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Abstract

Symbolic perturbation by infinitely small values re-
moves degeneracies in geometric algorithms and en-
ables programmers to handle only generic cases: there
are a few such cases, whereas there are an over-
whelming number of degenerate cases. Current per-
turbation schemes have limitations, presented below.
To overcome them, this paper proposes to use an c-
arithmetic, 1.e. to represent in an explicit way in-
finttely small numbers, and to define arithmetic oper-
ations (+,—, %, /,<,=) on them.

1 Introduction

Handling all degeneracies is a burden when im-
plementing geometric algorithms: there are a few
generic cases, but numerous degeneracies, for instance
in 2D alignments of more than two points, cocircu-
larity of more than three points, intersection of more
than two lines in a point, parallelism between lines
or between a sweeping line and segments for some
algorithms. .. Symbolic perturbation removes degen-
eracies, and so programmers, like theoreticians, can
ideally focus on the treatment of a few generic cases.
However, after reading previous papers on perturba-
tion schernes [4] [5] [13] [14] implementing and using
a perturbation library is not so easy a task.

First, whereas the principle of perturbation is very
powerful and general, implementations are often re-
stricted to some computations, typically some deter-
minant computations. Next, programmers have to
perform some kind of symbolic computations by hand,
like expanding perturbed determinants in €* and they
have to foresee what terms in € will be needed at such-
and-such moments at run time: a burden.

Yap’s perturbation technique, probably the most
powerful one, also has limitations. With Yap’s for-
mulation, the perturbation ‘black-box’, when deciding
the perturbed sign of some polynomial F'(z1,z2...2,)
needs that values of x1,x5...2, be direct input pa-
rameters: they cannot be, say, coordinates of inter-
section points computed by some algorithm; in Yap’s
terminology, derivation degree is at most 1. Practi-
cally, the programmer cannot use the same function
for testing the location of an initial vertex and the lo-
cation of an intersection point, relatively to some line.
Moreover, the programmer has to distinguish between
lines: lines defined by two input vertices, by one input
vertex and an intersection point, by two intersection

points. ... And intersection points are also of differ-
ent kinds, depending on the intersecting lines. So the
number of distinct generic cases the programmer has
to handle grows very fast indeed, (it is a quite ironic
situation, when remembering that the perturbation
technique has been introduced to remove overwhelm-
ing numbers of degenerate cases) and Yap’s formula-
tion is unusable for on-line algorithms. The 1mple-
mentation scheme proposed in this paper solves these
problems.

Actual implementations do not explicitly represent
¢ and polynomials in ¢ by data structures in the com-
puter: the e are just conceptual entities, guiding the
programmer. I discuss here a straightforward and nat-
ural scheme for implementing a perturbation library.
The main 1dea 1 I to explicitly represent, in some way,
polynomials in €¥, and to suitably redefine the basic
arithmetic operations: sum, subtraction, product, di-
vision, comparisons, so that the arithmetic itself will
remove degeneractes. This approach removes limita-
tions on derivation degree; it allows easy implemen-
tations and the comparison of several perturbations
schemes. Moreover, it gives more control to the user
on the perturbation: It becomes easy to specify spe-
cial perturbations, for instance that a given point must
stay on some given straight line, or semi straight line,
after perturbation: In previous implementations, the
user had very poor control on perturbation (typically
and symptomatically described as a ‘black box’).

Remark: when using approximate arithmetic, de-
generacies or near-degeneracies can lead to program
crashes, or topological inconsistencies in results. How-
ever, taking into account all degeneracies on one hand,
and avoiding side effects due to finite-precision arith-
metic on the other hand are two distinct problems
and must not be confused. Moreover, symbolic per-
turbation requieres an exact arithmetic. This paper
assumes a rational arithmetic is used. It can be a lazy
one, as defined in [1, 2, 3]; personally T have used the
rational arithmetic hbrary provided by Le-Lisp' 15.25.
Note that a rational arithmetic is more often sufficient
for geometric problems considered in Computational
Geometry.

