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ABSTRACT
This paper shows that considering the group generated by
orthogonal symmetries relatively to lines may give very short
and readable proofs of geometric theorems. A short and
readable proof of the fundamental Pascal’s theorem is pro-
vided for illustration.
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1. INTRODUCTION
The classical method to prove geometric theorems of the

Euclidean plane resorts to computer algebra [2, 3], for in-
stance Grobner bases: the hypothesis and the conclusion of
the geometric theorem are represented by polynomials in-
volving points coordinates, and the theorem holds when the
conclusion polynomial lies inside the ideal or the radical of
the polynomials of the hypothesis.

Is it possible to represent the hypothesis and the conclu-
sion of the geometric theorem with words (to be defined
below), and to prove theorems with rewriting methods [4]?

A word is just a sequence of identifiers, also called letters.
Words can be concatenated. A subword is a subsequence
of consecutive letters in a word. A set of relations speci-
fies equalities between subwords, and thus possible substi-
tutions, for instance: ABCD = EF . The word problem is
to prove that two given words are, or are not, equivalent
modulo a given set of relations. Groups with a finite pre-
sentation can be defined this way: letters denote generators
of the group, and relations give equalities, ie constraints on
the group. Generators and relations are the presentation
of the group. All finite groups have a finite presentation.
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Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Some infinite groups have also a finite presentation, ie a
finite number of generators and relations.

The word problem is not decidable in general, but many
instances of the word problem are decidable and interesting.
Knuth and Bendix proposed a today classic method to solve
the word problem. The main idea is to orient rules, so that
complicated subwords are replaced with simpler ones: rules
simplify. For equality to be decidable, all possible reduc-
tion chains of a given word must yield the same irreducible
word, which is called its normal form. The idea of Knuth
and Bendix is to consider critical pairs, ie words which can
be reduced in two ways; each time a word w can be reduced
into u with a first reduction path, and to v with a second re-
duction path, and u and v are not identical, a new relation:
u = v is inserted, and oriented. When we are lucky, a finite
number of rules is inserted, ie the completion algorithm ter-
minates; then the equality is decidable in the theory. Buch-
berger has outlined the similarity between critical pairs of
Knuth and Bendix method, and his method for comput-
ing Grobner bases. Unfortunately, the Knuth and Bendix
method usually does not terminate in presence of commuta-
tivity rules. Thus a terminating algorithm is needed for the
approach proposed in this paper to be interesting.

We consider geometric theorems of the Euclidean plane.
To reduce the problem of proving geometric theorems to the
word problem, each line in the problem is represented by a
letter, which stands for the orthogonal symmetry relatively
to this line; this symmetry leaves invariant each point of this
line.

Geometric axioms give a first set of relations, eg for each
line L, the symmetry along L is an involution thus LL = ε
(ε is the empty word; it represents the identity map, ie the
neutral element of the group); moreover words like (ABC)2

(where (ABC)2 stands for ABCABC), more generally all
concatenations of square of words with odd lengths, describe
translations, and translations commute, thus ∀A, B, C, U ,
V , W : (ABC)2(UV W )2 = (UV W )2(ABC)2 is a possible
axiom. However a finite presentation of the group is beyond
the scope of this paper.

The hypothesis of the theorem give a second set of re-
lations; for instance the concurrence of 3 lines A, B, C is
expressed by (ABC)2 = ε; the conclusion of the theorem is
also represented with some relation. In our case, the theo-
rem holds when the conclusion word reduces to the empty
word: for instance if (AB)2 reduces to ε, it proves that lines
A and B are either equal or orthogonal.

Previous works. This approach is reminiscent to Bach-
mann’s axiomatisation of geometry (see the related chapter



D

A

E

F

D

C

B

EB FA

C

Figure 1: Pascal’s theorem: opposite sides are par-
allel (left) or meet in 3 aligned points (right).

in Henle’s book [5] and Yves Martin’s thesis [6]). Bach-
mann’s approach was not computational, he did not focus
on the Euclidean plane, but rather classified possible geome-
tries; he used both symmetries w.r.t. lines and points; as far
as I know, he did not prove Pascal’s theorem, and did not
attempt to syntaxically characterize words which are trans-
lations or orthogonal symmetries.

