SOLVING GEOMETRIC CONSTRAINTS BY HOMOTOPY

Hervé Lamure, Dominique Michelucci

Fcole des Mines
158 Cours Fauriel
F 42023 Saint-Etienne Cedex 02
e-mail: lamure@emse.fr, micheluc@emse.fr

Abstract

Geometric modeling by constraints yields systems of equa-
tions. They are classically solved by Newton-Raphson’s it-
eration, from a starting guess interactively provided by the
designer. However, this method may fail to converge, or may
converge to an unwanted solution after a ‘chaotic’ behaviour.
This paper claims that, in such cases, the homotopic method
is much more satisfactory.

1 INTRODUCTION

In CAD, geometric modeling by constraints enables users
to describe geometric objects such as points, lines, circles,
conics, Bézier curves, etc in 2D and planes, quadrics, tori,
Bézier patches, etc in 3D, by geometric constraints, ie dis-
tances or angles between elements, incidence or tangency re-
lations ... This modeling yields large systems of equations,
typically algebraic ones. The problem is then to solve such
constraint systems.

Since the seminal work of Sutherland [Sut63], a lot of
research has been done on this topic. We roughly classify
resolution methods for constraint systems in three (non ex-
clusive) categories: decomposition methods, symbolic com-
putations, numerical algorithms.

Decomposition methods reduce constraint systems into
simpler ones; solutions of irreducible subsystems are then
merged. In 2D, typical irreducible systems are triangles,
the relative location of vertices of which is defined by three
constraints (e.g. 3 distances, or 1 distance and 2 angles, ...)
or systems soluble by ‘ruler and compass’ like Appolonius’s
problem; here an explicit formula does the job; however,
more complex irreducible subsystems have to be solved by
symbolic or numerical computations. The decomposition
is performed either by the inference engine of some expert
system like in Buthion [But79] or Verroust et al [VSR92] to
cite a few, either by the matching mecanism provided by
some programming language such as Prolog, as for exam-
ple Briderlin [Bru86], or by searches in graphs, like Owen

[Owe91], Bouma et al [BFHT93], Ait et al [AAIJM93] and

many others.

Symbolic computation is used for instance by Ericson
and Yap [EY88], and by Kondo [Kon92]. This method
typically uses Grobner bases, some kind of resultants, or
other elimination techniques. It is exact but very slow: for
instance, according to Lazard [Laz92], it is definitely im-
possible to compute the Grobner bases of an irreducible
polynomial system of degree 2 in 10 unknowns and vari-
ables. This kind of methods seems more suited for automatic
demonstrations of geometric theorems, like for example in

[CSYS87, Winss].

Thus, numerical methods are essential to solve such big
constraint systems met in the ‘real world’ of CAD. Nu-
merical methods are used, among many others, by Borning
[Bor81], Nelson [Nel85], Light et al [LLG81]. The most pop-
ular numerical method is Newton-Raphson’s iteration and
its variants. It needs an initial guess of the solution, typi-
cally given by the user thanks to some interactive tools. In
an interactive application, the need for an initial guess is
not really a drawback. On the contrary, it allows to select
in a natural and interactive way the desired solution among
an exponential number of possibilities: by Bezout’s theo-
rem, a polynomial system of total degree d, in » unknowns
and equations, has O(d") solutions. Moreover, Newton-
Raphson’s method is fast and works in polynomial time.
Last, its use is compatible with decomposition methods (see
[AAJM93] for instance) that speed up resolution.

Figure 1: Failure of Newton-Raphson’s method.

However, there is a well known problem. If Newton-
Raphson’s method often works fine, sometimes — much too
often ! —it does not converge; or it converges to an unwanted
solution after a ‘chaotic’ behaviour. In such a case, the user
does not know what to do, apart from slightly changing his
initial guess, until Newton-Raphson’s method works — if it
does!

This paper intends to show that the homotopic method
is much more satisfactory in these situations. Its behaviour
is very easy to predict, intuitive and self explanatory.