Section 2 gives definitions, notations, and summa-
rizes more or less known properties on e-extensions
over a field, compatible orderings and so on. Section
3 proposes to use streams (potentially infinite lists) to

1Le-Lisp is a registered trademark by INRIA.



represent expansions in ¢. Implementation of a naive
perturbation scheme is given as a first example, then
implementation of Yap’s perturbation. Section 4 dis-
cusses first experiments.

2 Degeneracies and perturbation

2.1 Geometric degeneracies

In geometric algorithms a degeneracy occurs each
time a numerical test on the sign of an arithmetic ex-
pression returns 0: generic answers are strictly posi-
tive, and strictly negative. This paper supposes, fol-
lowing Yap, that arithmetic expression tests are poly-
nomials. Thus a degeneracy occurs when input pa-
rameters are not algebraically independent over . As
they are rational numbers (floating point numbers are
rational numbers), they are never algebraically inde-
pendent, obviously. The principle of the perturbation
technique is to symbolically perturb input parameters
by infinitely small deformations, in order to remove all
algebraic dependencies between input parameters, or
at least to remove some of them; those that can cause
degeneracies in such-and-such algorithm. Computa-
tions are then performed on perturbed data, and algo-
rithms have to handle only generic cases. A post pro-
cessing step finally cleans output: typically it merges
infinitely close vertices, removes infinitely short edges
and so on. Several perturbation schemes have been
proposed, in particular by Edelsbrunner and Miucke
[4], by Emiris and Canny [5], by Yap [13, 14]. Due
to lack of space, I will discuss only the latter; it is
probably the most general one.

2.2 Yap’s perturbation

Fach input parameter z; is perturbed into P(z;) =
z; + ¢ where (€1, €9,...€y) are infinitely small posi-
tive numbers. For performing comparisons between
perturbed x;, when unperturbed values are equal, we
need an ordering between the ¢;, say, for instance:

I>a>»a>».. . >e¢,

where > means ‘infinitely greater’: if a > b, then for
all real values v, a > bv. Multiplying the last sorted
sequence by €; implies that:

€1>>€%>>€1€2>>€1€3...

However, even by multiplying by all possible mono-
mials, some comparisons remain undeterminate: for
instance we can freely choose the ordering between ¢?
and €;. But if xy = z2 = 0, we will need such an
ordering to compare the perturbed values of z? and
Z2. So we need a consistent ordering (the good word
is ‘compatible’ ordering) between all the monomials
in ¢ ‘consistent’ means that the ordering must not
introduce any contradiction like @ < b < ¢ < a where?
a, b, ¢ are some computed values. Assume for the
moment that such an ordering is available.

20f course: a € b = a < b. < is sometimes used for <.

Let X = (21,...2,) and € = (€1, ...€,). Then each
polynomial expression F'(X) becomes, after perturba-
tion, a polynomial: F(X + ¢). By Taylor’s expansion:

deg(F)
FX+o=F(X)+
|a]=1

Loelrx)
ol oxe ¢

where:
a=(ay,...,0,) is a multi-index
o] = a1+ ...+ ap
al=al. . Lay!

z¥ =zt aln,

F(X + ¢) is a polynomial in ¢, and its terms can be

sorted by decreasing size of the monomials €%, such

that (@) > (@2 3 (@)s  The sign of F(X +¢) is

thus the sign of the first non null term in the sequence:
1 a|(f¥)1|ng2 1 3|(Q)’|F£X)

(F(X), or —x@r - ant x@n ),
1.e. the sign of the first non null term in the sequence
of the partial derivatives of F', noted for short:

(F(X), Flayu(X), Flana(X), .. Fra (X)),

the « being ordered like the €®. Of course, this se-
quence has finite length, and only the identically null
polynomal has a sequence with all terms equal to 0.

This last formulation for the sign of F(X) after
perturbation does not make reference to any ¢: i1t only
uses derivatives and any compatible order on mono-
mials ¢%. Tt was first proposed by Yap in [12] and his
proof of this perturbation scheme did not use any e.

2.3 Classic compatible orderings

A total and consistent ordering between monomi-
als €” is needed. ‘Consistent’ means compatible with
multiplication of monomials, 7.e. for all monomi-
als m, n, k with & > 0 (as it is always the case),
m < n = mk < nk. It is equivalent and simpler
to discuss consistent sign of multi-indices, instead of
consistent ordering of monomials. Equivalence follows
from: €* < ¢ & ¢*7F < =1 < sign(a — ) = +1.
With this terminology, compatibility means that the
sum of two positive multi-indices must be a positive
multi-index.

