
An � Arithmetic for Removing DegeneraciesD. MichelucciEcole Nationale Sup�erieure des MinesSaint-Etienne, France 42023AbstractSymbolic perturbation by in�nitely small values re-moves degeneracies in geometric algorithms and en-ables programmers to handle only generic cases: thereare a few such cases, whereas there are an over-whelming number of degenerate cases. Current per-turbation schemes have limitations, presented below.To overcome them, this paper proposes to use an �-arithmetic, i.e. to represent in an explicit way in-�nitely small numbers, and to de�ne arithmetic oper-ations (+;�; �; =; <;=) on them.1 IntroductionHandling all degeneracies is a burden when im-plementing geometric algorithms: there are a fewgeneric cases, but numerous degeneracies, for instancein 2D alignments of more than two points, cocircu-larity of more than three points, intersection of morethan two lines in a point, parallelism between linesor between a sweeping line and segments for somealgorithms: : : Symbolic perturbation removes degen-eracies, and so programmers, like theoreticians, canideally focus on the treatment of a few generic cases.However, after reading previous papers on perturba-tion schemes [4] [5] [13] [14] implementing and usinga perturbation library is not so easy a task.First, whereas the principle of perturbation is verypowerful and general, implementations are often re-stricted to some computations, typically some deter-minant computations. Next, programmers have toperform some kind of symbolic computations by hand,like expanding perturbed determinants in �� and theyhave to foresee what terms in � will be needed at such-and-such moments at run time: a burden.Yap's perturbation technique, probably the mostpowerful one, also has limitations. With Yap's for-mulation, the perturbation `black-box', when decidingthe perturbed sign of some polynomialF (x1; x2 : : : xn)needs that values of x1; x2 : : :xn be direct input pa-rameters: they cannot be, say, coordinates of inter-section points computed by some algorithm; in Yap'sterminology, derivation degree is at most 1. Practi-cally, the programmer cannot use the same functionfor testing the location of an initial vertex and the lo-cation of an intersection point, relatively to some line.Moreover, the programmer has to distinguish betweenlines: lines de�ned by two input vertices, by one inputvertex and an intersection point, by two intersection

points: : : . And intersection points are also of di�er-ent kinds, depending on the intersecting lines. So thenumber of distinct generic cases the programmer hasto handle grows very fast indeed, (it is a quite ironicsituation, when remembering that the perturbationtechnique has been introduced to remove overwhelm-ing numbers of degenerate cases) and Yap's formula-tion is unusable for on-line algorithms. The imple-mentation scheme proposed in this paper solves theseproblems.Actual implementations do not explicitly represent� and polynomials in � by data structures in the com-puter: the � are just conceptual entities, guiding theprogrammer. I discuss here a straightforward and nat-ural scheme for implementing a perturbation library.The main idea is to explicitly represent, in some way,polynomials in ��, and to suitably rede�ne the basicarithmetic operations: sum, subtraction, product, di-vision, comparisons, so that the arithmetic itself willremove degeneracies. This approach removes limita-tions on derivation degree; it allows easy implemen-tations and the comparison of several perturbationsschemes. Moreover, it gives more control to the useron the perturbation: It becomes easy to specify spe-cial perturbations, for instance that a given point muststay on some given straight line, or semi straight line,after perturbation: In previous implementations, theuser had very poor control on perturbation (typicallyand symptomatically described as a `black box').Remark: when using approximate arithmetic, de-generacies or near-degeneracies can lead to programcrashes, or topological inconsistencies in results. How-ever, taking into account all degeneracies on one hand,and avoiding side e�ects due to �nite-precision arith-metic on the other hand are two distinct problemsand must not be confused. Moreover, symbolic per-turbation requieres an exact arithmetic. This paperassumes a rational arithmetic is used. It can be a lazyone, as de�ned in [1, 2, 3]; personally I have used therational arithmetic library provided by Le-Lisp1 15.25.Note that a rational arithmetic is more often su�cientfor geometric problems considered in ComputationalGeometry.Section 2 gives de�nitions, notations, and summa-rizes more or less known properties on �-extensionsover a �eld, compatible orderings and so on. Section3 proposes to use streams (potentially in�nite lists) to1Le-Lisp is a registered trademark by INRIA.



