,consider the three lines of Fig. 1. h is nearlyhorizontal, m climbs up and has slope about45 degrees, d goes down and has slope about�45 degrees. Let the three intersection pointsbe h0 = d\m, m0 = d\h, d0 = m\h. Exclud-ing the degenerate case for simplicity, there aretwo possible con�gurations, and in both h0 ab-scissa is between d0 and m0 ones. With a smallenough triangle, coordinates will di�er only bytheir least signi�cant bits corrupted by round-ing; so fp arithmetic will sometimes producenon consistent triangles impossible to draw.For a long time, programmers have hopedthat some heuristics would be su�cient (sec-tion 2) against inaccuracy. Today Computa-tional Geometers think that the only way tosave CG methods from inaccuracy ravages isExact Computation [6, 34] (section 3). Ex-act computation is not realistic in ComputerGraphics and CADCAM; people prefer to ac-count for inaccuracy at the modelling stage(section 4.1), or to use more reliable methods



and data structures: it is the "ApproximateComputation Paradigm" (section 4).2 Heuristics2.1 The � trickThe most popular and the oldest trick is the �heuristic, which declare equal numbers the rel-ative di�erence of which is smaller than a pre-scribed threshold classically called �. In prac-tice, this trick works not so bad with the activeunderstanding of users. But the �ne tuning of� is a never ending process since it introducesnew inconsistencies; for instance equality tran-sitivity is lost since one may �nd a; b; c suchthat a =� b; b =� c, but a 6=� c, where =�stands equal up to �.2.2 Careful programmingSome computer scientists prefer to avoid the� heuristic and have settled a set of tricks:{ Check �rst in the data structures beforecomputing; for instance, before computing thepower of a vertex relatively to some line (sur-face), verify �rst if the line (the surface) istopologically incident to the vertex from theinvolved data structures.{ Handle in a special way some particularcases, for instance the intersection point be-tween a vertical line and an oblique one. Inthis case, assign the abscissa with the abscissaof the vertical line, not with the expression�x=�. Idem for special planes or surfaces.{ Never use several (algebraically equivalent)formulas for the same value, since 
oatingpoint arithmetic would yield di�erent results.{ The computation of ab\ cd, ab\ dc, ba\ cd,ba\dc (they are, for instance, segments in 2D)generally give slightly di�erent results. Beforecomputing an intersection, it is worth system-atically orienting segments, so that a <L b1and c <L d and so on, by exchanging verticesin order to ensure: ab\cd = ab\dc = ba\cd =ba \ dc.{ Use numerical input data rather than derived(thus corrupted) numerical data.{ Prefer non redundant data structures, tolimit the probability of contradictions.Quoting C. Ho�mann [11]: "Conceptuallywe view these heuristics as attempts to re-1a <L b, ax < bx or ax = bx and ay < by.

duce the logical interdependence of decisionsthat are based on numerical computations."M. Iri and K. Sugihara [14] have used thiskind of approach for computing Vorono��'s di-agrams. They ensure that their program willnever crash because of inaccuracy, that the re-sulting graph is correct when there is no nu-merical di�culty, and otherwise that the graphis connected with all vertices having degree3, like a correct Vorono��'s diagram. It is im-pressive. However remains a great problem:there is strictly no guaranty that another pro-gram, mathematically correct, and using thisVorono��'s diagram as an input, will not crash.These stratagems show wits, but they canonly avoid the most obvious inconsistencies.Avoiding more convoluted ones (for instancethe non respect of Pappus's theorem) andavoiding contradictions between several piecesof software written by di�erent programmersusing di�erent conventions, notations and for-mulas, is an impossible task.3 Exact computationExact Computation seems the only way forclassical CG methods to work [6, 34]. Often, itonly needs an exact rational arithmetic, some-times the square root, and rarely a general ex-act algebraic arithmetic. Even when a rationalarithmetic is su�cient, naively using a ratio-nal package is too slow, and people use �lters,presented in 3.1 and 3.2. When rational arith-metics are not enough, CGers typically use gaparithmetics (see 3.3), rather than others solu-tions from Symbolic Algebraic Computation(D5, Gr�obner bases, resultants).3.1 The LN libraryThe LN package of S. Fortune and C. van Wyk[9] proceed in two steps: First the program ispre-compiled and the minimumnumber of dig-its needed for the exact arithmetic (the longestinteger generated by the algorithm, knowingthe data range and the arithmetic expressionsin the program) is determined. For each testin the program, C++ code is automaticallygenerated: to compute the test in standardfp arithmetic, using references to original dataonly; to test if fp value is greater than the max-imum possible error for the expression; �nally,to call the exact, long integer library to evalu-



