
Linear Programming for Bernstein Based Solvers

Dominique Michelucci, Christoph Fünfzig

LE2I, UMR CNRS 5158, 9 av Alain Savary, BP 47870, 21078 Dijon cedex, France
Dominique.Michelucci@u-bourgogne.fr

Abstract. Some interval Newton solvers rely on tensorial Bernstein
bases to compute sharp enclosures of multivariate polynomials p(x1, . . . xn)
where xi ∈ [0, 1]. Unfortunately, polynomials become exponential size in
tensorial Bernstein bases. This article gives the first polynomial time
method to solve this issue. It proposes to resort to Linear Programming,
for computing tight ranges of muti-variate polynomials on a given box
(interval vector), and for reducing a box while preserving included roots.
The underlying Bernstein polytope is defined, it is the feasible set of
the LP problems. Its defining inequalities are given by the positivity of
relevant Bernstein polynomials. It has an exponential number of vertices
but only a polynomial number of hyperplanes and hyperfaces.

1 Introduction

Especially in 3D, geometric constraints solving eventually requires solving sys-
tems of non-linear equations, typically algebraic. Typically, irreducible systems
are solved with numerical methods, for instance homotopy [1–3], Newton-Raphson
iterations, or some Newton interval methods [4] including Bernstein based solvers.

Computer Graphics, CAD-CAM, and some people in numerical analysis, use
properties of TBB1, and Bernstein based solvers, for computing intersection be-
tween algebraic non-linear surfaces and curves, and for numerically solving alge-
braic systems [5–10]. TBB provide sharp enclosures of multivariate polynomials
over a box, i.e. a vector of intervals. The range of a multivariate polynomial
p(x), x = (x1, . . . xn) over the unit box x ∈ [0, 1]n is the interval given by the
smallest and the greatest coefficients of the polynomial p(x) expressed in the
TBB. This property, with the de Casteljau algorithm or other subdivision meth-
ods, are used in Computer Graphics and CAD-CAM to compute tight covers of
implicit algebraic curves and surfaces [11].

However polynomials are no more sparse and become exponential size in the
TBB. For instance the monomial 1 is written (B(d1)

0 (x1) + . . . B
(d1)
d1

(x1))× . . .×
(B(dn)

0 (xn) + . . . B
(dn)
dn

(xn)) in the TBB. Even a linear polynomial p(x1, . . . xn)
has an exponential number 2n of coefficients in the TBB, while it has linear size
O(n) in the canonical base. A quadratic polynomial p(x1, . . . xn) has exponential
size 3n in the TBB, while it has a quadratic number O(n2) of coefficients (for
monomials: x2

i , xixj , xi, and 1) in the canonical base.

1 TBB: tensorial Bernstein bases

II

Clearly this feature makes current Bernstein based solvers impracticable for
systems with more than n = 6 or 7 unknowns. Geometric constraints, especially
in 3D, often yield much bigger irreducible systems. For instance, the regular
icosahedron, and non-regular ones (20 triangular faces, 12 vertices, 30 edges)
can be specified, up to location and orientation in 3D space, with the length of
their edges; similarly their duals: the regular dodecahedron, or non-regular ones
(12 pentagonal faces, 20 vertices, 30 edges) can be specified with the length of
their edges and coplanarity conditions for each of their faces. In passing, these
systems of equations are quadratic, i.e. the degree of their monomials is at most
2, since (using usual notations and conventions) equations are: a2

k + b2
k + c2

k = 1,
akxi + bkyi + ckzi + dk = 0, (xi − xj)2 + (yi − yj)2 + (zi − zj)2 = D2

ij , where
(xi, yi, zi) are the coordinates of vertex i, akx+bky+ckz+dk = 0 is the equation
of the plane of face k, and Dij is the length of edge ij. To get a well constrained
system, 3 points are arbitrarily fixed: a vertex is fixed at the origin, one of its
neighbor on the x axis, and another neighbor of the first fixed vertex is fixed on
the Oxy plane. These systems are huge, they are roughly irreducible, and they
can not be solved with current TBB solvers, due to the exponential size of the
representation of the polynomials.