represent expansions in �. Implementation of a naiveperturbation scheme is given as a �rst example, thenimplementation of Yap's perturbation. Section 4 dis-cusses �rst experiments.2 Degeneracies and perturbation2.1 Geometric degeneraciesIn geometric algorithms a degeneracy occurs eachtime a numerical test on the sign of an arithmetic ex-pression returns 0: generic answers are strictly posi-tive, and strictly negative. This paper supposes, fol-lowing Yap, that arithmetic expression tests are poly-nomials. Thus a degeneracy occurs when input pa-rameters are not algebraically independent over Q. Asthey are rational numbers (
oating point numbers arerational numbers), they are never algebraically inde-pendent, obviously. The principle of the perturbationtechnique is to symbolically perturb input parametersby in�nitely small deformations, in order to remove allalgebraic dependencies between input parameters, orat least to remove some of them; those that can causedegeneracies in such-and-such algorithm. Computa-tions are then performed on perturbed data, and algo-rithms have to handle only generic cases. A post pro-cessing step �nally cleans output: typically it mergesin�nitely close vertices, removes in�nitely short edgesand so on. Several perturbation schemes have beenproposed, in particular by Edelsbrunner and M�ucke[4], by Emiris and Canny [5], by Yap [13, 14]. Dueto lack of space, I will discuss only the latter; it isprobably the most general one.2.2 Yap's perturbationEach input parameter xi is perturbed into P (xi) =xi + �i where (�1; �2; :::�n) are in�nitely small posi-tive numbers. For performing comparisons betweenperturbed xi, when unperturbed values are equal, weneed an ordering between the �i, say, for instance:1� �1 � �2 � : : :� �nwhere � means `in�nitely greater': if a� b, then forall real values v, a � bv. Multiplying the last sortedsequence by �1 implies that:�1 � �21 � �1�2 � �1�3 : : :However, even by multiplying by all possible mono-mials, some comparisons remain undeterminate: forinstance we can freely choose the ordering between �21and �2. But if x1 = x2 = 0, we will need such anordering to compare the perturbed values of x21 andx2. So we need a consistent ordering (the good wordis `compatible' ordering) between all the monomialsin �i: `consistent' means that the ordering must notintroduce any contradiction like a < b < c < a where2a, b, c are some computed values. Assume for themoment that such an ordering is available.2Of course: a� b) a < b. < is sometimes used for �.

Let X = (x1; : : :xn) and � = (�1; : : : �n). Then eachpolynomial expression F (X) becomes, after perturba-tion, a polynomial: F (X + �). By Taylor's expansion:F (X + �) = F (X) + deg(F )Xj�j=1 1�! @j�jF (X)@X� ��where:� = (�1; : : : ; �n) is a multi-indexj�j = �1 + : : :+ �n�! = �1! : : :�n!x� = x�11 : : :x�nn .F (X + �) is a polynomial in �, and its terms can besorted by decreasing size of the monomials ��, suchthat �(�)1 � �(�)2 � �(�)3 : : :. The sign of F (X + �) isthus the sign of the �rst non null term in the sequence:(F (X); 1(�)1! @j(�)1jF (X)X(�)1 : : : 1(�)i! @j(�)ijF (X)X(�)i : : :),i.e. the sign of the �rst non null term in the sequenceof the partial derivatives of F , noted for short:(F (X); F(�)1(X); F(�)2(X); : : : F(�)i(X) : : :),the � being ordered like the ��. Of course, this se-quence has �nite length, and only