ate the expression when the sign of the fp valueis not reliable.Second, the program is then compiled andlinked with the exact library. Note that everytest must be made with reference to originaldata. This permits a static (ie before runningtime) computation of the maximum possibleerror for each expression when evaluated in fparithmetic; so the error bound has not to becomputed at run time with intervals or what-ever method. It speeds up execution, in a re-markable way, but it is not always very conve-nient for the user [4]; it forbids on-line andreentrant algorithms, in which computationdepth is not a priori known, and it causes aproliferation of types: for instance input pointsand intersection points cannot be of the sametype; this proliferation is a programmer's bur-den, and sometimes a compiler's one.3.2 Lazy arithmeticThe lazy arithmetic computes with lazy ratio-nal numbers. A lazy rational number is �rstrepresented by an interval of two fp numbers,guaranteed to bracket the rational number, beit known (exactly evaluated) or not; and thenby a symbolic de�nition, to recover the ex-act value of the underlying rational number,if need be. The de�nition is either a standardrepresentation of a rational number (for exam-ple 2 arrays or lists of digits in some basis, fornumerator and denominator), or the sum orthe product of two other lazy numbers, or thereciprocal or opposite of another lazy number.Thus each lazy number is the root of a tree,whose nodes are binary (sum or product) orunary (opposite or reciprocal) operators, andwhose leaves are usual rational numbers; ac-tually, lazy numbers form a directed acyclicgraph rather than a tree, since any node or leafmay be shared. Each operation is generallyperformed in constant time and space: a newcell is allocated for the number, its interval iscomputed from the intervals of the operand(s),and the de�nition �eld is �lled (operation type,and pointers to the operand(s)). Intervals aremore often than not su�cient during compu-tations; the only cases in which they becomeinsu�cient and thus the de�nition has to be"evaluated" (ie with rational arithmetic) are:when one wants to compare two lazy numbersthe intervals of which overlap, when one wantsa lazy number sign or reciprocal the interval

of which contains 0. A possible evaluationmethod is the natural and recursive one. Us-ing such a lazy library is transparent: classicalgeometric methods need not to be modi�ed.The lazy library also provides hashing of lazynumbers, using modular arithmetic [22].The lazy version of a boolean solver betweenpolyhedra is 10 or 15 times slower than thepure 
oating point version (when the lattersucceeds) and 100 or 1000 times faster thanthe pure rational version.Contrarily to LN, the lazy library is fullydynamic and so equally applies to on-line andreentrant algorithms: the computation depthneeds not to be known a priori. In compensa-tion, LN when usable should be (2 or 3 times)faster than the lazy library.3.3 Gap arithmeticThe � trick is based on a correct mathemati-cal intuition which has given rise to gap arith-metics. The latters are exact arithmeticswhich exploit gap theorems, like Canny's one:Let x1, x2 : : :xn be the solutions of an alge-braic system of n equations and n unknowns,having a �nite number of solutions, with max-imal total degree d, with relative integer co-e�cients smaller or equal to M in absolutevalue. Then, for all i 2 [1; n], either xi = 0 orjxij > �c where �c = 1(3Md)ndnThis theorem gives a way to prove nu-merically that a number is zero: compute a(guaranteed) interval containing it, with rangesmaller than �c. As soon as the interval doesnot contain 0, the number is clearly not 0 andits sign is known. Otherwise, if the intervalcontains 0 and has range less than �c, the num-ber can only be 0. See [18] for other gap the-orems or references. Note that gap thresholdsare much smaller than the ones used in the� heuristic, and that some big
oat library isneeded.3.4 Exact algebraic arithmeticRecently in CADCAM �eld, D. Manocha andsome of his students [17] used an exact al-gebraic arithmetic to reliably compute inter-sections between algebraic parameterized sur-faces of low degree (2-4: eg quadrics and torii).