This article proposes the first polynomial time algorithm to overcome this
difficulty. Until now, the only solution in the litterature was to dismiss TBB, e.g.
to resort to the simplicial Bernstein bases, which have polynomial cardinality, as
[9], or to resort to more basic interval analysis. In this latter approach, we will
mention Yamamura and Fujioka [12], because they also use linear programming,
like us. The difference with our work is that they use simpler enclosing polytopes:
boxes, provided by interval arithmetic.

The main idea is to resort to Linear Programming. We call the underlying
polytope, i.e. the feasible set, the Bernstein polytope, because its bounding hy-
perplanes are provided by the non negativity of relevant Bernstein polynomials.
The Bernstein polytope (§3) has an exponential number of vertices, but only a
polynomial number of bounding hyperplanes. This Bernstein polytope encloses
the quadratic algebraic patch

Qn = {(x1, . . . xn, x2
1, . . . x

2
n, x1x2, . . . xn−1xn) | 0 ≤ xi ≤ 1}

which is reminiscent to the Veronese map. Qn is more conveniently defined as:

x = (x1, . . . xn) ∈ Rn, φ(x) = (x1, . . . xn, x2
1, . . . x

2
n, x1x2, . . . xn−1xn) ∈ RN

Qn = {φ(x) | x ∈ [0, 1]n} ⊂ RN , N = n(n + 1)/2− 1

Every polynomial p(x) can then be expressed as p(x) = L(φ(x)) with L : X ∈
RN → R a linear function in RN . Then linear programming algorithms, like the
simplex algorithm, can be used to compute the vertex X ∈ RN of this Bern-
stein polytope which minimizes or maximizes this linear objective function L:
it provides a lower and an upper bound of p(x), x ∈ [0, 1]n. Linear program-
ming methods are also able to reduce the box [0, 1]n, or any box after some
scaling, while preserving contained roots, and thus to solve non linear systems
of non-linear equations and inequalities.

III

It is known that the simplex method is not polynomial time in the worst
case; thus, from a theoretical point of view, it is better to invoke a polynomial
time method, like the ellipsoid method, or an interior point method. However in
practice the simplex algorithm is very competitive.

Since a lot of systems of geometric constraints yield to systems of quadratic
equations (like the examples above), and since anyway all algebraic systems
can be reduced with polynomial overhead to quadratic systems using auxilliary
equations and variables and using iterated squaring, this paper only considers,
for simplicity, systems of quadratic equations. Anyway, the main idea of the
algorithm: define the Bernstein polytope through its hyperplanes rather than
as the convex hull of its vertices, can straightforwardly be extended to systems
with higher degrees.

§2 reminds standard notations. §3 define the Bernstein polytope and its
bounding hyperplanes. §4.1 and 4.2 explain how computing a range of a multi-
variate polynomial and reducing a domain while preserving its roots reduces to
linear programming problems, considering the Bernstein polytope. Computing
tight ranges of multivariate polynomials can be used in interval Newton solvers,
the principle of which is presented in §5. Actually, the Bernstein polytope can be
used to propose a new kind of solver, which no more refers to Newton’s method,
and which is presented in §6. Some technical problems, scaling and inaccuracy,
can only be mentioned in §7, for conciseness. The first solver, by Dominique
Michelucci, bypasses the inaccuracy issue using rational arithmetic; Christoph
Fünfzig then implemented the first robust floating-point CPU variant of this
solver (§7.4). §7.3 mentions some theorems used by solvers to certify that a box
contains no root, or at least one root, or a unique regular root. §8 is a post-
scriptum section which summarizes empirical results detailed elsewhere [13–15].
§9 concludes and lists future works.

2 TBB. Notations. Definitions. Main properties

TBB stands for tensorial Bernstein base. LP stands for linear programming.
The d+1 Bernstein polynomials B

(d)
i of degree d, also written Bi(t) for fixed

d, are a base for degree d polynomials:

B
(d)
i (x) =

(
d

i

)
xi(1− x)d−i

where the binomial coefficient C(i, d) =
(
d
i

)
is the number of i-subsets of a d-set.