the identically nullpolynomal has a sequence with all terms equal to 0.This last formulation for the sign of F (X) afterperturbation does not make reference to any �: it onlyuses derivatives and any compatible order on mono-mials x�. It was �rst proposed by Yap in [12] and hisproof of this perturbation scheme did not use any �.2.3 Classic compatible orderingsA total and consistent ordering between monomi-als �� is needed. `Consistent' means compatible withmultiplication of monomials, i.e. for all monomi-als m, n, k with k > 0 (as it is always the case),m < n ) mk < nk. It is equivalent and simplerto discuss consistent sign of multi-indices, instead ofconsistent ordering of monomials. Equivalence followsfrom: �� < �� , ���� < �0 = 1, sign(� � �) = +1.With this terminology, compatibility means that thesum of two positive multi-indices must be a positivemulti-index.The most frequently used compatible signs of multi-indices are the following:The lexicographic sign (lex for short): the lexsign of �=(�1; �2 : : :�n) is the sign of the �rst non null�i met in the sequence: �1; �2 : : :�n. When all �i arenull, � has lex sign 0. For example, with (�1; �2) andtotal degree smaller than 2:(0; 0) < (0; 1) < (0; 2) < (1; 0) < (1; 1) < (2; 0)) 1� �2 � �22 � �1 � �1�2 � �21.The inverse lexicographic sign (ilex for short):the ilex sign of �=(�1; �2 : : : �n) is the lex sign of:(�n; �n�1 : : :�1). For example:



(0; 0) < (1; 0) < (2; 0) < (0; 1) < (1; 1) < (0; 2)) 1� �1 � �21 � �2 � �1�2 � �22.The total then lexicographic sign (tlex forshort): the tlex sign of �=(�1; �2 : : : �n) is the lexsign of (j�j; �1; �2 : : : �n), with j�j = �1+�2+ : : : �n.It is also the lex sign of (j�j; �1; �2 : : :�n�1). For ex-ample:(0; 0) < (0; 1) < (1; 0) < (0; 2) < (1; 1) < (2; 0)) 1� �2 � �1 � �22 � �1�2 � �21.The total then inverse lexicographic sign(tilex for short): the tilex sign of �=(�1; �2 : : :�n)is the ilex sign of (�1; �2 : : : �n; j�j). It is also theilex sign of (�2 : : : �n; j�j). For example:(0; 0) < (1; 0) < (0; 1) < (2; 0) < (1; 1) < (0; 2)) 1� �1 � �2 � �21 � �1�2 � �22.2.4 Ordering representationLet (
0;
1; : : :
n) be in�nitely big numbers, or-dered by some compatible order. We say we have a`representation' of this order if we can express all 
i,and all their power products, with a single, unique in-�nite integer, say: !. Having a single in�nite number! is interesting, because the ordering is obvious andintuitive:: : :!2 � !1 � 1� !�1 � !�2 : : :There is no more the question of ordering in a consis-tent way 
20 and 
1 and so on. Then this representa-tion can give a more intuitive insight into orders andin�nitesimals. I discuss in�nitely big numbers for con-venience of notation but results are easily extended toin�nitely small numbers by considering negative pow-ers of ! and 
i. Suppose we set:
0 = !, 
1 = 
!0 , 
2 = 
!1 : : : , 
k = 
!k�1Here it becomes convenient to de�ne a logarithm inbasis !:L(x) = log(x)=log(!).Then we have:L(
0) = L(!) = 1L(
1) = L(
!0 ) = !L(
2) = L(
!1 ) = !2...L(
k) = L(
!k�1) = !kTo compare monomials in 
i, we now use Logarithms.For instance:L(
53
31
20) = 5!3 + 3! + 2 = [5 0 3 2]!We see that the Logarithm of a monomial is just anumber expressed in basis !, and it is also the multi-index of the monomial, but written in reverse order.So power products of these 
i are ordered in reverselexicographic order.