They use Dixon's resultants for Elimination,with Milne's multivariate Sturm's sequences inorder to locate roots. A number of improve-ments is needed to speed up this approach:for instance modular arithmetic speeds up thecalculation of resultant coe�cients, and inter-vals with rational endpoints that isolate rootsare computed as lazily as possible. For themoment, it is doubtful that extensions to im-plicit surfaces and to higher standard degreesare possible, due to the intrinsic exponentialcost of the involved symbolic computations.Other exact algebraic arithmetic use Gr�ob-ner's bases [11], D5 ideas [7, 10], resultants[32]. See [21] for a real quadratic arithmetic.3.5 Pros and consGood reasons to use exact computations are:when usable (roughly, when an exact rationalarithmetic is su�cient), it really solves the ro-bustness problem, at the arithmetical level, ieclassical CG methods do not need to be mod-i�ed. It is even possible to remove degenera-cies (another burden for the programmer) atthis arithmetic level, with symbolic, in�nitelysmall, perturbation. It opens interesting newproblems, like exactly computing signs of de-terminants [3].
D(H)

H(C)

B(E)F(B)

I(I)

G(D)

A(F) E(A)

C(G)Figure 2: Place 9 points A;B : : : I so thatonly the following subsets (and all couples) arecollinear: ABEF , ADG, AHI, BCH, BGI,CFI, DEI, DFH. This con�guration is notrealizable in Q2; it is in Q[p5]2.However, maybe the true reason is: it post-pones heartbreaking reappraisals. Exact com-putations have serious limitations: algebraicarithmetics are very slow, relatively to fp ones,but intersection between curved lines or sur-faces, or just rotations, introduce irrationalnumbers; moreover some con�gurations (Fig.

2, from [11]) need algebraic numbers to be ex-actly represented; last, incremental modi�ca-tions of shapes, or on-line creations (use thisintersection point between two circles as thecentre of a new circle) increase algebraic de-grees; geometric rounding becomes sooner orlatter unavoidable to break the exponential de-gree growth, and also to communicate withthe outside fp world. But rounding polygonsand polyhedra without introducing self inter-sections is NP-complete [23]; Fortune's solu-tion [8] is to accept self-intersecting polyhedra.Admittedly, but it means classical CG meth-ods cannot be used: : :4 Approximate approachsCADCAM and Computer Graphics have triedseveral approximate approachs, I will mention:fuzzy boundaries in section 4.1, CSG, intervalanalysis and recursive space subdivision in sec-tion 4.2, CSG and marching methods in 4.3,ray tracing and ray representations in 4.4, dis-cretization in section 4.5.4.1 Fuzzy boundariesThe � heuristic loses the order transitivity (itis possible to have a =� b, b =� c and a 6=� c),so inconsistencies remain possible. In such acase, a solution is to give up the distinctionbetween a, b and c, and to merge them intoanother larger entity, actually an interval. Theexample in Fig. 1 will become something likein Fig. 3.This approach has been investigated in solidmodelling by M. Segal [27], by D. Jackson [15],by Patrikalakis's team [13]. In 3D, geometricelements (vertices, edges or arcs, surfaces) are
d m

hFigure 3: Three lines with their halos, incidentto a fuzzy point (the circle).