The conversion with the canonical base: (x0, x1, . . . xd) is a linear mapping.
Classical formulas are [16]:

xk = (1/C(k, d))
d∑

i=k

C(k, i)B
(d)
i (x)

IV

x = (1/d)×
d∑

i=0

i B
(d)
i (x)

x0 = 1 =
d∑

i=0

B
(d)
i (x) : Their sum equals 1

Main properties are: their sum equals 1, and every B
(d)
i (x) is positive for

x ∈ [0, 1].
It means that for 0 ≤ x ≤ 1, p(x) =

∑
piBi(x) is a linear convex combination

of the coefficients pi. For a polynomial p, each pi ∈ R and p(x ∈ [0, 1]) lies in
[min pi, max pi]. This enclosure is tight, and the minimal or maximal bound is
exact if it occurs at i = 0 or i = d. When pi lies in 2D (or 3D), p(x) describes a
2D (or 3D) Bézier curve, and the arc p(x), x ∈ [0, 1] lies inside the convex hull
of its so called control points pi.

Example: let p(x) be a polynomial in x ∈ R. Since x = 0 B0(x)+1/dB1(x)+
2/dB2(x) + . . . d/dBd(x), the polynomial curve (x, y = p(x)), with x ∈ [0, 1],
lies in the convex hull of its control points (i/d, pi), where p(x) =

∑
i piBi(x).

Contrarily to coefficients in the usual base: (1, x, x2, . . . xd), control points
depend on the x interval. The classical de Casteljau method provides the control
points of p(x), x ∈ [0, t], and of p(x), x ∈ [t, 1].

For multivariate polynomials, the TBB is the tensorial product:

(B(d1)
0 (x1), . . . B

(d1)
d1

(x1))× (B(d2)
0 (x2), . . . B

(d2)
d2

(x2))× . . .

The convex hull properties and the de Casteljau method extend to the TBB,
which provide sharp enclosure of multivariate polynomials p(x), x ∈ [0, 1]n. For
this reason, TBB are routinely used in CAD-CAM and Computer Graphics for
computing tight covers (e.g. voxelizations) of implicit algebraic curves or surfaces
(see [11] for instance) in low dimension (2D, 3D, 4D).

3 Definition of the Bernstein polytope

Each monomial with total degree 1 or 2: xk, xixj , x
2
k is attached a variable of a

LP (linear programming) problem. Non linear dependences between monomials
xk and x2

k, or between monomials xi, xj , xixj , will be represented resorting to
the Bernstein polytope, through linear inequalities constraining corresponding
LP variables.

3.1 Univariate case

For univariate polynomials with degree d, the Bernstein polytope is a convex
polyhedron which encloses the arc of the curve (x, x2, . . . xd) in Rd, with x ∈
[0, 1]. Its hyperplanes and halfspaces are given by B

(d)
i (x) ≥ 0, i = 0, . . . d; then

every monomial xk is replaced with the corresponding LP variable.

V

For the degree d = 2, the Bernstein polytope is a triangle, in Fig. 1; x and y
are the LP variables representing monomials x and x2; counting multiplicities,
each triangle side meets the curve (x, y = x2), 0 ≤ x ≤ 1, in 2 points. For degree
d = 3, the Bernstein polytope is a tetrahedron, in Fig. 2; x, y, z are the LP
variables representing monomials x, x2, x3; counting multiplicities, each plane
meets the curve (x, y = x2, z = x3), 0 ≤ x ≤ 1 in 3 points. Generalization to
higher degrees is obvious.

0 1

B0 ≥ 0

B1 ≥ 0

B2 ≥ 0

4y+x−3 = 0

3/5 7/90 1

B0 ≥ 0

B1 ≥ 0

B2 ≥ 0

Fig. 1. Left: The Bernstein polytope encloses the curve: (x, y = x2), for (x, y) ∈ [0, 1]2.
Its limiting sides are: B0(x) = (1−x)2 = y−2x+1 ≥ 0, B1(x) = 2x(1−x) = 2x−2y ≥ 0,
B2(x) = x2 = y ≥ 0. Right: solving 4x2 + x − 3 = 0, with x ∈ [0, 1], is equivalent to
intersecting the line 4y + x − 3 = 0 with the curve (x, x2). Linear programming gives
the intersection between the line and the Bernstein polytope: the x interval is reduced
from [0, 1] to [3/5, 7/9].