Organisation of the paper. The theory proposed in this
paper gives a very readable proof of Pascal’s theorem, one
of the essential theorems of the Euclidean plane, and of the
projective plane. This proof is given and commented in sec-
tion 3. The impatient reader can jump to section 3. The
needed background is presented before: geometric theorems,
especially the basic Pascal’s theorem; the isometry group:
symmetries, rotations, translations; a conjectured character-
ization of translations as concatenations of squares of odd
words; how conjugations are used to transport properties
and proofs. The paper concludes with the questions which
must be solved for this approach to be feasible.

2. BACKGROUND

2.1 Some geometric theorems
After Pascal’s theorem, the 3 opposite sides of any hexagon

inscribed in a conic meet in 3 points aligned on a Pascal’s
line. Since there are 5!/2=60 distinct cycles through the
6 points, there are 60 Pascal lines. Pappus’s theorem is a
special case of Pascal’s theorem, when the conic degenerates
into a couple of lines. It is known that Pascal and Pappus’s
theorems are logically equivalent: any one can be proved
from the other.

Blaise Pascal proved his theorem in the case of a circle;
then, using arguments of projective geometry due to Girard
Desargues, he extended it to any conic. Actually, it is suf-
ficient to prove Pascal’s theorem in the even more special
-and easier- case: for any hexagon inscribed in a circle, so
that two pairs of two opposite sides are parallel, the two re-
maining sides are parallel as well. It is said that the Pascal
line, along which opposite sides meet, is ”sent to infinity”.

The theory presented here is able to prove this simplest
case of Pascal’s theorem, which is very encouraging. Indeed,
Pascal’ and Pappus’s theorems are essential in Euclidean ge-
ometry: any plane fulfiling Pascal’s or Pappus’s properties
can be used to define a commutative field. Geometric con-
structions for the sum and the product are shown in Fig. 2
(I am not sure who to credit for these constructions, likely
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Figure 3: ABC is a glide symmetry: construction of
the translation vector and of S the axis of symmetry.

von Staudt. It is possible to replace the circle with another
conic, ie a pair of lines [1]); all the proofs of commutativ-
ity, associativity, distributivity, etc use Pascal’s or Pappus’s
properties. Another argument which shows the basic nature
of Pascal’s theorem is that Raymond Pouzergues [7] used it
to provide very concise and visual proofs of numerous geo-
metric theorems, in projective geometry but also in metric
geometry (search ”hexamys” on the web).

This paper asks if proving geometric problems reduces to
word problems. Algebra reduces to geometry. Thus algebra
should also reduce to word problems... This reduction is only
theoretical up to now: this paper does not prove that the
group has a finite presentation, and no method is proposed
for the related word problem.

2.2 Words, symmetries, isometries
Orthogonal symmetries generate the non commutative group

of isometries: ”even” isometries are rotations, translations,
or the identity; they form a subgroup; ”odd” isometries are
orthogonal symmetries or glide symmetries; the square of an
orthogonal symmetry is the identity; the square of a glide
symmetry is a translation.

The empty word is denoted ε. Its length is zero. It
represents the identity mapping. Upper case letters de-
note orthogonal symmetries. They also denote the geo-
metric line which is the axis of the orthogonal symmetry,
the distinction being made by the context. By conven-
tion, the orthogonal symmetries in a word are applied from
left to right. Orthogonal symmetries are involutions, so
AA = BB = CC = . . . = ε. An even (odd) word is a word
with an even (odd) number of upper case letters. Even (odd)
words denote even (odd) isometries.

Lower case letters denote words. The inverse of a word w
is its reverse w̄, for example if w = ABCD then w̄ = DCBA.
w2 is a shortcut for ww, and w3 a shortcut for www, etc.

Each commutativity of transforms a and b gives a relation
ab = ba, equivalent to the cycle abāb̄ = ε; all cycles due
to commutativity have even lengths, as well as the cycles
AA = BB = . . . = ε. Thus all resulting cycles will have even
length. It is consistent with the algebraic view, where odd
isometries have determinant -1, and even isometries have
determinant +1.

Every circular permutation of a cycle w = ε or its reverse
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Figure 2: Real numbers are represented by points on a circle. Construction of a + b and ab from given a, b.

w̄ = ε gives another cycle. This holds because all upper
case letters denote involutions. A consequence is that the
convention ”apply transforms from left to right” does not
matter.