I now give a representation for a total then inverselexicographic order. Let (G0; G1; G2) be 3 (the gener-alization is left to the reader) in�nitely big numbers,ordered this way, that is:G0� G1 � G2 � G20 � G0G1� G21 � G0G2 � G1G2 � G22 � G30 : : :We have:Gt00 Gt11 Gt22 > 1, (t0 t1 t2) >tilex (0 0 0), (t0 t1 t2 t0 + t1 + t2) >ilex (0 0 0 0), (t1 t2 t0 + t1 + t2) >ilex (0 0 0)Here we can suppress t0, because scanning the se-quence: t0 + t1 + t2; t2; t1; t0, one must �nd a �rstterm greater than 0, all the previous being null, byde�nition of this order. When in fact t0 cannot be the�rst term greater than 0: otherwise t0+ t1+ t2 wouldbe non nul, a contradiction. Now:(t1 t2 t0 + t1 + t2) >ilex (0 0 0), 
t10 
t21 
t0+t1+t22 > 1So one representation amongst others for (G0; G1; G2)can be obtained by identifying 
t10 
t21 
t0+t1+t22 andGt00 Gt11 Gt22 . Thus:G0 = 
2 and L(G0) = !2G1 = 
0
2 and L(G1) = !2 + 1G2 = 
1
2 and L(G2) = !2 + !The reader can verify that, as it must be:L(G0) < L(G1) < L(G2) < L(G20) < L(G0G1)< L(G21) < L(G0G2) < L(G1G2) < L(G22) < : : :This section has shown that:� >tilex (0 0 0), � 0 0 11 0 10 1 1 ! >ilex (0 0 0)and a natural question arises: is any compatible order� on multi-index reducible to ilex order by a lineartransformation on multi-index, i.e. is there a matrixM� such that � >� (0 : : :0) , �M� >ilex (0 : : :0) ?The answer is obviously positive for lex, ilex, tlex andtilex order (for instance Mlex is the n by n matrix ob-tained by reversing columns of the identity matrix). Infact, it is a general property of all compatible orders,as next section shows.2.5 Compatible signs propertiesThis section summarizes known properties of allcompatible signs, already published in various forms;see for instance [10]. It is convenient to see multi-indices as points in ZZn. The goal is to partition ZZnin P , �P and 0n: P is the set of positive multi-indices,having sign +1; �P is the set of negative multi-indices,having sign �1; 0n = (0; 0 : : :) is the only multi-indexwith sign 0. Sometimes notation P� will be used forthe set of positive points of order �. Clearly, P and�P are symmetrical relatively to 0n. We have thefollowing properties:



Property P1. � 2 P , � 2 P ) �+ � 2 P .Proof: compatibility.Property P2. � 2 P , � 2 IN+ ) �� 2 P .Proof: �� = �+ �+ : : : ; � times; then P1.Property P3. �� 2 P , � 2 ZZn and � 2 IN+ ) � 2P .Proof: clearly � 6= 0n; suppose � =2 P ) �� 2 P )�(��) 2 P ) �� =2 P : a contradiction.Property P4. P and �P are convex.Proof: � 2 P , � 2 P , and suppose 
 = ab�+ b�ab � 2ZZn with 0 < a < b, a and b 2 IN+. Then a� 2 P byP2, and (b � a)� 2 P by P2; thus a� + (b � a)� 2 Pby compatibility (P1). Thus 
 2 P by P3.Now it is clear that P and �P are, roughly speak-ing, two halfspaces of ZZn. More precisely, there is ahyperplane Hn�1 with dimension n � 1, crossing 0n,such that all points on one side are positive, all pointson the other side are negative. Recursively, there isan hyperplane Hn�2 in Hn�1, crossing 0n, such thatall points of Hn�1 on one side of Hn�2 are positive,all points on the other side are negative, and so on,by iteration on dimension, until hyperplane H0 = 0nis reached.Thus it is possible, for all compatible ordering andsign �, to �nd a `good' basis for �: (b1; b2 : : : bn)where multi-index x has coordinates (x1; x2 : : : xn)and where � sign of x is nothing else but, say, thelexicographic sign of (x1; x2 : : :xn) {supposing lex isyour favorite compatible sign. Such a good basis isbuilt as follow: If n = 1, take for b1 any positive pointfor �. Otherwise letHn�1 be the hyperplane with onlynegative points on one side, and only positive pointson the other side; let Bn�1 be a good basis of Hn�1and Pn any positive point not lying in Hn�1. Then(Pn; Bn�1) is a good basis. Thus:Property P5. All compatible orders have a good ba-sis.In other words, all compatible orders on multi-indices are reduced to lex (or ilex or tlex or tilexor : : : ) order by a linear transformation. Thus all com-patible orders have a representation.Any ordering has a lot of good bases. Suppose thata multi-index has coordinates (x1; x2 : : :xn) in a goodbasis, and (y1; y2 : : : yn) in another good basis. Let Mbe the n by n matrix such that y = xM . Clearly Mcan not be any invertible matrix. More precisely:M must `work' for all x, i.e. for all x, y = xMmust have the same lex sign as x. Either x1 6= 0, andsincey1 =Pni=1 xiMi;1must have same sign as x1, the only possibility isM1;1to be strictly positive, and Mi>1;1 to be 0. Eitherx1 = 0, and so y1 = 0; in this case, the sign of x is