The most frequently used compatible signs of multi-
indices are the following:

The lexicographic sign (lex for short): the lex
sign of a=(av1, s . . . avpy) is the sign of the first non null
a; met in the sequence: aq, as...o,. When all a; are
null, o has lex sign 0. For example, with (a1, a2) and
total degree smaller than 2:

(0,0) < (0,1) < (0,2) < (1,0) < (1,1) < (2,0)
1> a>a>a>an>d
The inverse lexicographic sign (ilex for short):

the dlex sign of a=(a1,@2...ap) 18 the lex sign of:
(an,¥p_1...a1). For example:



(0,0) < (1,0) < (2,0) < (0,1) < (1,1) < (0,2)
S 1> 6> > 6> €16 > €5

The total then lexicographic sign (tlex for
short): the tlex sign of a=(a1,as...ay) is the lex
sign of (], a1, 2. .. o), With |o] = a1 +aa+. .. .
It is also the lex sign of (|a|, @1, ¥ ... p—1). For ex-
ample:

(0,0) < (0,1) < (1,0) < (0,2) < (1,1) < (2,0)
S 1> > > 6>

The total then inverse lexicographic sign
(tilexw for short): the tilex sign of a=(ay,aq...ay
is the ilex sign of (a1, a0...ap,|a]). It is also the
ilex sign of (ag...an, |a]). For example:

(0,0) < (1,0) < (0,1) < (2,0) < (1,1) < (0,2)
=S 16> 6> 8> 160 > €.

2.4 Ordering representation

Let (20,81,...Q,) be infinitely big numbers, or-
dered by some compatible order. We say we have a
‘representation’ of this order if we can express all ;,
and all their power products, with a single, unique in-
finite integer, say: w. Having a single infinite number
w 1s interesting, because the ordering is obvious and
intuitive:

Lkl it >w

There is no more the question of ordering in a consis-
tent way Q2 and Q; and so on. Then this representa-
tion can give a more intuitive insight into orders and
infinitesimals. I discuss infinitely big numbers for con-
venience of notation but results are easily extended to
infinitely small numbers by considering negative pow-
ers of w and ;. Suppose we set:

Q=w, U =QF, Q=0 ..., Q =Q¢_,

Here it becomes convenient to define a logarithm in
basis w:

L(x) = log(x)/log(w).

Then we have:

L(Q) = L(w) =1
L) =L()=w
o) = o

L(Q2) = L(

L) = L@ y) = o

To compare monomials in €2;, we now use Logarithms.
For instance:

L3302 =50+ 3w+2=[5 0 3 2],

We see that the Logarithm of a monomial is just a
number expressed in basis w, and it is also the multi-
index of the monomial, but written in reverse order.
So power products of these €2; are ordered in reverse
lexicographic order.

I now give a representation for a total then inverse
lexicographic order. Let (G, G1,G2) be 3 (the gener-
alization is left to the reader) infinitely big numbers,
ordered this way, that is:

Gy < G < Gy € GE < GGy
<<G%<<GOG2<<G1G2<<G%<<G8
We have:
GRGEGE > 1
= tg 14 tz) >iilex (0 0 0)
& (o t1 ty to+ti4+ta) > (0 0 0 0)
& (t ta totti+tz) > (0 0 0)
Here we can suppress {y, because scanning the se-
quence: to + t1 + to,t9,11,19, one must find a first
term greater than 0, all the previous being null, by
definition of this order. When in fact ¢y cannot be the

first term greater than 0: otherwise ¢y 4 ¢; 4+ ¢2 would
be non nul, a contradiction. Now:

(t1 t2 to+t1+12) >itee (0 0 0)
t1t20tottit+iz
o Qioblthitt 5

So one representation amongst others for (G, G1, Ga)

can be obtained by identifying QBIQ?QED‘H“HQ and
Gé”thth;. Thus:
Go = Qz and L(Go) = (.dz
G1 = QQQQ and L(Gl) = (.dz + 1
G2 = 9192 and L(Gz) = (.dz 4w
The reader can verify that, as it must be:
L(Go) < L(Gl) < L(Gz) < L(G%) < L(GoGl)
< L(G%) < L(GQGQ) < L(Gle) < L(G%) < ...
This section has shown that:
0 0 1
@ >0z (000) | 1 0 1 | >4, (000)
0 1 1

and a natural question arises: is any compatible order
o on multi-index reducible to ilex order by a linear
transformation on multi-index, i.e. is there a matrix
M, such that & >, (0...0) & aM, >y (0...0) 7
The answer is obviously positive for lex, ilex, tlex and
tilex order (for instance Mj., is the n by n matrix ob-
tained by reversing columns of the identity matrix). In
fact, it 1s a general property of all compatible orders,
as next section shows.

2.5 Compatible signs properties

This section summarizes known properties of all
compatible signs, already published in various forms;
see for instance [10]. Tt is convenient to see multi-
indices as points in ZZ". The goal is to partition Z"
in P, —P and 0,,: P is the set of positive multi-indices,
having sign 4+1; — P is the set of negative multi-indices,
having sign —1; 0, = (0,0...) is the only multi-index
with sign 0. Sometimes notation P, will be used for
the set of positive points of order ¢. Clearly, P and
— P are symmetrical relatively to 0,. We have the
following properties:



Property Pi. « € P, EP=>a+5€ P.
Proof: compatibility.

Property Po». « € P, A€ INT = Xa € P.
Proof: Ada = a+ a+ ..., A times; then P;.

Property Ps. \a € P,a € Z" and A€ INtT = o €
P.

Proof: clearly o # 0,; suppose « ¢ P = —a« € P =
A(—a) € P = Aa ¢ P: a contradiction.

Property P,. P and —P are convex.

Proof: o € P, 8 € P, and suppose v = Za + b;aﬁ €
Z" with 0 < a < b,aand b € INT. Then aa € P by
Py, and (b— a) € P by Py; thus aa+ (b—a)f € P
by compatibility (Py). Thus v € P by Ps.

Now it is clear that P and —P are, roughly speak-
ing, two halfspaces of Z". More precisely, there is a
hyperplane H,_; with dimension n — 1, crossing 0,,
such that all points on one side are positive, all points
on the other side are negative. Recursively, there is
an hyperplane H,_o in H,_1, crossing 0,, such that
all points of H,_; on one side of H,,_5 are positive,
all points on the other side are negative, and so on,
by iteration on dimension, until hyperplane Hy = 0,
is reached.

Thus 1t is possible, for all compatible ordering and
sign o, to find a ‘good’ basis for o: (by,ba... by
where multi-index x has coordinates (z1,z2...2,
and where o sign of z is nothing else but, say, the
lexicographic sign of (#1,22...2,) —supposing lex is
your favorite compatible sign. Such a good basis is
built as follow: If n = 1, take for b; any positive point
for . Otherwise let H,,_; be the hyperplane with only
negative points on one side, and only positive points
on the other side; let B,,_; be a good basis of H,_;
and P, any positive point not lying in H,_;. Then
(Pn, Bn—1) is a good basis. Thus:

Property Ps. All compatible orders have a good ba-
sis.

In other words, all compatible orders on multi-
indices are reduced to lex (or ilex or tlex or tilex
or ...)order by a linear transformation. Thus all com-
patible orders have a representation.

Any ordering has a lot of good bases. Suppose that
a multi-index has coordinates (z1,22...2,) In a good
basis, and (y1,¥2 ...yn) in another good basis. Let M
be the n by n matrix such that y = M. Clearly M
can not be any invertible matrix. More precisely:

M must ‘work’ for all #, i.e. for all #, y = «M
must have the same lex sign as z. Either z; # 0, and
since

y1 = 5=y #iMi)
must have same sign as z;, the only possibility is M; ;
to be strictly positive, and M;s11 to be 0. FEither
z1 = 0, and so y; = 0; in this case, the sign of z is

the lex sign of (za,23...2,), and (y2,ys ... yn) must
have the same lex sign.

n n
Y2 = Z%:l riMio = a1 My o+ ) o2 Mo
=) ima M.