As a first argument, figure 1 shows a typical failure of
Newton-Raphson’s iteration, and figure 2 the behaviour of
homotopy on the same example: the six circles must be
tangent to each others, and must be tangent to the trian-
gle. These images are extracted from those interactively
displayed during the resolution process.

Figure 2: Homotopy success.

Another argument uses equation z° —1 = 0 in €. Of
course, we do not generally need to work in €™ for CAD,
and this equation is just a short cut for the system with
two unknowns: z, y € IR?, and two equations: z® — 3zy® =
y® —3yz? = 0. Figure 3 shows attraction basins for Newton-
Raphson’s method and for homotopy. Basins for Newton-
Raphson’s method are fractals [PR86]: this explains why it
is so difficult for users to predict which solution this method
will converge to. On the contrary, homotopy converges to
the closest' solution. Homotopy basins have smooth fron-
tiers: they are semi-algebraic sets® when the system to be
solved is algebraic: this point is detailed further in 2.5. Gen-
erally, homotopy converges much more often than Newton-
Raphson’s iteration to the solution intuitively closest to the
initial guess, though of course this claim can not be proven
in a rigorous way, since ‘intuitively close’ has no mathemat-
ical definition.

Figure 3: 2°—1 =0, z € €: Attraction basins with Newton-
Raphson’s method and homotopy. The +’s represent the 3
roots of unity.

11n this example, attraction basins for homotopy are the cells of
the Voronol’s diagram of the solution points, but this is not true in
general.

2 A semi-algebraic set is the projection of an algebraic set. An
algebraic set is the solution set of a polynomial system.

This paper first gives an intuitive account on homotopy,
also called continuation. Then it comments our experi-
ments with a constraint-based geometric editor and some
related questions or possible extensions. Note that we have
restricted ourselves to a 2D editor for simplicity, but homo-
topy, like Newton-Raphson’s method, applies to all dimen-
sions.

Previous work: resolution by homotopy is now a classical
method of numerical analysis; it was already used in 1934
by Lahaye, and perhaps even before; see the recent survey
by Allgower and Georg [AG93] for an history. In Computer
Graphics, Dobkin et al [DLTW90] trace curves in IR™ with
a method inspired by a special kind of homotopy, ie piece-
wise linear approximations. In CAD, this method is used in
robotics and kinematics, in particular by Morgan, Wampler
and Sommese [Mor83, WMS90] who find all complex solu-
tions of polynomial systems arising in these areas. In ge-
ometric modeling with free form surfaces, a special case of
homotopy (‘marching method’) is also often used for follow-
ing intersection curves between surfaces in IR® [Pat92]. Curi-
ously enough, in modeling by constraints, it seems that until
now people do not use homotopy, except a restricted contin-
uation presented in section 2.4.4. We think that homotopy
will soon supplant Newton-Raphson’s method in constraint-
based modelers.

2 HOMOTOPY FUNDAMENTALS

2.1 Homotopy definition

A recent survey on homotopy is [AG93].

Let G(X) =0 be a system of n independant (say) poly-
nomial equations, in n unknowns, that is X = (z1, z2...,%5)
and G = (g1, 92...,gn). Well constrained systems of geomet-
ric constraints yields such systems.

Suppose now a solution S = (s1, $2..., $n) of another sys-
tem F(X) = 0is known, with F' = (f1, fo..., fn), and that
F is, in a certain meaning, ‘close’ to GG. In our application,
S is nothing else but the vector of values (vertices coordi-
nates and circles radius) defining the initial guess interac-
tively provided by the user, and system F(X) is defined by
F(X) = G(X) — G(S); by construction, S is a solution of
F(X)=0. F and G are then embedded in a homotopy:

H(t,X) = tG(X) + (1 —) F(X)

such that (0, X) = F(X) and H(1,X) = G(X). System H
is a linear interpolation between F' and G; some homotopies
use non linear interpolation, but they are beyond the scope
of this paper, see [AG93].

Note: in our particular case, since F(X) = G(X)—G(5),
it follows that H(t,X) = G(X) — (1 — t)G(S). The (1 —
t)G(S) term is only a function of ¢, and not of X. However,
homotopy theory has been developed for the general case,
with any F' and the sequel of this presentation does not use
this particularity.