the lex sign of (x2; x3 : : : xn), and (y2; y3 : : : yn) musthave the same lex sign.y2 =Pni=1 xiMi;2 = x1M1;2 +Pni=2 xiMi;2=Pni=2 xiMi;2.So M1;2 does not matter, M2;2 must be positive, andMi>2;2 must be null. And so on. Thus:Property P6. Multi index y = xM has same lex signas x i� M is a n by n upper triangular matrix, withall diagonal elements strictly positive.3 A new approach: an �-arithmeticTo explicitly represent � expansions, a natural ideais to use `streams' i.e. (potentially) in�nite lists. Somekinds of streams and continuations have already beenused in an explicit way to represent continued frac-tion expansions [11], and in an implicit way in on-linearithmetic [6].3.1 Lazyness and streamsStreams are already available in functional lan-guages [8], such as LazyML, Scheme, Haskell, Mirandato cite a few. These languages allow delaying compu-tations while their results are not needed, and so theyallow us to de�ne and use streams, lists of elementswhich are created only when needed. With such lan-guages, implementing a perturbation library is veryeasy. However, in the real world, these languages arestill considered much too exotic. So I now describehow streams can be partially simulated in usual pro-gramming languages such as Fortran, Pascal, C, C++,Lisp, Smalltalk, Modula : : :These streams cannot beas powerful as the inspiring ones; but they will be suf-�cient for the needs of the perturbation technique.Using object-oriented terminology, a stream s ofitems is an object answering the following questions:Available?(s): Is the �rst item of s available ?Head(s), Tail(s): If available, s returns a pointeron its �rst item, and a pointer on its tail: anotherstream.Expert(s): Otherwise, s returns a pointer on its`expert': e. Expert e is an object, may be with someprivate �elds the description of which depends on itsexact class. These �elds will enable e to answer to thefollowing messages:ComputeHead(e): e computes the �rst item of s.ComputeTail(e): e computes the tail of s.Finally, a stream s replies to two other messages:ForceHead(s), ForceTail(s): s returns its head,or its tail, be they available or not; if not, s forcesevaluation by using its expert e.



3.2 A naive perturbationAs an example, I �rst present a naive perturbationscheme, where each input parameter x is perturbedinto a sequence with in�nite length:x+ x1�1 + x2�2 + : : :,where xi are by default random integers or rationalnumbers. There is only one �, the same for all x: sothere is no more ordering problems. x+ x1�+x2�2 : : :is represented by a stream (x; x1; x2 : : :), beginning bythe non perturbed value x, and whose expert is able togenerate random integers (or rational) xi when askedfor. Addition and multiplication must be rede�ned tocope with such � streams. Division can be de�ned butis useless (see below). For conciseness, I detail onlymultiplication:(x0 + x1�+ x2�2 + : : :)(y0 + y1�+ y2�2 + : : :)= x0y0+(x0y1+x1y0)�+(x0y2+x1y1+x2y0)�2+: : :or with another notation, more recursive:(x0+�X1)(y0+�Y1) = x0y0+�(x0Y1+y0X1+�X1Y1)The product of two streams is a new allocated stream,whose expert has class (say) ExpertProduct; this ex-pert has two private �elds X0 and Y0 referencingthe two operands. In ExpertProduct class, meth-ods ComputeHead(e) and ComputeTail(e) �rst re-cover streams X0 and Y0 to be multiplied, then askfor �rst items of X0 and Y0: x0 = ForceHead(X0)and y0 = ForceHead(Y0). Read access to x0 andy0 can force some evaluations but recursion automat-ically takes care of that. ComputeHead(e) then re-turns x0y0. ComputeTail(e) asks for tails of X0 andY0: X1 = ForceTail(X0) and Y1 = ForceTail(Y0),and then returns the new stream: a0Y1 + b0X1 +stream(0; X1Y1); stream(f; s) built a stream whose�rst item is available element f , and whose tail isstream s. Note method ComputeTail() recursivelycalls addition of streams and multiplication betweentwo streams or between a scalar and a stream.3.3 Computing signThe sign of a stream is the sign of its �rst non nullitem: this method is trivial to implement and gener-ally