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Abstract

We present a method to construct the boundary of
the integral convexr hull of conics in the plane. This
work may be related to a previous problem (con-
structing a circle or an ellipse by Bresenham’s al-
gorithm [3]), but is more general, complex and its
solution involves strong arithmetic properties of the
conics.

1 Introduction

Define the integral conver hull (i.c.h. in short) of a
convex curve segment as the set of points with in-
tegral coordinates lying between the curve segment,
the z-axis, and the two vertical lines through the end-
points of the curve segment. In this paper, we shall
show that some transforms exist that leave invariant
72 and the family of conics defined by:

{(w,y) €E | fle,y) =
ax® +bry+ ey’ +de+ey+f=0}, (1)

where a, b, ¢ are coprime integers (ged(a,b,¢) = 1).

These transforms are then used to prove the peri-
odicity of the boundary of the i.c.h. (noted B in the
sequel) of the family of conics defined above (Sec-
tion 2). Next, Section 3 presents applications of the
method, and we conclude in Section 4.
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2 Transformations

We wish to study transforms that leave conics glob-
ally invariant, and Z? Such transforms T satisfy the
two following conditions:

Cy (invariance) :

(xy) = (& y)T = f(e,y) = (2", ¢)

Cy (unimodularity) :
the coefficients of T" are in Z, and det T' = +1.

Note that, if 7" is unimodular, so is T,k € Z. An-
other important property is that unimodular trans-
forms preserve convexity. The interested reader is
referred to [4] for more details on unimodular trans-
forms. We have the following general lemma:

a conic with f(x,y) defined as above (i.e., f(x,y)
(zy1)Q(zyl)t), and T be a transform. T leaves
invariant iof and only if TQT! = Q

Lemma 2.1 Let () be the matrix representation of
f

Proof Omitted. (See [1] for a detailed proof.)

2.1 The case of the parabola

Consider the parabola with equation (1), and A =
b? — 4ac = 0. We wish to find an unimodular trans-
form T such that TQ7* = @, where @Q is the corre-
sponding matrix. Let us suppose we work in homo-
geneous coordinates.

First, to simplify the equation, we need an uni-
modular system of coordinates O, I, J, with vector J



parallel to the symmetry axis of the parabola, i.e., to
the line:

_—_b _ —2a
Y=%:5~ 5 °

Finally, in this system, defined by:

2 —b
J = (u= —C,v = —) with g = ged(2¢, )
g g

(5,7)

the equation of the parabola becomes:

I = with  sv —tu = 1 (Bezout),

_AX’+BX +C

Y = A B Z, M *
i ,B,CeZ, € N7,

and the matrix representation of the parabola is:

A 0 B/2
o=1 o 0 —M/2
B/2 —-M/2 C

In order to find the coefficients, we use the fact
that the transform must leave the symmetry axis in-
variant. Hence, the transformation is such that:

X:Xl+l‘0, xo €7

Y=Y'4+aX' 4y, a€Z, y€Z

After substitution:

1

Yy = 7 [AX"? + (2420 + B —aM) +

(Ax? + Bro + C — Myo)]
Consequently:

2Axy = oM
Aajg—i—Bajo —Myy =0

A correct (although maybe not minimal) solution, is
given by:

o= Mv, a=2At, vEZ

A(Mv)? + B(Mv) — Myy =0
= yg=AMV? + bv

This leads to:

1 2Av 0
T, = 0 1 0
Mv AMV?24+ Br 1

where v is an integer. (Note that T, = 77.)

In conclusion, since we have found a matrix 7, such
that: if (#,y, 1) is a vertex of B, then so is (z,y,1)T,,
we have just proven that the integral convex hull of
the parabola is periodic.

2.2 The case of the centered hyper-
bola

We shall first focus on the case of centered hyper-
bole, and then return to the general case in the next
subsection. Starting from the matrix representation
of the centered hyperbola:

fle,y) = az? + bry + cy? = m,
with meR, A>0, \/KQN:

flzy) = (zy)Qx ), )

with @ =
we compute the coefficients of the unimodular trans-

A B
formT:(C D

ple Q@
o Mo

), satisfying conditions C7 and

C'y above.

It is possible to show that computing the integral
coefficients A, B, C', D is equivalent to solving two
Pell-Fermat equations with same discriminant A =
b? — 4ac > 0 (see [4]). The value for each coefficient
is shown to depend on the value of A mod4, and
two mutually exclusive cases are considered. As a
consequence, thanks to the minimal solution (u,v) €
N? of the above equations, we get

A=0mod4 =

u? — =v? =1,
4

A=1mod4=
u—by av
UZ_AUZI4; T = ( 2 utby )
—Cv 3




Cases A = 2 or 3 mod 4 are impossible. All trans-
forms T% k € Z, are unimodular and preserve the hy-
perbola. Conversely, all unimodular transforms leav-
ing unchanged the hyperbola and Z? are powers of
T.