A palindrome is its own inverse. All palindromes with
even length reduce to ε. All palindromes with odd length
represent orthogonal symmetries.

Words representing orthogonal symmetries can be replaced
with a new upper case letter. For instance, if X = ABA,
then the rotation AX equals the rotation BA (proof: X =
ABA ⇒ AX = AABA = BA), thus X is the line symmetric
of B relatively to A.

The product AB of two orthogonal symmetries is a trans-
lation when lines A and B are parallel, and a rotation when
A and B meet. The centre is the intersection point of the
lines A and B, the angle is twice the angle of the two lines
A and B. The inverse rotation is BA.

A word with odd length like ABC is usually a glide sym-
metry, and an orthogonal symmetry in degenerate cases.
Anyway, it is always the composition of a translation tv

(null in the degenerate case) and an orthogonal symmetry S
relatively to a line S parallel to the vector of the translation
tv, so tv and S commute: tvS = Stv. See Fig. 3. The square
of the glide symmetry is tvStvS = tvtvSS = tvtv, thus it is
the square of the translation part.

Thus, for all words w with odd length, w2 denotes a trans-
lation (possibly the identity). This property holds only in
2D: it is wrong in 3D, for orthogonal symmetries relatively
to planes, even if the planes all pass through a common
point. Circular permutations of w2 are translations too, see
below. Further I will conjecture that every translation is a
concatenation of squares of odd words.

Concurrent or parallel lines. When three lines A, B, C
concur (or are parallel), the rotations (or the translations)
AB and BC commute, so (BC)(AB) = (AB)(BC) = AC,
or: (ABC)2 = ε. The 3!=6 cycles of ABC can be deduced.

Parallel lines. If lines A and B are parallel, words AB
and BA represent translations. Translations commute, ie
for all translations represented by a word t (for instance
t = (IJK)2), ABt = tAB, and BAt = tBA.

The theory can prove that A parallel to B, and A par-
allel to C implies B parallel to C. Proof: A and B are
parallel thus ABt = tAB ⇒ tA = ABtB. A and C are par-
allel thus ACt = tAC: we saw that tA equals ABtB. Thus
we get ACt = (tA)C = (ABtB)C. Premultiply both sides
with BA and simplify. ACt = ABtBC ⇒ (BA)(ACt) =
(BA)(ABtBC) ⇒ BCt = tBC. Thus BC is a translation,
since it commutes with the translation t. Thus correspond-

ing lines B and C are parallel. QED.
Parallelogram. Suppose four lines A, B, C, D define a par-

allelogram: A, B are parallel, as well as C, D. Thus AB,
BA, CD, DC are translations and commute. It implies
that Φ4(A, B, C, D) = (AB)(CD)(BA)(DC) = ε.

Quadrilateral inscribed in a circle. Let A, B, C, D be four
lines such that the intersection points A∩B, B∩C, C∩D, D∩
A exist and lie on a common circle. Then the transform
ABCD is a translation (for any 4 generic lines, ABCD is a
rotation), which commute with all other translations. Hint:
the sum of opposite angles of a quadrilateral inscribed in a
circle is π.

Orthogonal lines. If lines A and B are orthogonal, then
AB = BA is the rotation with angle π around the intersec-
tion point of lines A and B. A and B commute only when
A = B or when A and B are orthogonal. AB = BA implies
that (AB)2 = ABAB = ABBA = ε.

Equal angles. The angle between lines A and B equals
the angle between A′ and B′ iff ABB′A′ is a translation.
The angles are opposite iff ABA′B′ is a translation.

Parallel triangles. There is a translation which maps a tri-
angle A, B, C to a triangle with parallel sides A′, B′, C′ iff
homologuous sides are parallel, and (ABC)2 = (A′B′C′)2.
Proof: let t be the translation which maps the two trian-
gles. Then (A′B′C′)2 = (tAt̄ tBt̄ tCt̄)2 = t(ABC)2t̄, then
use commutativity of translations: t, t̄ and (ABC)2, and
conclude. QED. Remark that no axiom is needed to guar-
antee that there is a unique translation vector from A∩B to
A′∩B′ (which imposes constraints on C and C′), or, in other
words, to guarantee that there is a unique line through two
different points, contrarily to Bachmann’s axiomatization.