works �ne. However, the perturbation techniquedoes not remove all nullities, because xk � xk is al-ways null, and h(xk) � h(xk) too, where h() is anyfunction. This kind of thing can happen, for instance,when testing the location of a vertex P relatively tosome segment s, incident to P , by naively computingthe sign of AsXP + BsYP + Cs. Note that it cannothappen with other segments, non incident to P , be-cause of the perturbation. When performing such apathological test, the user of a naive perturbation willface a problem: the comparison will never stop. Thereare two possible viewpoints:1. Pathological tests are mistakes of the program-mer. In the previous example, the informed program-mer must �rst verify if segment s is not incident to thevertex by using topological information stored in his

data structures. Possibly the library provides a (pos-sibly slow) debug mode to detect pathological tests.2. The library must detect all equalities or nullitiesin �nite time, and quickly: the programmer is allowedto use pathological comparisons.Detecting nullity can be done with few symboliccomputations: each stream xk must be considered as asymbolic variable, and operations +, -, *, / only createmultivariate polynomials p(x1; x2; :::xn) or rationalpolynomial functions p(x1; x2; :::xn)=q(x1; x2; :::xn).By hypothesis (the perturbation), all these variablesare not only di�erent, but also algebraically indepen-dent; that means they never verify some algebraicequation, like, say x21 � x2 = 0. So the only way for apolynomial p(x1; x2; :::xn) (or a rational function) tobe null is to be identically null. Symbolic computa-tions of sum, product, division on rational polynomialfunctions are straightforward, once the symbolic def-inition of the streams at hand is available -as it isthe case here. Though simple, these symbolic compu-tations are slow and so the second approach, allowingpathological tests, seems not to be practical, unless weuse a fast but probabilistic test: if p(x1; x2; :::xn) = 0modulo a big enough prime integer for random xi,then p is likely identically null [2, 7, 9]. This approachremains to be investigated.3.4 Implementing Yap's perturbationLet us now study implementing Yap's perturbationwith �-streams. First these streams have always �-nite length. So there is no termination problem whentesting the sign of a stream, or comparing two equalstreams. However, to ensure e�ciency, the program-mer always has to avoid pathological tests.Then stream items are terms a���, where a� isa rational number, and �� is a monomial (��11 , ��22 ,��33 : : : ��nn ). Each term is thus represented by a ratio-nal number: a� and by a multi-index: �. A multi-index � is represented by, say, a list (or a dynamicallyallocated array) of couples (i; �i 6= 0) representing ��ii ;i and �i are integers. When using lex (ilex) ordering,it is convenient to sort couples by increasing (decreas-ing) i. When using tlex or tilex ordering, total de-gree can be inserted �rst in this list. This multi-indexrepresentation is of course more compact than a vec-tor of n degrees: (�1; �2 : : : �n) (n the number of in-put parameters), because most often used monomialsare very sparse; moreover, in on-line applications, nevolves at run time.Multiplication is now detailed. Expert e for com-puting the �rst term and the tail of the productC = AB contains in its private �elds pointers onthe two operands A and B. Let A = a�� + A0and B = b�� + B0 where a�� is obtained by callingForceHead(A), A0 by calling ForceTail(A), and sym-metrically for b�� and B0. To compute the �rst termof AB, ComputeHead(e) returns ab��+�. To com-pute the tail of AB, ComputeTail(e) returns the new



