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Abstract

Recently several authors propose to use coordinate free formulations of geometric con-
straints. Thus the question arises to formulate in such a way all geometric constraints, such
as: six 2D points must lie on a common conic curve, ten 2D points must lie on a common 2D
cubic, ten 3D points must lie on a common quadric, etc. This draft gives (for the first time,
as far as we know) an intrinsic condition involving only scalar products of vectors, first, for
coplanar points to lie on a common degree d algebraic curve, and, second, for 3D points to
lie on a common degree d algebraic surface. Kernel functions are used; they permit to extend
relations à la Cayley Menger.

1 Introduction

Several researchers independently proposed to use intrinsic (coordinate free) formulations of geo-
metric constraints, for resolution: Lu Yang [Yan03, Yan02] generalizes Cayley Menger relations;
Alain Rivière, André Clément, Philippe Serré, Auxkin Ortuzar, David Lesage, Jean-Claude Léon
[Ser00, Les02, LLS00, CRS99, SCR02, SCR03, JBL+11, SOR06] use the metric tensor formalism;
and us [MF04], in an approach similar to Lu Yang’s one; in peculiar, we show that the Cayley
Menger determinants bring an elegant solution to the Stewart platform (sometimes called the
octahedron problem, eg in [HY01]). See also [MS12] for a recent article in this wake.

Instead of using cartesian coordinates, or other kinds of coordinates like Grassmann-Plucker
coordinates or some Clifford algebra, intrinsic formulations of geometric constraints involve only
parameters which are independent of systems of coordinates, namely distances or angles, scalar
products, (signed) areas or volumes, cross ratios. This latter approach is also used in some provers,
typically the area method by Chou, Gao and Zhang[CGZ94, CGZ93] or Havel’s approach [Hav91].
For conciseness, the reader is refered to the previous papers, some of which detail the advantages
of intrinsic formulations.

This intrinsic approach poses the problem of expressing all geometric constraints in a coordinate
free way, which is not always easy; indeed, the cartesian formulation is much more widespread and
benefits from more than two centuries of mathematical study.

This draft shows how the kernel functions formalism, recently used by Computer Scientists
for SVM (Support Vector Machines: they are classifiers, introduced by Vapnik and Chervonenkis
[CST00]), can help to provide intrinsic formulations. The latters will involve only distances be-
tween points and scalar products between vectors, in the wake of the metric tensor (Gram matrix)
approach already mentionned [Ser00, Les02, LLS00, CRS99, SCR02, SCR03]. Thus they are in-
dependent of all coordinate systems.
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Figure 1: Vectorial condition for points to lie on a common conic or algebraic curve with degree
d? Left: first case; right: second case.

2 First case

Look at Fig. 1: what is the condition on the scalar products between vectors vi (they have any
norm) for the corresponding intersection points between the lines they support and some plane
(any plane not passing through the vectors origin) to lie on the same conic? This paper shows that
the matrix M with Mi,j = (vi · vj)

2 = Mj,i must have rank 5, or less. If the n ≥ 6 intersection
points do not lie on the same conic, but are generic, the matrix M has rank 6 (assuming the vi

lie in 3D space). More generally:
Th1. The intersection points between some plane π and the lines defined by supporting

vectors vi through a common origin Ω outside π lie on a degree d curve iff the matrix M (d), where

M
(d)
i,j = (vi · vj)

d = M
(d)
j,i , has rank rd = d(d + 3)/2 or less (rd for deficient rank). The generic

rank gd = rd + 1 = (d + 1)(d + 2)/2 (the rank of the matrix in the generic case) is given by the
number of monomials in the polynomial in 2 variables of degree d, since this curve is the zero set
of such a polynomial. The proof uses kernel functions.

3 Kernel functions

First an example. Consider six points in 2D with homogeneous coordinates pi = (xi, yi, hi). They
are lifted to Pi = φ(pi) = (x2

i , y
2
i , h2

i , xiyi, xihi, yihi). By definition of conics, if the pi lie on a
comon conic ax2

i + by2
i + ch2

i + dxiyi + exihi + fyihi = 0, then the Pi lie on a common hyperplane,
having equation: Pi · h = 0 with h = (a, b, c, d, e, f). Thus six generic (in other words, random,
and thus not lying on a common conic) 2D points pi give six lifted points Pi with rank 6. Six
2D points pi lying on a common conic give six lifted points Pi with rank 5 (or even less, but this
degenerate case is not considered for short).