surrounded by a thin halo of imprecision; twodistinct and not adjacent elements must nothave overlapping halos. During (typically) thecomputation of some boolean set operation,two elements the halos of which overlap mustbe cut or merged to restore the data structureconsistency.One can notice that two close but non over-lapping entities have to be merged when athird entity that overlaps both former ones isintroduced. One can deplore this informationloss (the distinction between the �rst two en-tities has been lost though they are not mod-i�ed), and fear that existing geometric algo-rithms will not spontaneously withstand sucha non monotonic logic. But this is the spiritof this approach.The main advantages of this approach arethat it applies not only to "linear" problemsbut also to algebraic ones, and that it doesnot rely on an exact arithmetic; so it is fast.Moreover, it is intuitive. Finally, it can handleinaccurate data from sensors, and machiningtolerances, in a natural way: up to now, thisis the only approach that can represent fuzzydata.When we want to know if the halos oftwo geometric entities overlap, their distancecan be computed in several but algebraicallyequivalent ways; with a �rst formula, one may�nd that the elements do not overlap, butthey will with another formula. Thus it isnot clear for the moment that this approachis completely free of contradictions and that itde�nitively solves the robustness problem. Pa-trikalakis et al [13] do not claim that it does:"With the interval representations of objects,topological violations due to numerical pertur-bation of fp arithmetic can often be avoided."Not always? The non monotonicity of thesemethods does not facilitate their proof andstudy, too.4.2 CSG, interval, subdivisionInterval Analysis [16] can compute conserva-tive (and rather accurate [13, 24]) bounds fora function range on an interval. When the in-terval for f(B) where B = [x0; x1]� [y0; y1]�[z0; z1] does not contain 0, one knows whetherthe box B is inside or outside the primitive ob-ject f(x; y; z) � 0. When the box is cut by theboundary: f(x; y; z) = 0, other sophisticatedtests [28] from Interval Analysis can detect if

the surface is simple enough in the box, for in-stance if one coordinate is an implicit functionof the two other coordinates. It is also possibleto detect if a box contains a single intersectioncurve between two surfaces, simple enough, ora regular intersection point between three sur-faces. In a cell containing a single surface (re-spectively a single intersection curve betweentwo surfaces), it is also possible to bracket itbetween two (respectively four) planes.Otherwise, but if the box is too small ac-cording to an a priori threshold, the box isdivided in 2 or 8 depending on the imple-mentations, and the sub-boxes are studied thesame way. Filiations between boxes may bestored in an octree. Such a method �nd boxesstrictly inside CSG object, strictly outside, cutby a boundary in a simple way, or residual.Such residual boxes have smaller size than theprescribed threshold, and they usually con-tain or are very close to singularities or near-singularities. The robustness of this methodmay be obvious. SVLIS modeller [2] uses sucha method. These methods can be used beyondR3: this "dimensionality paradigm" (the nameis due to C.M. Ho�mann [12]) has been ex-ploited by J. Woodwark for Feature Recogni-tion, by K.D. Wise and A. Bowyer for SpatialPlanning [33], by C.M. Ho�mann for SurfaceInterrogations [12]. Unfortunately, it seemsdi�cult to account for free form surfaces inthis framework, more �tted for CSG.4.3 CSG and marching methods
Figure 4: A 2D curve and its piecewise linearapproximation.To approximately triangulate objects de�nedby CSG trees within a given tolerance �[25, 31], the space R3 is �rst partitioned witha regular cubic lattice, sided �. Each cube isthen partitioned into (5 or 6) tetrahedra; for