stream: a��B0 + b��A0+A0B0, recursively using addi-tions and multiplications.The expert for adding previous streams A and Bbehaves as follows: if �� � ��, ComputeHead returnsa��, otherwise if �� � �� , it returns b��, otherwise(� = �) it returns3 (a + b)��. Following these cases,ComputeTail returns: A0 + B, or A +B0 or A0 + B0.In the worst case, Yap's perturbation is ine�cient,as all terms of the stream have to be computed; thestream has O(nd) terms, with n the number of oc-curing parameters and d the degree of the polynomialrepresented by the stream. However, in practice, theworst case seldom happens, or, more precisely, it hap-pens only with a naive programming style, i.e. whenperforming pathological tests. A suitable program-ming style (called `informed' style in the sequel) easilyavoids such bugs.3.5 Another implementationAnother way to implement Yap's perturbation usestowers of in�nitesimal extensions:K0 = Q, K1 = K0[�1], K2 = K1[�2] : : : .Suppose an arithmetic (+;�; �; <;=) exists to com-pute in an ordered ring K; initially,K = K0 = Q. Anin�nitesimal extension of K by a symbolic variable �,noted K[�], is a new ordered ring, whose elements arepolynomials p(�) =P ai�i, with ai 2 K. De�nition ofsum and product is straightforward (mathematicallyspeaking, K[�] is a vector space over K, with in�nitedimension). Moreover, we decide that � is positive andsmaller than all positive values in K. So the sign ofp(�) = P ai�i is the sign of the �rst non vanishingterm ai, with ai sorted by increasing i. Thus all op-erations (+;�; �; <;=) in K[�] have been reduced tooperations in K.In this last implementation, an element of Ki =Ki�1[�i] is thus represented by a stream of elementsof Ki�1. For instance, the polynomial represented inthe previous implementation by stream (with, say, lexorder):a0;0 + a0;1�2 + a0;2�22 + a1;0�1 + a1;1�1�2 + a2;0�21will now be represented by:[a0;0 + a1;0�1 + a2;0�21] + [a0;1 + a1;1�1]�2 + [a0;2]�22.This last formulation implicitly uses ilex order.3.6 User's control on perturbationPerturbation schemes were previously considered tobe `black boxes', thus users had no control on pertur-bation: for instance it was impossible to control theperturbation sign for each parameter, or to perturb apoint in such a way so that it stays on a given straightline or semi straight line. With our �-arithmetic, it is3It is better to remove null terms: 0��.

very easy for the user to specify the sign of a pertur-bation. He just writes (up to Lisp syntax): x + �, orx� � as he needs.Suppose now p and q are two given points, P and Qare corresponding perturbed values of p and q; a pointM is needed, such that M is very close to P and be-longs to perturbed edge PQ. First create �M (or reusea previous �); then de�ne M = P + �M (Q � P ), thatis (with non homogeneous coordinates, say): de�neMx = Px+�M (Qx�Px) andMy = Py+�M (Qy�Py).Of course, it works also with the naive perturbation,and with homogeneous coordinates. Thus the controlby the user is straightforward.3.7 Handling divisionThere are two simple ways to handle division. The�rst is to use homogeneous coordinates. The second isto represent a perturbed number not by one �-stream,but by two �-streams: a numerator and a denomina-tor; the rest (implementing+;�; �; =; <;=) is obvious.Note, however, that it is not possible to reduce a frac-tion ab with a and b two streams: the computation ofgcd(a; b) will force evaluations.3.8 Do we really need in�nite ?For convenience and simplicity, �, ! and 
 used inthis paper have been �rst de�ned as in�nitely smallor in�nitely big numbers. However, we do not need somuch: it is su�cient that all real values met duringcomputation are greater (smaller) than � (!).Suppose for instance the naive perturbation is used.Roughly speaking, it is like computing with numbersexpressed in basis ! = ��1 big enough to assure nocarry can occur during computation. Some digits canbe negative, as in redundant notation used in on-linearithmetic [6]. Let m be such that all digits met atrun time have absolute value lower than m. Oncethe computation is done, m can be known; thus it ispossible to assign an actual numeric value to ! and �To preserve order between � expansions (consider forinstance ! � m > m), it su�ces to choose a basis! greater than 2m. Then it is possible to visualizeperturbed data as ordinary ones (say, for debugingpurposes). The same holds for Yap's arithmetic.4 ExperimentsYap's and naive �-arithmetic have been tested witha simple 2D geometric algorithm: it detects generic in-tersection points between n segments with 12n(n � 1)tests, and uses homogeneous coordinates (x; y; h) withh always positive. Coordinates of the 2n non per-turbed vertices are set with a random rational valueamongst v distinct possible ones: with v = 1, all ver-tices are confused and the situation is highly degener-ate; at the other end of the spectrum, when v is muchgreater than pn, there is next to no degeneracy.