So M 2 does not matter, Ms 2 must be positive, and
M;s2 2 must be null. And so on. Thus:

Property Ps;. Multi index y = zM has same lex sign
as x iff M is a n by n upper triangular matrix, with
all diagonal elements strictly positive.

3 A new approach: an e-arithmetic

To explicitly represent ¢ expansions, a natural idea
is to use ‘streams’ i.e. (potentially) infinite lists. Some
kinds of streams and continuations have already been
used in an explicit way to represent continued frac-
tion expansions [11], and in an implicit way in on-line
arithmetic [6].

3.1 Lazyness and streams

Streams are already available in functional lan-
guages [8], such as LazyML, Scheme, Haskell, Miranda
to cite a few. These languages allow delaying compu-
tations while their results are not needed, and so they
allow us to define and use streams, lists of elements
which are created only when needed. With such lan-
guages, implementing a perturbation library is very
easy. However, in the real world, these languages are
still considered much too exotic. So I now describe
how streams can be partially simulated in usual pro-
gramming languages such as Fortran, Pascal, C, C4++,
Lisp, Smalltalk, Modula ... These streams cannot be
as powerful as the inspiring ones; but they will be suf-
ficient for the needs of the perturbation technique.

Using object-oriented terminology, a stream s of
items is an object answering the following questions:

Available?(s): Ts the first item of s available ?

Head(s), Tail(s): If available, s returns a pointer
on its first item, and a pointer on its tail: another
stream.

Expert(s): Otherwise, s returns a pointer on its
‘expert’: e. Frpert e is an object, may be with some
private fields the description of which depends on its
exact class. These fields will enable e to answer to the
following messages:

ComputeHead(e): e computes the first item of s.
ComputeTail(e): e computes the tail of s.
Finally, a stream s replies to two other messages:

ForceHead(s), ForceTail(s): s returns its head,
or its tail, be they available or not; if not, s forces
evaluation by using its expert e.



3.2 A naive perturbation

As an example, I first present a naive perturbation
scheme, where each input parameter x is perturbed
into a sequence with infinite length:

1 2
T+ xie + rac”+ ..

where z; are by default random integers or rational
numbers. There is only one ¢, the same for all z: so
there is no more ordering problems. x + zie+ z5¢? . ..
is represented by a stream (x, #1, %2 . ..), beginning by
the non perturbed value x, and whose expert is able to
generate random integers (or rational) #; when asked
for. Addition and multiplication must be redefined to
cope with such ¢ streams. Division can be defined but
is useless (see below). For conciseness, I detail only
multiplication:

(zo+x1e+ 22 + .. ) (Yo + yre+ yac +..))
= zoyo+ (ot +x1y0)e+(zoy2+ 2101 +l‘2yo)€2+~ .
or with another notation, more recursive:

(o+eX1)(yo+eY1) = zoyot+e(roYi+yo X1+€eX1Y7)

The product of two streams is a new allocated stream,
whose expert has class (say) Eapert Product; this ex-
pert has two private fields Xy and Yy referencing
the two operands. In EapertProduct class, meth-
ods Compute Head(e) and ComputeTail(e) first re-
cover streams Xy and Yy to be multiplied, then ask
for first items of Xy and Yy: @9 = ForceHead(Xy)
and yo = ForceHead(Yy). Read access to xp and
yo can force some evaluations but recursion automat-
ically takes care of that. ComputeHead(e) then re-
turns zoyo. ComputeTail(e) asks for tails of Xy and
Yo: X1 = ForceTail(Xy) and Y, = ForceTail(Yy),
and then returns the new stream: agYy + bg X1 +
stream(0, X1Y1); stream(f,s) built a stream whose
first item is available element f, and whose tail 1s
stream s. Note method ComputeTail() recursively
calls addition of streams and multiplication between
two streams or between a scalar and a stream.