all vertices v = (x; y; z) of the lattice, the valueof CSG tree at v is computed: for a primitivedescribed by an inequality f(x; y; z) < 0, it isf(v); for nodes A \B and A[B, it is respec-tively max(A(v); B(v)) and min(A(v); B(v))where A(v) and B(v) recursively stand for thevalue of A and B CSG trees in point v. Theobject surface cut a given tetrahedron whenthe values in the 4 vertices have opposite signs.These 4 values de�ne, by linear interpolation,a unique linear map l(x; y; z) from R3 to R,and the plane l(x; y; z) = 0 is considered as agood enough approximation of the object con-tour inside the tetrahedron: it gives a trian-gle or a quadrilateral. The same is done forall tetrahedra. This technique is illustrated in2D in Fig. 4. Marching methods are not sensi-tive to inaccuracy: in the worst cases, a vertexvalue is close to 0, and fp evaluations may yielda wrong sign for the value, but the only andimmaterial consequence will be to move theapproximation surface a little.The true object topology and the one of itslinear piecewise approximation may be di�er-ent. Small components, with size less thanthe threshold, can be missed. In the vicinity ofsingularities and quasi-singularities of the trueobject boundary, the approximation remainsmanifold. This �ltering can be considered asan advantage, a simpli�cation. Geometrically(in opposition to topologically), the object andits approximation are close, up to �.Of course, it is faster to not consider alllattice cells, eg by some interval computations[5, 30] or by using continuity: once a startingtetrahedron crossed by the surface is known,the sides by which the contour surface leavesthe tetrahedron are easily computed and thecontour surface is then followed in the neigh-boring tetrahedron. It is also possible to betterapproximate the intersection curve betweentwo surfaces in a cell. All the variants andoptimizations are beyond the scope of this ar-ticle, the main thing being marching methodsreliability is preserved. Thus an approximateBRep (and all its precious informations) canbe obtained from a CSG tree, without havingto perform boolean set operations on BReps,which is a very unreliable process. Unfortu-nately again, free form surfaces do not natu-rally enter this framework.

Figure 5: Three indiscernible cases.Figure 6: Three indiscernible cases.4.4 Ray tracing and RayRepsRay Casting is a very robust method. Thedi�cult part is the numeric resolution of al-gebraic equations, like F (t) = 0, by intervalanalysis [16] or whatever numerical methods.Obviously fp and interval arithmetics cannotreliably decide in some ambiguous intervals:for instance they cannot distinct between thethree cases in Fig. 5. Idem for the three casesin Fig. 6. However, the main thing is not tomake a mistake on the parity of the numberof roots in such ambiguous intervals, that is tosay not to confuse a case in Fig. 5 (even par-ity) with one in Fig. 6 (odd parity). It is eas-ily achieved. Assuming the parity is correct,mistakes have immaterial consequences on the�nal picture since they occur only when theray is tangent or almost tangent to a surface.Thus the only e�ect is to move slightly and lo-cally the object outline. Useless to indicate, aray tracer never crashes due to these numericalerrors, and mistakes are not propagated frompixels to pixels. This robustness against errorscontrasts with the CG methods behaviour, orboolean operations between BReps.Figure 7 shows an extreme (and rather arti-�cial) case, where an ellipsoid is so thin it canbe missed by rays. The classical solution is tochange the modelling, and to use a disk (pos-sibly carrying some thickness function) ratherthan an ellipsoid.Ray tracing gives rise to the "ray represen-tation" (rayreps for short): the object is sam-pled by an array of parallel lines. They be-come fashionable data structures in CADCAM[19, 20, 26, 1] due to their simplicity, versa-



Figure 7: Two ray-traced ellipsoids, radius 1,thickness 10�5 and 10�7.tility and robustness. A rayrep can be com-puted by any visualization method: ray trac-ing but also the well-known Z-bu�er method,or by merging two other rayreps with the samefamily of lines. It is possible to compute thisway boolean operations between two rayreps(which have possibly been computed with dif-ferent methods). Finally, to account for a newkind of geometric object, it su�ces to imple-ment the corresponding visualization routine.An inconvenient of rayreps is anisotropy:surfaces parallel or nearly parallel to ray di-rections are less sampled than the ones per-pendicular or nearly perpendicular to the raydirection. The obvious solution is to use atriple rayrep, ie three rayreps with three or-thogonal directions, like Ox, Oy and Oz. Atriple rayrep [1] induces a regular cubic latticein which a marching method can then builtan approximate triangulation of the bound-ary. Here again, an approximate BRep canbe safely obtained from a CSG tree, with-out unreliable computations of boolean oper-ations over BReps. Moreover, triple rayrepsalso treat sculptured solids (the boundary ofwhich is made of free form surfaces) in a verynatural way.4.5 DiscretizationBoundary representations are basically used to"evaluate" more or less accurately the bound-ary of a CSG object. It is the standard andhistorical way. Discretization is another solu-tion: the space is represented by a 3D array ofpoints, ie "voxels". This discrete representa-tion makes trivial the most frequent geomet-ric problems (estimating mass properties, in-terference detection, boolean operation, etc)and it virtually removes the inaccuracy prob-