2.3 Definitions and formulas

Φ4(A, B, C, D) = (AB)(CD)(BA)(DC) (1)

Φ2(a, b) = abāb̄ (2)

Φ4(A, B, C, D) = Φ2(AB, CD) (3)

Φ4(A, B, C, D) = C(CAB)2(BAD)2C (4)

=
`
C(CAB)2(BAD)2

´2
(DAB)2(BAC)2 (5)

AwA = (Aw)2w̄ (6)

2.4 Which words are translations?
Translations form a commutative normal subgroup. Each

commutativity relation tt′ = t′t gives a relation, so it is
essential to understand which words denote translations.



This section presents several ways to generate or charac-
terize words which are translations.

The simplest rule is: the square of any odd word is a
translation (or the identity), because the odd word is either
a glide symmetry or an orthogonal symmetry. Actually, I
conjecture that all translations are compositions of squares
of odd words. No proof in this paper uses this conjecture.

The concatenation of two translations is another transla-
tion, but no axiom is needed, it results from basic manipula-
tions on words. Proof: suppose t and t′ are two translations,
so they commute with a third ”generic” translation noted
Θ for convenience: by hypothesis tΘ = Θt and t′Θ = Θt′.
Then (tt′)Θ = t(t′Θ) = t(Θt′) = (tΘ)t′ = (Θt)t′ = Θ(tt′):
thus tt′ commutes with Θ. So tt′ is a translation. QED.

Translations are stable by conjugations: assume t is a
translation, we want to prove LtL is a translation. Lt has
an odd number of letters. Thus (Lt)2 is a translation. Now,
t̄ is a translation too. Thus (Lt)2t̄ = LtL is a translation.
QED. Note that if t is a composition of squares, then LtL
is also a composition of squares: LtL = (Lt)2t̄. Note that
circular permutations of a word are just conjugations, with
the first or the last letter of the word. Thus: any circu-
lar permutation of a word denoting a translation denotes a
translation as well, and: any circular permutation of a con-
catenation of squares of odd words is also a concatenation
of squares of odd words.

In passing: conjugations (and circular permutations) of
orthogonal symmetries are orthogonal symmetries; proof:
s2 = ε ⇒ (AsA)2 = AsAAsA = AssA = AA = ε. QED.
And clearly, conjugations (and circular permutations) of odd
palindromes are odd palindromes.

Another way to generate translations use Φ4(A, B, C, D) =
(AB)(CD)(BA)(DC); any circular permutation can be used
instead but this one is easier to remember, because of its
resemblance with a commutator. Then Φ4(A, B, C, D) is
a translation. This axiom is wrong in 3D, for symmetries
relatively to generic planes, or planes with a common point
(spheric geometry). To give a geometric justification for this
axiom in 2D, just observe that (AB)(CD) and (BA)(DC)
are two rotations with opposite angles; the composition of
two such rotations is a translation. But we can prove it with
words: remark that Φ4(A, B, C, D) = C(CAB)2(BAD)2C.
The conjugation by C can be eliminated with CtC = (Ct)2t̄
where t = (CAB)2(BAD)2. So it seems that all translation
words can be expressed as a concatenation of squares of odd
words. I don’t know if it is possible to express all trans-
lations as the product of squares of words with 3 letters
each. Another useful relation: (ABC)2 = Φ4(A, B, C, B)
completes this equivalence between Φ4 and square triples.

Alternatively, we can generate translations with only Φ2

where Φ2(a, b) = abāb̄ where a and b are even. Note that
Φ4(A, B, C, D) is just Φ2(AB, CD). To prove that Φ2(a, b)
is a translation iff both a and b are even words, remark
that ab and āb̄ are either both translations, or rotations
with opposite angles. In both cases, their composition is a
translation. Φ2 is stable by conjugations: Φ2(gaḡ, gbḡ) =
gaḡgbḡgāḡgb̄ḡ = gabāb̄ḡ = gΦ2(a, b)ḡ.