System H has » 4+ 1 unknowns and n» equations. If
P=(t,, X;) is such that H(P) = 0, and if P is a regu-
lar point of H = 0 (ée the jacobian H'(P) has maximal
rank) then, from the implicit function theorem, H~'(0) is
locally parametrizable by ¢ at P. In more geometric words,

H(t,X) = 0 defines a curve (the homotopy curve) in n + 1
dimensional space, passing through P and parametrized by
t. Such a point P is known: it is P = (0, S).

The main idea of resolution by homotopy is to follow the
homotopy curve (also called homotopy path), starting from
t =0, X = S. If the homotopy path passes through a
point (¢, X) with ¢ = 1, then a solution to H(1,X) = 0, and
thus to G(X) = 0, has been found. Methods for following
homotopy curves are summarized below. Figure 4 shows a
sampling of 12% homotopy 3D paths corresponding to our
example: z° —1 =0,z € @ of figure 3; the checkerboard is
in the plane t = 0.

Figure 4: z° —1 =0, z € €: Homotopy curves in 3D.

2.2 Topologic considerations

If a homotopy curve only contains regular points, its topol-
ogy is either that of a circle (ie the curve is a loop), or that
of a line (e it comes from infinity, and goes back to infinity).
Of course, in each case, it may cross, or not, hyperplane with
equation t = 1. See figure 5.

DN,

Figure 5: Some examples of homotopy curves.

A homotopy curve may contain singular points, ie points
where the jacobian has a non-maximal rank. In the homo-
topy context, such points are called bifurcation points: two
(or more) homotopy curves collide. The simplest and more
frequent bifurcation points are quadratic bifurcation points:
two curves in IR x €™ meet in a point @ = (to, Xo) €
IR x €" where @Q is a regular solution of H(Q) = 0 and
det(H%(Q)) = 0. If ¢ is a vector tangent to one of the two

curves at a quadratic bifurcation point, then 2¢ is the tan-
gent vector to the second curve, where 1> = —1 as usual.
Moreover, the two tangent vectors have a vanishing ¢ com-
ponent. See [LW93] for a full characterization of quadratic
bifurcation points.

Turning points are a special case of quadratic bifurcation
points. They arise with real systems F' and G: at a turning
point, one of the two curves is real, and the other is imag:-
naryor complex. Figure 6 shows a typical example of turning
points. Turning points arise even in very simple problems,
so homotopy methods must take them into account. More-
over, after [LW93], they are the only bifurcation points that
arise in real sytems, in the generic case.

Figure 6: A real homotopy curve, in thick line, with two
turning points A and B: tangent vector has vanishingt com-
ponent. In thin lines, corresponding complex branches (here,
imaginary). Equations are (say) : F(X) = 3X°> - X + %,
G(X)=3X"-X - %, H(t,X)= 3X3—X—|—%—t, A =1

187
—_1 B _5 —1
Ax = —3, Bi= 15, Bx = 3.

2.3 Homotopy method

In our case, a starting point for homotopy is known, and
we are only interested by the homotopic curve crossing this
point. However, in a more general setting, people want to
find all (maybe complex) solutions of a given system, and
have no starting points. Thus they typically proceed in two
steps [AG93]. First they build a starting system of equa-
tions; it must be easily solved, and it must have at least
as many solutions as the system to be solved; this number
of solutions may be bounded, classically, by the product of
degrees, after Bezout’s theorem, or, more closely, with New-
ton’s polytope and BKK bounds [VVC93]. Secondly, paths
are followed from starting points.

2.4 Methods for following paths
2.4.1 Climbing complex homotopy

For constraint systems in CAD modeling, only real roots of
system G are relevant, and the followed paths are curves
in IR™'. In other areas, complex roots Z of system G are
needed, and homotopy paths are curves in IR x €" (since,
usually, ¢ goes from 0 to 1, staying in IR). In this last case,
it is possible to ‘climb’ along homotopy paths, starting with
(t =0, Z = Z(0)), and tracking Z(t) as ¢t monotonously

increases from 0 to 1. By linearization of H at a known
point (¢, Z) on the curve, we get:

Ht+ALZ+AZ)~ H(t,Z) + HIAt+ HyAZ

We use the prediction: AZ = —(H})™! H{At where At may
possibly be scaled to control the step size |(At, AZ)|. Then,
leaving t constant (so At = 0), we correct several times Z
by iterating: AZ := —(Hy) 'H(t,Z), Z := Z + AZ, until
|AZ] is sufficiently close to 0.