So the arising idea is to lift points pi to φ(pi) = Pi in higher dimensional space, to compare
the rank of the Pi with the generic rank, which is by definition the rank of generic φ(gi), where gi

lie in the same space than the pi but are random.
We need two other notions: Gram matrices and kernel functions.
First notion: If m vectors P1, . . . Pm have rank r, their Gram matrix: Gij = Pi · Pj = Gji has

also rank r. In passing, if a square matrix (such as a Gram matrix) is rank deficient, classical
linear algebra permits to compute explicitly the linear dependence relations between its rows.

Second notion: to compute Pi · Pj , the naive method compute Pi = φ(pi), and Pj = φ(pj),
then Pi · Pj . Kernel functions permit to avoid the computation of φ(pi). A kernel function K is
such that K(pi, pj) = φ(pi) · φ(pj). Here are two examples.

Example 1. p = (x, y, h) et φ(p) = (x2, y2, h2,
√

2xy,
√

2xh,
√

2yh). The
√

2 factors do not
modify ranks, and permit to say:

K(p, p′) = φ(p) · φ(p′)

= (x2, y2, h2,
√

2xy,
√

2xh,
√

2yh) · (x′2, y′2, h′2,
√

2x′y′,
√

2x′h′,
√

2y′h′)

= x2x′2 + y2y′2 + h2h′2 + 2xyx′y′ + 2xhx′h′ + 2yhy′h′
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= (xx′ + yy′ + hh′)2 = (p · p′)2

More generally, for a homogeneous polynomial kernel of degree d, K(p, p′) = (p · p′)d. It is used in
SVMs ([CST00] for a proof). Hint: it suffices to adjust the monomial coefficients, like

√
2 in the

example. Thus the Gram matrix for this homogeneous lift with degree d is: Gi,j = (pi · pj)
d.

The proof of theorem Th1 follows straightforwardly.
In this following second example of kernel functions, we consider non homogeneous polynomial

liftings, to complete this micro survey on polynomial kernel functions. Define p = (x, y) and
φ(p) = (x2, y2,

√
2xy,

√
2x,

√
2y, 1). The

√
2 does not modify rank, and permits to say that:

K(p, p′) = φ(x, y) · φ(x′, y′)

= (x2, y2,
√

2xy,
√

2x,
√

2y, 1) · (x′2, y′2,
√

2x′y′,
√

2x′,
√

2y′, 1)

= x2x′2 + y2y′2 + 2xyx′y′ + 2xx′ + 2yy′ + 1

= (xx′ + yy′ + 1)2 = (p · p′ + 1)2

More generally, for a polynomial non homogeneous lifting of degree d, K(p, p′) = (p · p′ + 1)d. It

is used in SVMs. Thus the Gram matrix for this lift with degree d: Gi,j = (pi · pj + 1)d. This
formula will appear in the next section, when considering the ”second case”.

4 Second case

What is the coordinate-free condition for six 2D points Pi, i = 0 . . . 5 to lie on a common quadric,
or on a common algebraic curve with degree d? This time, we search a condition involving scalar
product between vectors P0Pj , thus independent on the coordinates of the Pis.

Note: actually, for conics, several intrinsic and classical conditions are already available (see
section 7) and can legitimately be used. However these latter formulations require geometric
elements which may not be part of the initial problem (e.g. foci or directrix), and they do not
seem to easily extend to higher degrees. Thus the following formulation can be of interest.

The Pi plane π is embedded in 3D space: let Ω be any one of the two points such that ΩP0

is orthogonal to π, and the distance ΩP0 equals 1. Then we use theorem Th1: the Pi lie on the
same conic iff the matrix M , where Mi,j = (

−−→
ΩPi · −−→ΩPj)

2, has rank five or less, and the Pi lie on

the same algebraic curve with degree d iff the matrix M , where Mi,j = (
−−→
ΩPi · −−→ΩPj)

d has deficient
rank rd = d(d + 3)/2. This formulation regrettably requires the point Ω, which is not part of the
initial problem, but to remove it, it suffices to see that:

−−→
ΩPi · −−→ΩPj = (

−−→
ΩP0 +

−−→
P0Pi) · (−−→ΩP0 +

−−−→
P0Pj)

=
−−→
ΩP0 · −−→ΩP0 +

−−→
ΩP0 · −−−→P0Pj +

−−→
P0Pi · −−→ΩP0 +

−−→
P0Pi · −−−→P0Pj

= 1 + 0 + 0 +
−−→
P0Pi · −−−→P0Pj

Th2: the points Pi, coplanar, lie on the same algebraic curve with degree d iff the matrix M
has deficient rank (ie rd = d(d + 3)/2) or less, where Mi,j = (1 +