lem. Nowadays, Computer Tomography andMagnetic Resonance Imaging make it possi-ble to acquire such image data in 3D. Atthe other end, from such a voxel-based rep-resentation, Rapid Prototyping [29] can pro-duce real tactile plastic prototypes for manu-facturers, chemists or biologists with "printingin 3D", ie with stereolithography. Moreover,at this level of precision, the voxel-based rep-resentation is also the most precise one: thisis in contrast with the not so old reluctanceof some theorists for this discrete representa-tion, which they considered as a trivial andvery rough approximation of "exact" models.Last, the voxel-based representation is alwaysthe simplest one, obviously.It is worth comparing the history of spacerepresentation with the one of pictures. In thebeginning of Computer Graphics and CAD-CAM, more than twenty years ago, pictureswere usually not represented by discrete rep-resentations, ie 2D arrays of pixels, but byBReps, because discrete representations weretoo cumbersome at this time, and availabledevices only provided wire frame display forwhich BReps are best suited. Related al-gorithms, for removing hidden parts for in-stance, already had trouble with inaccuracy.Nowadays, pictures are represented by discreterepresentations, and everybody has forgottenthese algorithms and their inaccuracy prob-lems. One can wonder if, similarly, the timehas not come for discrete representations ofspace to supplant boundary representations ofsolids, and to remove the inaccuracy problemin geometric computations.5 ConclusionUnrobustness of geometric computations isstill an open issue. Today CGers investigateExact Computing: fortunately, exact arith-metics on integer or rational numbers are veryoften su�cient for CG. They are not for CAD-CAM, and algebraic arithmetics are too ex-pensive. Thus people prefer approximated ap-proachs which can be classi�ed in two trends:{ use some exact "reference description" (egCSG-like, or feature-based) and evaluate itwhen needed, up to some prescribed accuracy,with some reliable method from section 4.2,4.3, 4.4, 4.5.{ account for inaccuracy in the geometric



model itself, typically maintain some fuzzy orinterval BRep (section 4.1).Unfortunately, lack of space prevents amore accurate comparison.References[1] M.O. Benouamer and D. Michelucci. Bridg-ing the Gap between CSG and Brep via aTriple Ray Representation. In Solid Model-ing, 1997.[2] A. Bowyer. SVLIS { Introduction and UserManual. Information Geometers Ltd, 1995.[3] H. Br�onnimann, C. Burnikel, and S. Pion.Interval Arithmetic Yields E�cient DynamicFilters for Computational Geometry. InSymp. on CG, 165{174, 1998.[4] J.D. Chang and V. Milenkovic. An Experi-ment Using LN for Exact Geometry Compu-tations. In Canad. Conf. on CG, 67{72, 1993.[5] L.H. de Figueiredo and J. Stol�. AdaptiveEnumeration of Implicit Surfaces with A�neArithmetic. In Eurographics Workshop onImplicit Surfaces, 161{170. 1995.[6] T. Dub�e and C.K. Yap. The Exact Compu-tation Paradigm. In World Scienti�c Press,Computing in Euclidean Geometry, 1995.[7] D. Duval. Handling Algebraic Numbers inComputer Algebra. In ISSAC'89, 1989.[8] S. Fortune. Polyhedral Modelling with Ex-act Arithmetic. In Solid Modeling, 225{233,1995.[9] S. Fortune and C. Van Wyk. E�cient ExactArithmetic for Comp. Geometry. In Symp.on CG, 163{172, 1993.[10] T. Gomez-Diaz. Quelques applications del'�evaluation dynamique. PhD thesis, Univer-sit�e de Limoges, 1994.[11] C. M. Ho�mann. Geometric and Solid Mod-eling: An Introduction. Morgan Kaufmann,1989.[12] C.M. Ho�mann. A Dimensionality Paradigmfor Surface Interrogations. CAGD, 7:517{532,1990.[13] C.-Y. Hu, N. Patrikalakis, and X. Ye. RobustInterval Solid Modelling. CAD, 28(10):807{817, 819{830, 1996.[14] M. Iri and K. Sugihara. Construction of theVoronoi Diagram for One Million Genera-tors in Single-precision Arithmetic. In Canad.Conf. on CG, 1989.[15] D. Jackson. Boundary Representation Mod-elling with Local Tolerances. In Solid Model-ing, 247{253, 1995.[16] R.B. Kearfott. Rigorous Global Search: Con-tinuous Problems. Kluwer, 1996.