This method faces a difficulty when a turning point, or
a bifurcation point, is met. One possible solution (among
others) is to use the perturbed homotopy:

H(t,Z) = t4G(Z) + (1 —) F(Z)

where v = pe'? is a random complex number: it is proven
that there is only a finite number of 6 for which H has
bifurcation points in ¢t € [0,1). So, with probability 1, per-
turbed homotopy removes turning and bifurcation points.
Of course, this perturbation can not remove possible singu-
lar solutions of G = 0, and corresponding bifurcation points
when H = G, te when t = 1.

2.4.2 Predictor-Corrector

To follow the homotopic path from a given point My, the so
called predictor-correctormethod first computes Tk, the tan-
gent vector (or an approximation) to the curve in My, pre-
dicts that the point P = My + €Ty /|T%| is close to the curve,
and corrects P by some variant of the Newton-Raphson’s it-
eration (for instance using the Secant Method, or using the
Moore-Penrose’s pseudo inverse) or some gradient method
to obtain My41, the point on the curve closest to P. And
so on, restarting from Myy1. Material about numerical lin-
ear algebra can be found in [AG93]. We do not detail this
method further, very similar to marching methods used in
CAD for following intersection curves between surfaces in
3D geometric modeling [Pat92, Hof90].

A practical difficulty (and a difficult theoretic problem of
numerical analysis) is the choice of a good e: if it is too big,
the correction-step may fail; if it is too small, path following
is slowed down (moreover, some numerical problems due to
imprecision sometimes appear). Research has been done for
safely and automatically choosing € [AG93, Yak95].

However, we have found the following heuristic good
enough for our limited needs and easy to implement: at
each correction-prediction step, we update the pseudo in-
verse of H' and choose ¢ = 0.05; if the correction step does
not converge fast enough (7ein at most 4 iterations), we di-
vide € by 2 and try again. Let d the distance between the
starting point My and the predicted point Po; let Py, Ps, Ps
and P, the successive corrections of the point Fy. As soon
as distance |PoP;| is greater than d, the system is said to
diverge. It convergences when |P;P;_1]| is less than 0.02d,
and the angle between tangent vectors at My and at P; is
less than 10 degrees.

Our experimental constraint-based 20 modeler use predictor-

corrector method, mainly because we already need a Newton-
Raphson’s iteration to compare the behaviours of the latter
and of the homotopic method. However, this method re-
quieres the computation and (some kind of) inversion of the

jacobian® H'. The next method only requieres to evaluate
H at some points.

2.4.3 Piecewise linear approximation

Another method for following homotopy paths is known as
precewise linear approximation. In Computer Graphics, a
variant of this method has been used for tracing curves in

IR™ by (at least) Dobkin et al [DLTW90].

In IR?, this method is very simple. To trace the homo-
topy curve H(t,z) = 0, IR® is triangulated by, say, equi-
lateral triangles with side €. Assume a first triangle ABC
traversed by H is known: H enters by the edge AB and
leaves by AC because H(A) >0, H(B) < 0, H(C) < 0, or
the contrary. So the next triangle cut by H is ACB’, where
B’ = A — B+ C is the point symmetrical to B relatively
to the line AC. In ABC, H is approximated by the unique
linear map L(t,z) from IR® to IR such that L(A) = H(A),
L(B) = H(B) and L(C) = H(C), and the curve in ABC is
approximated by the edge {L(z,y) =0} N ABC.