−−→
P0Pi · −−−→P0Pj)

d.
Note: Th2 applies when d = 1. Three points P0, P1, P2 are collinear iff

M =





1 1 1

1 1 +
−−−→
P0P1 · −−−→P0P1 1 +

−−−→
P0P1 · −−−→P0P2

1 1 +
−−−→
P0P2 · −−−→P0P1 1 +

−−−→
P0P2 · −−−→P0P2





has rank 2 (or less). Substracting the first row to the two other rows, then substracting the first
column to the two other columns does not modify the rank, and gives the Gram matrix G of
vectors

−−−→
P0P1,

−−−→
P0P2. We get that |M | vanishes iff |G| vanishes: correct. The equivalence between

the Gram matrix G(
−−−→
P0P1,

−−−→
P0P2 . . .) and the Cayley Menger matrix CM(P0, P1 . . .) (defined in

[MF04]) is also well known. Thus Th2 is consistent with the results obtained with Cayley Menger
determinants in [MF04]. The same considerations hold for Th1, of course.
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5 The circular case

Cayley Menger determinants [MF04] give a relation for four 2D points to be cocyclic (to lie on the
same cercle), and for five 3D points to be cospheric (to lie on the same sphere). Considering only the
2D case for short, theorems Th1 and Th2 gives another intrinsic formulation for four points to lie
on the same cercle, using the two ”cyclic points”. By definition, cyclic points lie on all cercles; they
have homogeneous coordinates I = (1, i, 0) and J = (1,−i, 0) (where i is the imaginary number
such that i2 = −1) in all real cartesian systems of coordinates. These considerations extends to
cosphericity in 3D. Of course, these intrinsic formulations entail temporary computations with
complex numbers, which may be unconvenient.

6 Implicit formulation for surfaces

This theory extends nicely to 3D surfaces (and beyond). The points Pi, lying in 3D space, lie on
the same algebraic surface of degree d iff the matrix M has deficient rank rd = gd − 1 (or less),

where Mi,j = (1 +
−−→
P0Pi · −−−→P0Pj)

d. The generic rank gd is the rank of the matrix M for generic

(ie random) 3D points; it is
(

3
d+3

)

=
(

d
d+3

)

(or the number of points, if there is less than
(

3
d+3

)

points).

7 Appendice: Intrinsic formulations for conics

This appendice tersely lists classical and well known intrinsic (coordinate free) definitions of conics.
First, according to the Pascal theorem, or the hexamy theorem, 6 points lie on a common conic if
the opposite sides of their hexagon (for any cyclic order of the 6 vertices) cut in 3 collinear points.
Note in passing that the corresponding geometric characterization in 3D for 10 points to lie on
the same quadric is still unknown.

Second, there is also the formulation based on cross ratios (which is maybe more easily general-
izable?): a point M lie on the conic defined by the five points P1, . . . P5 iff the cross ratio of the lines
MP2, MP3, MP4, MP5 equals the cross ratio of the lines P1P2, P1P3, P1P4, P1P5 (Fig. 1, right).
In passing, we meet here what is perhaps a limitation of the metric tensor approach: the latter
considers that unknowns are scalar products, ie lengths and cosinus; since cos(u, v) = cos(v, u),
and sin(u, v) = − sin(v, u) and since signed areas and cross ratios (which are ratios of signed areas)
are determined by sinus, it turns out that the metric tensor approach prevents itself to use sinus,
signed areas and cross ratios. Note that another intrinsic approach: the area method of Gao,
Chou and Zhang makes an opposite choice. But the area method works only in 2D.

Third, there is the definition by directrix (some line) and focus (some point outside the di-
rectrix): the conic is the locus of points whose distance from the focus is proportional to the
distance from the directrix: according to the ratio is less than/ equal to/ greater than 1, the conic
is an ellipse/ a parabola/ an hyperbola. Other intrinsic definitions can be deduced for ellipses
(loci of points M such that F1M + MF2 = 2a, where F1, F2 are the two foci, and 2a ≥ F1F2

some constant) and hyperbolas (loci of points M such that |MF1 − MF2| = 2a, F1, F2 are foci
and 2a ≤ F1F2 some constant). Other intrinsic formulations are known, which typically consider
homographies.

8 Conclusion

This short paper gives, for the first time, an intrinsic formulation, involving only scalar products,
for coplanar points to lie on a common degree d algebraic curve, for 3D space to lie on a common
degree d algebraic surface, etc. These conditions are very simple and symmetric, and use the theory
of kernel functions. Of course, the corresponding condition, in the usual cartesian formulation, is
known since more than one century: this shows that, indeed, the intrinsic approach is still in its
infancy when compared to the cartesian formulation.
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