Remark: We could also consider extending Condi-
tion C5 to det = £1, which fully translates unimodu-
larity. However, in the case det = —1, Condition Cy
islost (TQT" = —Q, = f(z',y) = —f(z,y)). Still,
the knowledge of the initial i.c.h.-boundary sequence
on f(xz,y) = m allows to find all the i.c.h.-boundary
sequences on f(z,y) = —m. The interested reader
will find a more detailed analysis in [1].

Special cases and extensions

Note that in the special case where A is a squared
integer (for example zy = 1), integral hulls have a
finite number of vertices.

In the case of a non-centered hyperbola, the inte-
gral convex hull is not properly periodic, but only
quasi-periodic.

2.3 The case of the ellipse

In this case, the discrimant in equation (1) is strictly
negative.
not infinite as was the case for the parabola and
hyperbola), and the only transforms that may be
considered are the trivial ones. For instance, the
group of the ellipse defined by: z% + 2y +y> = m
contains 12 transforms, and is generated by (say)

T = ( _01 1 ), of order 6 (i.e., T° = I), and the

symmetry S = ( ? é )

The transformation group is finite (and

3 Applications and extensions

3.1 Construction of B

Using the previous results, the integral convex hull of
any parabola, or centered hyperbola is periodic: the
whole integral convex hull is a repetition of a minimal
“pattern”, 1.e., sequence of points.

Let T be the associated transform of f:

> Apply T to line Oz :y=0~s D

3

> The arc between D) and Oz is a ‘‘pattern’’

of f
> Compute DN f=1=(z:,yi)

e Compute ¢.p.(y<q,) the initial
‘‘pattern’’ of B (O(klogn))

e By applying 71 ,one goes from one point
in the initial ‘‘pattern’’ #.p.(y<g;) to
its equivalent in the next sequence,
and so forth.

Figure 1: Constructing the convex hull from the ini-
tial pattern. D and f are shown in Figure 2.

One goes from one point in the initial z.c.h.-
boundary to 1ts equivalent in the next sequence by
applying the associated transform of Section 2, and
so forth. This operation is summarized in the algo-
rithm of Figure 1.

The last problem is to compute all the points in
the initial pattern. The outline of the method is as
follows: we follow the curve, starting from any point
on B. We compute the next point of B, using a tech-
nique akin to the continued fraction expansion of a
real number, but tailored for this specific problem.
And we repeat the process until we reach a point
that is the image of the initial point under the asso-
ciated transform. This process is detailed in [2], in
which we are concerned with the the integral convex
hull below straight-line segments and sections of bi-
convex curves. The algorithm presented there may
be extended to any convex body (cf. [1]).

3.2 Integral convex hulls and factor-

ization

Computing the integral convex hull for hyperbolae de-
fined by zy = N, N € N yields the set of all integral
couples p,q such that p¢ = N, and hence all the
prime factors of N. In [2], the authors conjectured
(using experimental evidence) that the boundary of



or .. bT

P=

RT

f(xy)=x -3y

f=1]

Figure 2: Hyperbole f(x,y) = 2? —3y> = J. Cases § = 1 and § = 6. For § = 1, {P} is the initial
pattern, PT,PT?...€ B For § =6,{S,Q} is the initial pattern.
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Vi

Figure 3: Parabola x? +y? —2zy—y =0, {P} is the initial pattern, PT-1, PT=2, ... P, PT,PT? ...€ B.

Shaded triangles show T in action.

the i.c.h. of the hyperbola contains about N%3% inte-
gral points. Hence, we now have a factorization algo-
rithm with running time O(N%3%log N), i.e., slightly
faster than the well-known brute-force algorithm test-
ing all primes smaller than V'N. In the case of a line
segment s, computing the integral convex hull and
counting the integer points on s both take O(log N)
time, 2.e., a time proportional to the size of the data
(length of minimum side in rectangular triangle with

hypothenuse s). The algorithm for the construction
of the i.c.h.-boundary for hyperlae zy = N is optimal
(relatively to the output size). However, the algo-
rithm that uses the 7.c.h. to count the integral ver-
tices on the hyperbola is not polynomial in the size of
the data (the actual number of vertices). But this is
quite correct: if a counting method existed that was
polynomial in the size of the data, it would yield a
polynomial method for factorization.



4 Conclusion

The algorithms we have presented in this paper have
been coded in Caml. Indeed, they require the use of
libraries for “big integers”, as should be obvious from
the nature of the solutions.

It is natural to want to extend the research pre-
sented 1n this paper to higher dimensions. It does not
seem easy to generalize our results to quadrics. How-
ever, it may be possible to derive similar periodicity
properties for certain cubic implicit surfaces. Such
results are related to well-known number-theoretic
properties.

We are also currently extending the 2D algorithm
in [2] to compute 3D integer convex hulls.
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