In IR™*, the space is triangulated by ‘hyper tetrahe-
drons’, ¢e simplices. Assume we know a starting simplex 7'
traversed by the homotopy path; suppose also that values
of the n functions defining homotopy H are available at the
vertices of T'. They define a unique linear map L from IR™?
to IR™; in T', approximate H by I and the homotopy curve
by the edge {L(t,z1,...,2,) = 0} NT. Deduce the hyper-
facet of T' by which this edge leaves T', and follow it in the
neighbouring simplex.

2.4.4 A restricted homotopic method

Sometimes, people in constraint-based modeling use the fol-
lowing restricted homotopy[Ver90]: suppose a first solution
Xo to a constraint system cg is known, but the value of
some parameter p € IR (a length, an angle, a radius...) has
to be changed, say from pg to pi. It is convenient to see
the constraint system c¢ as a function of p, say: ¢ = C(p)
and so ¢o = C(po), and we want to solve ¢; = C(p;). When
directly solving C(p1) by Newton-Raphson’s iteration with
Xy as an initial guess, there is a risk of divergence. So a nat-
ural idea is to first solve, say, C(0.9po + 0.1p1) with starting
guess Xo to get Xo.1 by using Newton-Raphson’s method
or Secant Method, then to solve C(0.8po + 0.2p;1) with the
starting guess Xo.1 to get Xo2, and so on, until solution
X1 of C(p1) = 0 is found. Of course, this method can be
generalized to any number of steps (not only 10), and for
changing any number of parameters. It is a kind of naive
climbing homotopy.

This method has a serious limitation: it only works when
the followed path has no turning points. Since turning
points are found even with very simple examples, the climb-
ing homotopy is relevant only in the field of complex num-
bers (and with some kind of perturbation to avoid bifurca-
tion points).

2.5 Attraction basins

An attraction basin for homotopy is a maximal connected
points set S € IR™ leading to the same solution (¢ =1, Xy),
or to no solution, when the homotopic method is applied

3The jacobian H' is symbolically computed for each constraint
system.

with the starting point: (¢ = 0,5). Two neighbouring
basins are separated by points leading to bifurcation points.
The latter are solutions of the algebraic system: H(t, X) =
det(H%(t,X)) = 0 in n + 1 equations and unknowns, and
constitute by definition an algebraic set (assuming G to be
algebraic). Projection on hyperplane having equation: ¢t =0
then gives a semi-algebraic set. The reader can easily verify
that, with the example: z* —1 = 0, 2 = z + 1y, frontiers
between basins are (part of) lines: y =0, y = z/3.

It is well known that attraction basins of Newton-Raphson’s

resolution are fractals [PR86] (see figure 3 for instance):
this explains the ‘chaotic’ behaviour of this method. Semi
algebraic sets are less beautiful than fractals, but much
smoother.

2.6 Under-constrained homotopy

For a 2D constraint-based modeler to be truly user-friendly
and interactive, we wanted to also solve under-constrained
systems, and not only well-constrained ones. But, if there
are n unknowns (without ¢) and u missing equations, homo-
topy H(t, X) = 0 no more describes a curve in IR"*!, but a
‘hypersurface’ with dimension 1 + u.

At the starting point My = (0, S), we project the ‘up-
ward’ vector V = (t = 1,21 = z2... = z, = 0) on the
tangent space of this hypersurface to get Tp; the predicted
point is then Mo + €70 /|To| and a correction step gives M;.
At My, we project the previous tangent vector Tx_1 on the
tangent space of H(My) = 0 to get the tangent vector Ty
and the predicted point is My + €T%/|Tk|; and so on.

In other words, we try to follow the path that has an
‘upward’ tangent Tp at the point (0,.5) and that is as straight
as it can be while remaining in the homotopy surface. Up to
errors (due to the fact that our €is not infinitesimal), we thus
follow a geodesic curve of the surface: in all points of such
a curve, the principal normal to the curve coincide with the
normal to the surface. Due to the accumulation of errors, the
followed path progressively diverges from the ’true’ geodesic
curve; despite this limitation, the homotopy defined in this
fashion has an intuitive behaviour: for instance, suppose an
unknown point P must belong to a given line L, but the
initial guess Py for P does not; then the user sees the point
getting closer to the line by following the shortest path.