3.3 Computing sign

The sign of a stream is the sign of its first non null
item: this method is trivial to implement and gener-
ally works fine. However, the perturbation technique
does not remove all nullities, because z; — x is al-
ways null, and h(zy) — h(zy) too, where h() is any
function. This kind of thing can happen, for instance,
when testing the location of a vertex P relatively to
some segment s, incident to P, by naively computing
the sign of A;Xp + B;Yp + C;s. Note that it cannot
happen with other segments, non incident to P, be-
cause of the perturbation. When performing such a
pathological test, the user of a naive perturbation will
face a problem: the comparison will never stop. There
are two possible viewpoints:

1. Pathological tests are mistakes of the program-
mer. In the previous example, the informed program-
mer must first verify if segment s is not incident to the
vertex by using topological information stored in his

data structures. Possibly the library provides a (pos-
sibly slow) debug mode to detect pathological tests.

2. The library must detect all equalities or nullities
in finite time, and quickly: the programmer is allowed
to use pathological comparisons.

Detecting nullity can be done with few symbolic
computations: each stream xj must be considered as a
symbolic variable, and operations +, -, *, / only create
multivariate polynomials p(x1, s, ...2,,) or rational
polynomial functions p(x1, 29, ...20)/q(21, 22, ...200).
By hypothesis (the perturbation), all these variables
are not only different, but also algebraically indepen-
dent; that means they never verify some algebraic
equation, like, say x? — x5 = 0. So the only way for a
polynomial p(xy, #2,...2,) (or a rational function) to
be null is to be identically null. Symbolic computa-
tions of sum, product, division on rational polynomial
functions are straightforward, once the symbolic def-
inition of the streams at hand is available -as it is
the case here. Though simple, these symbolic compu-
tations are slow and so the second approach, allowing
pathological tests, seems not to be practical, unless we
use a fast but probabilistic test: if p(xy, za,..2p) = 0
modulo a big enough prime integer for random z;,
then p is likely identically null [2, 7, 9]. This approach
remains to be investigated.

3.4 Implementing Yap’s perturbation

Let us now study implementing Yap’s perturbation
with e-streams. First these streams have always fi-
nite length. So there is no termination problem when
testing the sign of a stream, or comparing two equal
streams. However, to ensure efficiency, the program-
mer always has to avoid pathological tests.

Then stream items are terms a,¢®, where a, is
a rational number, and ¢* is a monomial (], €52,
€3%...€2"). Bach term is thus represented by a ratio-
nal number: a, and by a multi-index: «. A multi-
index o is represented by, say, a list (or a dynamically
allocated array) of couples (4, o; # 0) representing €;'*;
i and ay are integers. When using lex (ilex) ordering,
it is convenient to sort couples by increasing (decreas-
ing) 7. When using tlex or tilex ordering, total de-
gree can be inserted first in this list. This multi-index
representation is of course more compact than a vec-
tor of n degrees: (a1, a3...a,) (n the number of in-
put parameters), because most often used monomials
are very sparse; moreover, in on-line applications, n
evolves at run time.

Multiplication is now detailed. Expert e for com-
puting the first term and the tail of the product
C = AB contains in its private fields pointers on
the two operands A and B. Let A = ae® + A’
and B = be’ + B’ where ac® is obtained by calling
ForceHead(A), A’ by calling ForceTail(A), and sym-
metrically for be® and B’. To compute the first term

of AB, ComputeHead(e) returns abe®t?. To com-
pute the tail of AB, ComputeTail(e) returns the new



stream: ae® B’ 4+ be? A’ + A’ B’ recursively using addi-
tions and multiplications.

The expert for adding previous streams A and B
behaves as follows: if € > ¢’ ComputeH ead returns
ae®, otherwise if €® < €?, it returns be®, otherwise
(a = ) it returns® (a + b)e®. Following these cases,
ComputeTail returns: A’ + B, or A+ B’ or A’ + B’.

In the worst case, Yap’s perturbation is inefficient,
as all terms of the stream have to be computed; the
stream has O(n?) terms, with n the number of oc-
curing parameters and d the degree of the polynomial
represented by the stream. However, in practice, the
worst case seldom happens, or, more precisely, it hap-
pens only with a naive programming style, z.e. when
performing pathological tests. A suitable program-
ming style (called ‘informed’ style in the sequel) easily
avoids such bugs.