2.5 Commutations of translations and glide
symmetries

Let t = wA be a word denoting a translation. Then w
is a glide symmetry with an axis, and a translation vector,
parallel to the line A. Proof: Aw is translation too (since

it is a circular permutation of t = wA). Thus wA and Aw
commute. Then w2A = (wA)(Aw)A = (Aw)(wA)A = Aw2.
Thus w2 commute with A. Moreover w2 is a translation
because w is odd. The vector of the translation w2 is parallel
to the line A, since w2 and A commute. The translation
vector of the glide symmetry w is half the translation vector
of w2. Thus w is a glide symmetry with an axis, and a
translation vector, parallel to the line A. QED.

2.6 Conjugations, and the transfer principle
Let G be a line, the corresponding symmetry maps the

line A to the line A′, the symmetry of which is: A′ = GAG.
We prove that the line A, its image A′ by the symmetry G,
and the axis of symmetry: the line G, are concurrent (or
parallel): AA′G = A(GAG)G = AGA, and squaring gives:
(AA′G)2 = (AGA)2 = AGAAGA = AGGA = AA = ε.
QED. In passing, it proves a particular case of the Desargue
theorem about perspective triangles, when they are sym-
metric relatively to a line.

Let w an even word, denoting a translation or a rotation
or the identity. The image of the line A is the line A′, and
the symmetry wrt A′ is: A′ = wAw̄. Similarly for a line
B, which is mapped to a line B′ with B′ = wBw̄ (note
that wBw̄ is a palindrome, thus an orthogonal symmetry,
as B′). We prove that the angle between lines A and B is
not modified by the transformation w. It suffices to prove
that(AB)(BA′) is a translation, ie angles of the rotations
AB and B′A′ are opposite. ABB′A′ = ABwBw̄wAw̄ =
ABwBAw̄ is equal to Φ2(AB, w) (remember that w is even)
thus it is a translation. QED.

Actually, this proof can be extended to odd words w: in
this case, the angle between lines A and B is the opposite
of the angle between lines A′ and B′: orthogonal and glide
symmetries reverse orientations. Thus we consider ABA′B′

this time, we want to prove it is a translation. We have:
ABA′B′ = ABwAw̄wBw̄ = ABwABw̄. This is equal to
(ABw)2w̄2, the composition of two translations, thus it is a
translation. QED.

Which lines are invariant by a symmetry G? Let X be
such a line. Then X ′ = GXG = X ⇒ GX = XG. Symme-
tries G and X commute, thus lines G and X are orthogonal,
or equal.

Actually, conjugacy makes possible to transfer any prop-
erty expressable with a cycle f(L1, L2, L3 . . .) = ε, from a
figure involving lines Li to the image of this figure, which
are the lines L′i, with L′i = wLiw̄. Then f(L′i) = wf(Li)w̄ =
ww̄ = ε.

Actually, it also works when w denotes a mapping which
is not an isometry, but a projective mapping, ie a bijec-
tion which preserves incidences. Note that if t1 and t2 are
two translations in a figure, and t′1 = wt1w̄ and t′2 = wt2w̄
are the images of t1 and t2 by w, generally t′1 and t′2 are
no more translations when w is not an isometry; but they
still commute: t′1t

′
2 = (wt1w̄)(wt2w̄) = wt1t2w̄ = wt2t1w̄

= (wt2w̄)(wt1w̄) = t′2t
′
1. Indeed, commutativity of t1 and t2

is expressed by the cycle: t1t2t̄1t̄2 = ε, so this cycle is pre-
served by conjugacy with w. Incidence is expressed by a cy-
cle, so these transforms conserve incidence: if lines L1L2L3

concur or are parallel: (L1L2L3)
2 = ε, then (L′1L

′
2L
′
3)

2 =
w(L1L2L3)

2w̄ = ε, so their images L′1, L
′
2, L

′
3 concur (or are

parallel) as well.
Blaise Pascal used conjugations by projective mappings

to extend his theorem from a circle to a conic. Conjugation



can also be used to send the Pascal’s line at infinity, which
means opposite sides of the hexagon become parallel.

2.7 Protocol
If this approach ever leads to an algorithm (up to now,

it is just wishful thinking), the protocol to prove a theorem
will be as follows. Users will specify facts with cycles, for
instance to specify concurrences of 3 lines A, B, C, users will
say that (ABC)2 = ε. The software will generate automat-
ically relations for the isometry group. The conclusion will
be a cycle too: for instance, the concurrence of lines U, V, W
is proved iff the normal form of (UV W )2 is ε; the lines U
and V are parallel iff the normal form of UV ΘV UΘ̄ is ε,
where Θ is some translation (IJK)2; the lines U and V are
orthogonal (or equal) if UV UV reduces to ε; the quadrilat-
eral ABCD is inscribed in a circle if ABCD is a translation
(ie commutes with an ad-hoc translation Θ); etc.