Another possibility we have not tried is, at each step
My, to always project upward vector V' on the tangent
space of H(My) = 0; however there is a problem when

det(H%(My)) = 0, ie at a local apex of H.

2.7 Solution at infinity

Solutions at infinity (for instance zy = 1, y = 0 has solu-
tion £ = oo) pose a problem with homotopy method, since
paths to these solutions have infinite length. .. We have not
met this problem during our experiments; anyway, it is eas-
ily (and classically) solved by homogenization. Suppose for
instance unknowns are the (z,y) coordinates of some point.
Just use homogenized coordinates (X,Y, H) for this point,
iexH = X, yH =Y, translate constraints g;(z,y) = 0 into
Gi(X,Y,H) = H*99)g.(X/H,Y/H) = 0, add a new con-
straint like, say: X?4+Y?4+H? =1, and solve: all solutions of
the homogenized system are finite; in the previous example,
homogenized systemis XY = H? Y =0, X>4+Y?*4+ H?> =1,
solution is X = £1, Y = H = 0. See [AG93, Mor86].

3 A 2D CONSTRAINT-BASED MODELER

3.1 Description

We have implemented in Lelisp an experimental 2D constraint-
based modeler to compare behaviour of resolution by Newton-
Raphson’s method and by homotopy. The user creates points,
edges, circles in an interactive way, as with, say, MacDraw
or Xfig. Moreover, he can specify constraints. Predefined
constraints are: distance between two points or between a
point and a line, angle between two edges, tangency be-
tween a line and a circle or between two circles, incidence
between a point and a line or a circle. He can also spec-
ify (with an algebraic formula) any algebraic equation. He
can declare coordinates and radius circles to be ‘moveable’,
or not: the modeler can only modify moveable parameters.
They are unknowns, and their numerical value (interactively
provided by the user) are used as the initial guess by reso-
lution methods. The user may call resolution by Newton-
Raphson’s method, or by homotopy. Resolution methods
need constraint systems to be well- or under-constrained: so
the user can incrementally add constraints and solve. Homo-
topy with under-constrained system is explained in section
2.6. For the moment, the modeler considers over constrained
systems as mistakes from the user, and gives him a warning.

When a Newton-Raphson’s resolution fails or converges
to an unwanted solution, the user recovers the previous
state, and uses homotopy. Generally it works much bet-
ter. However, sometimes, homotopy may also converge to an
unwanted solution. But homotopy is very self-explanatory:
during the resolution process, intermediate states are dis-
played (see figure 2), so the user can easily see what is wrong
in his initial guess; for instance, when he sees some circle
going to the wrong side of some line, he interrupts the res-
olution (or waits for its end), restores the previous state,
moves the circle or the line, and then calls for the resolution
again: It works.

In our very first experiments, homotopy nearly always
worked at the first try. Then, failures became more and
more usual. The reason is that, seing homotopy work so
well, we became more and more lazy and we gave initial
guesses further and further away from the solution. ...

We have not met problems with bifurcation points, ex-
cept when we do it on purpose, to test the software. Typi-
cally, these situations occur when there are several symmet-
rical solutions for a constraint system, and the initial guess
has the same symmetry: for instance, if a moveable point P
has two symmetrical solutions P; and P> relatively to some
line L, and if the initial guess for P belongs to L, then the
homotopy method can not ‘choose’ between the two sym-
metrical paths, one leading to P and the other to Ps: the
initial guess is itself a bifurcation point. A slight perturba-
tion of the initial guess is sufficient to break the symmetry
and to remove the bifurcation point.

3.2 Open problems

Control. When a constrained system has no solution, it
is easily seen: the homotopy enters in a loop (supposing a
homogenization is used to handle solution at infinity, and
so to avoid infinite paths). Though feasible [Sch94], the
automatic detection of loops is not implemented just now:
the user has to interrupt the not ending homotopy process

(his work is not lost!), or wait for the automatic stop of the
process after a fixed number of steps.