3.5 Another implementation

Another way to implement Yap’s perturbation uses
towers of infinitesimal extensions:

[(0 = Q, [\71 = [(0[61], [\72 = [(1[62] e

Suppose an arithmetic (4, —, *, <, =) exists to com-
pute in an ordered ring K; initially, K = Ky = Q. An
infinitesimal extension of K by a symbolic variable ¢,
noted K¢, is a new ordered ring, whose elements are
polynomials p(¢) = > a;€*, with a; € K. Definition of
sum and product is straightforward (mathematically
speaking, K[e] is a vector space over K, with infinite
dimension). Moreover, we decide that € is positive and
smaller than all positive values in K. So the sign of
ple) = > a;e is the sign of the first non vanishing
term a;, with a; sorted by increasing ¢. Thus all op-
erations (4, —,*,<, =) in K[e] have been reduced to
operations in K.

In this last implementation, an element of K; =
K;_1[€;] is thus represented by a stream of elements
of K;_1. For instance, the polynomial represented in
the previous implementation by stream (with, say, lex
order):

2 2
Qg0+ ap 1€2 + Qo 2€5 + a1 0€1 + a1 1€1€2 + a2 o€7
will now be represented by:
2 2
[ao,0 + a1 061 + a2 0€7] + [ao0,1 + a1 1€1)€2 + [ao 2]€5.

This last formulation implicitly uses ilex order.

3.6 User’s control on perturbation

Perturbation schemes were previously considered to
be ‘black boxes’, thus users had no control on pertur-
bation: for instance it was impossible to control the
perturbation sign for each parameter, or to perturb a
point in such a way so that it stays on a given straight
line or semi straight line. With our e-arithmetic, it is

3Tt is better to remove null terms: 0e®.

very easy for the user to specify the sign of a pertur-
bation. He just writes (up to Lisp syntax): x + €, or
xz — € as he needs.

Suppose now p and ¢ are two given points, P and
are corresponding perturbed values of p and ¢; a point
M 1is needed, such that M 1is very close to P and be-
longs to perturbed edge PQ. First create ey (or reuse
a previous €); then define M = P 4 e (Q — P), that
is (with non homogeneous coordinates, say): define
My, =P+ em(Qp— Py) and My, = Py+en(Qy — Py).
Of course, it works also with the naive perturbation,
and with homogeneous coordinates. Thus the control
by the user is straightforward.

3.7 Handling division

There are two simple ways to handle division. The
first is to use homogeneous coordinates. The second is
to represent a perturbed number not by one e-stream,
but by two e-streams: a numerator and a denomina-
tor; the rest (implementing +, —, %, /, <, =) is obvious.
Note, however, that it is not possible to reduce a frac-

tion § with @ and b two streams: the computation of

ged(a, b) will force evaluations.

3.8 Do we really need infinite ?

For convenience and simplicity, ¢, w and £ used in
this paper have been first defined as infinitely small
or infinitely big numbers. However, we do not need so
much: it is sufficient that all real values met during
computation are greater (smaller) than ¢ (w).

Suppose for instance the naive perturbation is used.
Roughly speaking, it is like computing with numbers
expressed in basis w = ¢~ ! big enough to assure no
carry can occur during computation. Some digits can
be negative, as in redundant notation used in on-line
arithmetic [6]. Let m be such that all digits met at
run time have absolute value lower than m. Once
the computation 1s done, m can be known; thus it is
possible to assign an actual numeric value to w and ¢
To preserve order between ¢ expansions (consider for
instance w — m > m), it suffices to choose a basis
w greater than 2m. Then it is possible to visualize
perturbed data as ordinary ones (say, for debuging
purposes). The same holds for Yap’s arithmetic.

4 Experiments

Yap’s and naive e-arithmetic have been tested with
asimple 2D geometric algorithm: it detects generic in-
tersection points between n segments with %n(n -1
tests, and uses homogeneous coordinates (x, y, h) with
h always positive. Coordinates of the 2n non per-
turbed vertices are set with a random rational value
amongst v distinct possible ones: with v = 1, all ver-
tices are confused and the situation is highly degener-
ate; at the other end of the spectrum, when v is much
greater than \/n, there is next to no degeneracy.



v 1 2 3 |5 |10]15]20
Yap/Rat 2. | 14.] 10. | 6. . .
Naive/Rat | 125. | 14. | 8. | 5. | 5. | 4. | 4.