This supposes the group has a finite presentation, and
that there is a computable standard form for this group.

Possible other difficulties: the formalism of Grobner bases,
makes possible to express inequalities, for instance: x is non
zero if xy − 1 = 0 where y is a new, free, variable. A ques-
tion is how to express inequalities with the word formal-
ism. It should be possible, since algebra reduces to geometry
(Fig. 2). Another difficulty, reminiscent to the distinction
ideal/radical, is that there is no axiom such that if the square
(or another power) of a translation is the identity, then the
translation is the identity. After all, it may happen in finite
fields, and discrete planes.

3. PASCAL’S THEOREM

3.1 The proof
The background is now sufficient to present the proof of

Pascal’s theorem.
The lines ABCDEF are cocyclic: the vertices A∩B, B ∩

C, C ∩ D, D ∩ E, E ∩ F, F ∩ A lie on a circle. Moreover A
is parallel to D, and B is parallel to E. We want to prove
that C is parallel to F . ABC is the beginning of a cocyclic
quadrilateral: let L be the line passing through A ∩ F and
C ∩D. Then ABCL and LFED are two cocyclic quadrilat-
erals, thus ABCL and LFED are two translations. Their
composition: (ABCL)(LFED) = ABCFED is a transla-
tion as well. In the sequel, isTrans(w) means that w denotes
a translation.

isTrans(ABC FED)

⇒ isTrans(BCFEDA) by circular permutation

⇒ isTrans(BCFEDA AD) because isTrans(AD)

⇒ isTrans(BCFE) by collapse of DAAD

⇒ isTrans(EBCF ) by circular permutation

⇒ isTrans(BE EBCF ) because isTrans(BE)

⇒ isTrans(CF ) by collapse of BEEB

⇒ C and F are parallel. QED.

3.2 Comments
Is it possible to prove a more general variant of the Pas-

cal’s theorem, using only substitutions between words? May-
be. But I have not found it up to now: with the words
formalism, proofs are easy to read but terribly difficult to
find. At least, the reader should be convinced that this ques-

tion is indeed a word problem, where rewriting methods are
relevant.

If it is not possible to prove the general variant, it means
that some axioms are missing.

Remember that classical geometric proofs usually use con-
jugations with some projective transform α (a 1-1 mapping
which preserves collinearities and concurrences, ie relations:
(ABC)2 = ε) such as a polarity or an homography. In-
deed there is such a projective transform α which maps an
hexagon inscribed in a conic to an hexagon inscribed in a
circle with a Pascal’s line at infinity (btw, the existence of α
can be an axiom). These transforms make possible to trans-
fer properties, such as collinearities. Unfortunately, these
projective transforms are not isometries, so they escape my
formalism. Two approaches can be considered: either use
other involutions, which are not isometries but homogra-
phies or polarities, in the spirit of Desargue (Desargue in-
troduced involutive homographies in projective geometry);
or formalize and automatize the method of sending a line at
infinity.

4. CONCLUSION: A NEW PLAY-GROUND?
This paper investigates whether it is possible to reduce

proving geometric theorems to a word problem, treatable (?)
with some rewriting method. This approach gives a concise
and readable proof of Pascal’s theorem, the fundamental
theorem of the Euclidean and the projective plane, which is
encouraging. A conjecture which naturally arises is that all
Euclidean geometry can be explained by the involutivity of
orthogonal symmetries and the commutativity of squares of
odd words.

For this proving approach to become computational, the
following questions must be answered: is there a finite pre-
sentation of the group generated by a finite number of or-
thogonal symmetries? Is there a terminating rewriting me-
thod, ie a normal form for these words? Of course I mean a
method independent of computer algebra, coordinates, poly-
nomials, etc.

Such a method would provide a new insight for proving
geometric theorems, but also for computer algebra. Other
questions which arise were presented in passing. A future
work is to investigate other involutions, from projective ge-
ometry, in the wake of Desargue.
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