Diagnosis and decomposition. Our modeler already
provides some tools for diagnosis of constraint systems: recog-
nition of under-, well-, or over-constrained unknowns by
computing the Dulmage-Mendelsohn’s decomposition of the
bipartite graph associated to constraint systems [AAJM93],
or diagnosis of rigidity like in [Hen92] for instance. These
tools are essential to help users ‘debug’ complex constraint
systems. Moreover, they allow to decompose huge constraint
systems into smaller ones (by using the Konig-Hall’s decom-
position [AAJM93]), and so to speed up resolution. The
homotopy method (like the Newton-Raphson’s method, in-
cidentally) is compatible with such decomposition methods.
However, the latter are not available in our actual imple-
mantation.

Speed. Our homotopy method is not as fast as it could
be (though the constraints resolution always remains faster
than their interactive specification), especially with more
than 40 or 50 unknowns: when implementing, our first goal
was to verify the relevance of the homotopy method, not
speed. ..So the slowness of our implementation is not rele-
vant. More relevant is the number of correction-prediction
steps needed on average: most often, about 20 steps are
enough; 60 or 70 iterations may be needed, when the fol-
lowed path is very close to another homotopy curve, ie at
‘quasi bifurcations points’ (see figure 4). Thus, in practice
and in average, homotopy will be 20 times slower than the
Secant Method, used in each step.

Imprecision. Looking closely to attraction basins in
figure 3, one can see some little errors on the frontiers: ide-
ally, frontiers would be straigth lines (in this example). This
problem is mainly due to imprecision. In some areas, this
kind of problem is a severe drawback of homotopic meth-
ods, because the confusion between distinct (and very close)
paths may lead to logical or topological inconsistencies; how-
ever, for our applications, and in an interactive use, this is
not a serious problem.

Non algebraic equations. Homotopy is only used with
algebraic constraints for the moment, though it may work
with transcendental ones.

Inequalities. Inequalities are a convenient way to se-
lect a solution among others: for instance, there are two cir-
cles tangent to a given circle and passing through two given
points, and an inequality can be used to select the wanted
circle. Our application assumes that the choice is implic-
itly performed by the user, through his initial guess: our
constraints only lead to equations, and not to inequalities.

However, providing explicit inequalities is perhaps useful.
It is possible, at least theoretically, to translate inequalities
into equations: for instance f(X) > 0 & f(X)—a®> =0
where a is an auxiliary real unknown: we already know how
to solve an under-constrained system by homotopy. We are
currently investigating this question.

4 CONCLUSION

We are convinced homotopy will soon become very popular
in constraint-based geometric modelers, and maybe among

descendants of MacDraw or Xfig. It is not very difficult
to implement. Its behaviour is much more intuitive, pre-
dictable, and self explanatory than those of Newton-Raphson’s
method. It is compatible with interactivity, and with decom-
position methods. As an example, we have used an experi-
mental 2D modeler, but homotopy (like Newton-Raphson’s
method) also applies for 3D geometric constraints.

Acknowledgements

We would like to thank Jean-Michel Moreau and Marc Roe-
lens from Ecole des Mines de Saint-Etienne for helpful dis-
cussions, and the anonymous referees for their remarks.

References

[AAJM93] S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduc-
tion of constraint systems. In Compugraphic, pages
83-92, Alvor, Portugal, 1993.

[AG93] E.L. Allgower and K. Georg. Continuation and path
following. Acta Numerica, pages 1-64, 1993.

[BFH193] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and
R. Paige. A geometric constraint solver. Technical Re-
port CSD-TR-93-054, Department of Computer Sci-
ence, Purdue University, August 1993.

[Bor81] A. Borning. The programming language aspects of
thinglab, a constraint oriented simulation laboratory.
ACM Transactions on Programming Languages and
Systems, 3:353-387, oct 1981.

[Brug6] B. Bruderlin. Constructing three-dimensional geo-
metric objects defined by constraints. In Interactive
3D Graphics, pages 111-129, October 1986.

[But79] M. Buthion. Un programme qui résoud formellement
des problémes de constructions géométriques. RAITRO
Informatique, 3(4):353—-387, oct 1979.