>
<2
N
e

Table 1: Time ratios, n = 50 segments.

v 1 2 3 5 10 15 20
ig 0 28 146 | 242 | 287 | 304 | 224
2e 0 202 | 242 | 338 | 321 | 318 | 238
Ty 0 835 | 511 | 547 | 429 | 350 | 273
T, 0 413 | 2.11 | 1.61 | 1.33 | 1.10 | 1.15

2111 0,0 0,10 0,10 0,10 | 0,7 | 0,4 | 0,4

he | 0 | 798 | 502 | 546 | 429 | 350 | 273
Bow | 0 390|207 ] 161 | 1.33] 1.10 | 1.15
hiy 10,009 | 09]09]07]04]04

Table 2: Yap’s e-arithmetic, n = 50 segments.

Table 1 shows that, with n = 50 segments, ver-
sions with e-arithmetic are roughly speaking 15 times
slower? than the pure rational one with very highly de-
generate data, and 4 or 5 times slower with a ‘normal
rate of degeneracies’ or next to no degeneracy. Using
greater values for n, or another algorithm, does not
change orders of these ratios a lot.

In tables 2 and 3, 7, is the number of generic inter-
section points, detected by the algorithm with pure ra-
tional arithmetic; 7. the number of intersection points
when using e-arithmetic and the same algorithm; z;
the total length of streams for z coordinates of all in-
tersection points; 2, = x/i. the average length; z[
the min and max length. Idem for hy, hy,, by with
h coordinates. When using naive e-arithmetic, values
hi, hy, and hpj are always equal to ¢, 2n, and z[y, so

they are omitted in Table 3.

Full length (i.e. length with eager evaluation) for
z, y streams is 33, and 17 for h streams, when using
Yap’s perturbation of course: with naive perturbation,
full length is infinite and eager evaluation never stops.

In tables 1 and 2, lexz ordering was used with Yap’s
e-arithmetic: Experimentally, stream length is the
more often a little shorter with lexz than with tlex
ordering. Due to lack of space, these facts and others
experimentations (sorting intersection points by # co-
ordinate, using other algorithms, and so on) are not
detailed.

It’s funny to see that y coordinates of intersection
points are never computed, before display or other use:
to verify that the intersection point between two lines
belongs to a segment, the algorithm uses first abscissa,

4When ignoring the irrelevant case v = 1.

v 1 2 3 5 10 15 20

ig 0 28 146 | 242 | 287 | 304 | 224
Te 347 | 328 | 328 | 315 | 328 | 315 | 240

z. | 1399 | 879 | 572 | 403 | 389 | 326 | 264
e | 4.03 | 2,68 | 1.74 | 1.28 | 1.19 | 1.03 | 1.10
21| 0,6 |04 |04]03]04]02]03

Table 3: Naive e-arithmetic, n = 50 segments.

and then ordinates in case of a vertical line; but due
to the perturbation, there are no more such lines...

I have prefered simplicity to efficiency when imple-
menting because my goal was mainly to validate the
idea of an e-arithmetic: a clever implementation would
probably be faster. Anyway, following these first ex-
periments, and when an informed programming style
is used to avoid pathological tests, space and time
overhead due to the e-arithmetic is roughly constant
relatively to pure rational arithmetic versions. Of
course, pure rational arithmetic is itself much slower
than native floating point arithmetic, but this is an-
other problem, already treated in [1].

5 Conclusion

This paper has promoted the use of an e-arithmetic
to remove geometric degeneracies at the lowest level.
This scheme makes easy and obvious the perturba-
tion control by the user, and it removes the limitation
on the derivation degree. This paper has pointed out
that an informed programming style is needed to avoid
pathological tests. Last but not least, this scheme is
compatible with the use of a lazy rational arithmetic®.
Thus e-arithmetic appears to be an interesting tool
for Computational Geometry. However this first im-
plementation is still too slow for practical use, and
further work is needed to obtain faster implementa-
tions.

A lot of packages and programming environments
already provides arithmetics on big integers or big
floats. 1 think they will soon provide exotic arith-
metics, such as lazy exact arithmetic or e-arithmetic.
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