[17] J. Keyser, S. Krishnan, and D. Manocha. Ef-�cient Brep Generation of Low Degree Sculp-tured Solids using Exact Arithmetic. In SolidModeling, 1997.[18] K. Mehlhorn, C. Burnikel, R. Fleischer, andS. Schirra. A Strong and Easily ComputableSeparation Bound In SODA97, 702{709,1997.[19] J. Menon, R.J. Marisa, and J. Zagajac. MorePowerful Solid Modeling through Ray Rep-resentations. IEEE Comp. Grap. & App.,14(3):22{35, 1994.[20] Jai Menon and Herbert Voelcker. On theCompleteness and Conversion of Ray Repre-sentations of Arbitrary Solids. In Solid Mod-eling, 175{186, 1995.[21] D. Michelucci. A Quadratic non StandardArithmetic. In Canad. Conf. on CG, 1997.[22] D. Michelucci and J-M. Moreau. Lazy Arith-metic. IEEE Tran. on Comp., 46(9):961{975,1997.[23] V.J. Milenkovic and L.R. Nackmann. Find-ing Compact Coordinate Representations forPolygons and Polyhedra. IBM J. of Research& Development, 34(5):753{769, 1990.[24] J-M. Muller and M. Daumas. Qualit�e des cal-culs sur ordinateur Masson, 1997.[25] R.M. Persiano and A. Apolin�ario. Bound-ary Evaluation of CSG Models by Adapta-tive Triangulation. In CSG 94, InformationGeometers Ltd, 1994.[26] M.G. Prisant. Application of the Ray-Representation to Problems of Protein Struc-ture and Function. In CSG 96, Informa-tion Geometers Ltd, 33{47, 1996.[27] M. Segal. Using Tolerances to GuaranteeValid Polyhedral Modeling Results. SIG-GRAPH '90, 24(4):105{114, 1990.[28] J.M. Snyder. Interval Analysis for ComputerGraphics. Comp. Grap., 26(2):121{130, 1992.[29] P. Stucki, J. Bresenham, and R. Earnshaw.Computer Graphics in Rapid PrototypingTechnology. IEEE Comp. Grap. & App.,15(6):17{19, 1995.[30] G. Taubin. An Accurate Algorithm for Ras-terizing Algebraic Curves. In Solid Modeling,221{230, 1993.[31] R.F. Tobler, T.M. Galla, and W. Purgatofer.ACSGM{an Adaptative CSG Meshing Algo-rithm. In CSG 96, Information GeometersLtd, 17{31, 1996.[32] Chionh Eng Wee and Ronald N. Goldman.Elimination and Resultants. IEEE Comp.Grap. & App., 69{77, 1995.[33] K.D. Wise and A. Bowyer. Using CSG Mod-els to Map where Things Can and CannotGo. In CSG 96, Information Geometers Ltd,359{376, 1996.[34] Chee K. Yap. Robust Geometric Computa-tion. In Handbook in CG. CRC Press, 1997.