[CSY87] S.C. Chou, W.F. Schelter, and J.G. Yang. Charac-
teristic sets and grobner bases in geometry theorem
proving. In Workshop on Computer Aided Geometric
Reasoning, pages 29-56, INRIA, France, june 1987.

[DLTW90] D.P. Dobkin, S.V.F. Levy, W.P. Thurston, and
A. Wilks. Contour tracing by piecewise linear approx-
imations. ACM Transaction on Graphics, 9(4):389—
423, oct 1990.

[EY88] L.W. Ericson and C.K. Yap. The design of linetool
a geometric editor. In Symposium on Computational
Geometry, pages 83-92, 1988.

[Hen92] B. Hendrickson. Conditions for unique realizations.
SIAM J. Computing, 21(1):65-84, feb 1992.

[Hof90] C.M. Hoffmann. A dimensionality paradigm for sur-
face interrogations. Computer Aided Geometric De-
sign, 7:517-532, 1990.

[Kon92] K. Kondo. Algebraic method for manipulation of di-
mensional relationships in geometric models. Com-
puter Aided Design, 24(3):141-147, mars 1992.

[Laz92] D. Lazard. Systems of algebraic equations: algo-
rithms and complexity. Technical Report LITP 92.20,
LITP, université Paris VI, VII, CNRS, mars 1992.

[LLG81] R. Light, V. Lin, and D.C. Gossard. Variational ge-
ometry in cad. Computer Graphics, 15(3):171-177,
aug 1981.

[LW93] T.Y Li and Xiaoshen Wang. Solving real polynomial
systems with real homotopies. Mathematics of Com-
putation, 60(202):669-680, 1993.

[Mor83] A.P. Morgan. Solving Polynomial Systems Using
Continuation for Scientific and FEngineering Prob-
lems. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[Morg6]

[Nel85]

[Owe91]

[Pat92]

[PRS6]

[Sch94]

[Sut63]

[Ver90]

[VSR92]

[VVC93]

[Win88]

[WMS90]

[Yak95]

A.P. Morgan. A transformation to avoid solutions at
infinity for polynomial systems. Applied Mathematics
and Computation, (18):77-86, 1986.

G. Nelson. Juno, a constraint-based graphic system.
In ACM Siggraph Conference Proceeding, 1985.

J.C. Owen. Algebraic solution for geometry from di-
mensional constraints. In Proceedings of the Sympo-
sium on Solid Modeling Foundations and CAD/CAM
Applications, pages 397-407, 1991.

N.M. Patrikalakis. Surface-to-surface intersec-
tions. IEEE Computer Graphics and Applications,
13(1):89-95, jan 1992.

H.O. Peitgen and P.H. Richter. The beauty of frac-
tals, images of complex dynamical systems. Springer
Verlag, 1986.

P. Schramm. Intersection problems of parametric sur-
faces in cagd. Computing, 53:355-364, 1994.

L.E. Sutherland. Sketchpad, a man machine graphi-
cal communication system. In AFIPS, Spring Joint
Computer Conference, pages 329-346, Detroit, Michi-
gan, may 1963.

A. Verroust. Etudes de problémes liés a la définition,
la visualisation et 'animation d’objets compleres en
informatique graphique. PhD thesis, Université de
Paris Sud, Centre d’Orsay, 1990.

A. Verroust, F. Schonek, and D. Roller. Rule ori-
ented method for parametrized computer aided de-
sign. Computer Aided Design, 24(3):531-540, Oct
1992.

J. Verschelde, P. Verlinden, and R. Cools. Homo-
topies exploiting newton polytopes for solving sparse
polynomial systems. SIAM J. Numerical Analysis,
1993.

F. Winkler. Algorithms in polynomial ideal theory
and geometry. In 2nd Austrian-Hungarian Informat-
ics Conf., Retzhof Austria, sep 1988.

C.W. Wampler, A.P. Morgan, and A.J. Sommese. Nu-
merical continuation methods for solving polynomial
systems arising in kinematics. ASME J. on Design,
(112):59-68, 1990.

J.C. Yakoubsohn. An universal constant for the con-
vergence to the newton method and application to the
classical homotopy method. Numerical Algorithms,
1995.