v 1 2 3 5 10 15 20Yap/Rat 2: 14: 10: 6: 5: 4: 4:Naive/Rat 125: 14: 8: 5: 5: 4: 4:Table 1: Time ratios, n = 50 segments.v 1 2 3 5 10 15 20ig 0 28 146 242 287 304 224i� 0 202 242 338 321 318 238xt 0 835 511 547 429 350 273xm 0 4:13 2:11 1:61 1:33 1:10 1:15x[ ] 0; 0 0; 10 0; 10 0; 10 0; 7 0; 4 0; 4ht 0 798 502 546 429 350 273hm 0 3:90 2:07 1:61 1:33 1:10 1:15h[ ] 0; 0 0; 9 0; 9 0; 9 0; 7 0; 4 0; 4Table 2: Yap's �-arithmetic, n = 50 segments.Table 1 shows that, with n = 50 segments, ver-sions with �-arithmetic are roughly speaking 15 timesslower4 than the pure rational one with very highly de-generate data, and 4 or 5 times slower with a `normalrate of degeneracies' or next to no degeneracy. Usinggreater values for n, or another algorithm, does notchange orders of these ratios a lot.In tables 2 and 3, ig is the number of generic inter-section points, detected by the algorithmwith pure ra-tional arithmetic; i� the number of intersection pointswhen using �-arithmetic and the same algorithm; xtthe total length of streams for x coordinates of all in-tersection points; xm = xt=i� the average length; x[ ]the min and max length. Idem for ht, hm, h[ ] withh coordinates. When using naive �-arithmetic, valuesht, hm and h[ ] are always equal to xt, xm and x[ ], sothey are omitted in Table 3.Full length (i.e. length with eager evaluation) forx, y streams is 33, and 17 for h streams, when usingYap's perturbation of course: with naive perturbation,full length is in�nite and eager evaluation never stops.In tables 1 and 2, lex ordering was used with Yap's�-arithmetic: Experimentally, stream length is themore often a little shorter with lex than with tlexordering. Due to lack of space, these facts and othersexperimentations (sorting intersection points by x co-ordinate, using other algorithms, and so on) are notdetailed.It's funny to see that y coordinates of intersectionpoints are never computed, before display or other use:to verify that the intersection point between two linesbelongs to a segment, the algorithm uses �rst abscissa,4When ignoring the irrelevant case v = 1.

v 1 2 3 5 10 15 20ig 0 28 146 242 287 304 224i� 347 328 328 315 328 315 240xt 1399 879 572 403 389 326 264xm 4:03 2:68 1:74 1:28 1:19 1:03 1:10x[ ] 0; 6 0; 4 0; 4 0; 3 0; 4 0; 2 0; 3Table 3: Naive �-arithmetic, n = 50 segments.and then ordinates in case of a vertical line; but dueto the perturbation, there are no more such lines...I have prefered simplicity to e�ciency when imple-menting because my goal was mainly to validate theidea of an �-arithmetic: a clever implementationwouldprobably be faster. Anyway, following these �rst ex-periments, and when an informed programming styleis used to avoid pathological tests, space and timeoverhead due to the �-arithmetic is roughly constantrelatively to pure rational arithmetic versions. Ofcourse, pure rational arithmetic is itself much slowerthan native 
oating point arithmetic, but this is an-other problem, already treated in [1].5 ConclusionThis paper has promoted the use of an �-arithmeticto remove geometric degeneracies at the lowest level.This scheme makes easy and obvious the perturba-tion control by the user, and it removes the limitationon the derivation degree. This paper has pointed outthat an informed programming style is needed to avoidpathological tests. Last but not least, this scheme iscompatible with the use of a lazy rational arithmetic5.Thus �-arithmetic appears to be an interesting toolfor Computational Geometry. However this �rst im-plementation is still too slow for practical use, andfurther work is needed to obtain faster implementa-tions.A lot of packages and programming environmentsalready provides arithmetics on big integers or big
oats. I think they will soon provide exotic arith-metics, such as lazy exact arithmetic or �-arithmetic.AcknowledgementsI don't know how to thank the anonymous refereesfor correcting about one hundred English glitches.5Empirical tests have not been performed.
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