3.2 Multivariate polynomials

We extend the Bernstein polytope to multivariate polynomials as follows. The
inequalities for multivariate polynomials are obtained as the relevant prod-
ucts of the inequalities for univariate polynomials. We consider only quadratic
polynomials, with monomials xi, x

2
i , xixj , x

2
j . The hyperplanes for xi, x

2
i have

been given. So consider now the non-linear dependences between monomials
xi, xj , xixj . Let us rename them x, y, z = xy to get more usual and intuitive
notations. As usual, all variables have values inside the unit interval [0, 1]. The
surface patch (x, y, z = xy) is enclosed in a convex polyhedron, shown in Fig. 3,
whose halfspaces are:

B
(1)
0 (x)×B

(1)
0 (y) ≥ 0 ⇒ (1− x)(1− y) ≥ 0 ⇒ 1− x− y + z ≥ 0

VI

(1, 1, 1)

(0, 0, 0)

(1/3,0,0) (2/3, 1/3, 0)

Fig. 2. The Bernstein polytope, a tetrahedron, enclosing the curve (x, y = x2, z =
x3) with x ∈ [0, 1]. Its vertices are v0 = (0, 0, 0), v1 = (1/3, 0, 0), v2 = (2/3, 1/3, 0)
and v3 = (1, 1, 1). v0 lies on B1 = B2 = B3 = 0, v1 on B0 = B2 = B3 = 0, etc.
B0(x) = (1−x)3 = 1− 3x+3x2−x3 ≥ 0 ⇒ 1− 3x+3y− z ≥ 0, B1(x) = 3x(1−x)2 =
3x−6x2+3x3 ≥ 0 ⇒ 3x−6y+3z ≥ 0, B2(x) = 3x2(1−x) = 3x2−3x3 ≥ 0 ⇒ 3y−3z ≥ 0,
B3(x) = x3 ≥ 0 ⇒ 3z ≥ 0.

y

x

z

y

z

x

Fig. 3. The Bernstein polytope enclosing the surface patch: (x, y, z = xy). Inequalities
of delimiting planes are: Bi(x)Bj(y) ≥ 0, where i = 0, 1 and B0(t) = 1−t and B1(t) = t.

VII

B
(1)
0 (x)×B

(1)
1 (y) ≥ 0 ⇒ (1− x)y ≥ 0 ⇒ y − z ≥ 0

B
(1)
1 (x)×B

(1)
0 (y) ≥ 0 ⇒ x(1− y) ≥ 0 ⇒ x− z ≥ 0

B
(1)
1 (x)×B

(1)
1 (y) ≥ 0 ⇒ xy ≥ 0 ⇒ z ≥ 0

This tetrahedron is the convex hull of the patch, thus it is optimal. Each of these
non-linear inequality B

(1)
i (x) × B

(1)
j (y) ≥ 0 in x and y gives a linear inequality

in the LP variables x, y, z. For a quadratic system in n unknowns x1, . . . xn,
their number is polynomial: O(n2). It is the same complexity as the number of
coefficients of the quadratic polynomials in the canonical base. The extension to
higher degrees is easy, but left to the reader for conciseness.

4 Using Linear Programming

The method resorts to LP (Linear Programming) to bypass the problem due
to the exponential cardinality of the TBB. This section shows how computing
a range for a polynomial p(x), x = (x1, . . . xn), x ∈ [0, 1]n reduces to solving a
linear programming problem on the Bernstein polytope.

4.1 Computing range of polynomials

The method for computing the range of a polynomial is illustrated with a simple
example. To compute a lower and an upper bound of the polynomial p(x) =
4x2 +x−3, for x ∈ [0, 1], minimize, and maximize, the linear objective function:
4y + x− 3 on the Bernstein polytope (the triangle in Fig. 1) enclosing the curve
(x, y = x2), x ∈ [0, 1]. It is a LP problem, after replacing x2 with y. From left to
right, the LP tableau of the initial problems, the LP tableau for the minimum,
the LP tableau for the maximum, are:

min, max : p = 4y + x− 3
0 ≤ B0 = y − 2x + 1
0 ≤ B1 = −2y + 2x
0 ≤ B2 = y

min p = −3 + x + 4y
B0 = 1− 2x + y
B1 = 2x− 2y
B2 = y

max p = 2− 5B0 − 9/2B1

x = 1−B0 −B1/2
y = 1−B0 −B1

B2 = 1−B0 −B1

The simplex method due to Dantzig performs Gauss pivoting operations on
the rows of the initial tableau, to reach the two last tableaux which exhibit the
minimum and the maximum. Variables on the left side of the tableaux are basic
variables, variables on the right side are non-basic variables and have values 0,
with the standard convention in Linear Programming. Let us comment the max
tableau. In max p = 2 − 5B0 − 9/2B1, the value of p can not be greater than
2, because non-basic variables B0 and B1 have values 0, and increasing their
values can only decrease p due to their negative coefficients −5B0 − 9/2B1 in
the objective function. The same kind of comments hold for the min part. Thus
the polynomial p(x ∈ [0, 1]) lies in the range [−3, 2]. The minimum occurs at
x = 0 (x is a non-basic variable for the minimum tableau) so it is exact. The
maximum occurs at x = 1 (x is a basic variable at line: x = 1 − B0 − B1/2 in
the rightmost tableau) so it is exact too.

VIII

Observe that at vertex v0 = (0, 0) where B1 = B2 = 0, the polynomial value is
p0 = p(0) = −3; at vertex v1 = (1/2, 0) where B0 = B2 = 0, the polynomial value
is p1 = p(1/2) = −3/2; at vertex v2 = (1, 1) where B0 = B1 = 0, the polynomial
value is p2 = p(1) = 2. These values p0, p1, p2 are the coefficients in the Bernstein
base, or control points, of p(x): p(x) = p0B0(x) + p1B1(x) + p2B2(x).

This feature trivially extends to all univariate polynomials, by definition of
the Bernstein polytope.

Remark 1: the Bernstein polytope for univariate polynomials can be tight-
ened, e.g. with B

(2)
1 (xi) ≤ 1/2, as in Fig. 4. The number of hyperplanes is still

polynomial, and tighter ranges are obtained. It can also improve the reduction
of domains. Of course, with this supplementary halfspaces, the minimum and
maximum may no more correspond to coefficients in the TBB. Since inequalities
for multivariate polynomials are just products of inequalities for univariate ones,
the Bernstein polytope for multivariate polynomials (with degree greater than 2)
can also be tightened. Adding halfspaces, is not possible with the current TBB
solvers which use the primal definition.

Remark 2: A forerunner of this approach is Olivier Beaumont [17]: he used
Chebychev polynomials and LP for enclosing multivariate polynomials in his
PhD. In the univariate case, Chebychev inequalities are obtained as follows:
the monomial xd is interpolated at the d Gauss points with a degree d − 1
polynomial T (x); then the error is bounded, which gives inequalities b0 ≤ xd −
T (x) ≤ b1. Actually, any approximation scheme, using its own interpolation
points, will give inequalities e.g. the minimax polynomial. Inequalities in the
multivariate case (x1, x2 . . . xn) are again given by relevant products of univariate
inequalities. Chebychev polynomials, or the minimax polynomial, provide other
inequalities and other halfspaces, which can be used in place of, or together with,
the Bernstein polytope.

0 1

Fig. 4. It is possible to tighten the Bernstein polytope, e.g. with the inequality: x−y ≤
1/4.

IX

4.2 Domain reduction, preserving roots

This section shows how the solver reduces intervals or boxes, preserving the
contained roots, for the simple equation 4x2 + x − 3 = 0 for x ∈ [0, 1]. Solving
is equivalent to finding the intersection points between the line 4y + x− 3 = 0,
and the curve (x, y = x2). This curve is enclosed in its Bernstein polytope: the
triangle of Fig. 1. Intersecting the line and the triangle, i.e. finding the min and
max value of x, will reduce the interval for x; it is the same LP problem as above,
except this time we minimize and maximize x. LP tableaux are:

min, max : x
0 ≤ B0 = y − 2x + 1
0 ≤ B1 = −2y + 2x
0 ≤ B2 = y

min x = 3/5 + 2/5B1

y = 3/5− 1/10B1

B0 = 2/5− 9/10B1

B2 = 3/5− 1/10B1

max x = 7/9− 4/9B0

y = 5/9 + 1/9B0

B1 = 4/9− 10/9B0

B2 = 5/9 + 1/9B0

Thus the interval [0, 1] for x is reduced to [3/5, 7/9], and no root is lost. To
further reduce this interval, use the scaling in §7.1 which maps x ∈ [3/5, 7/9]
to X ∈ [0, 1]: x = 3/5 + (7/9 − 3/5)X = b + aX, and the equation in X is:
4a2X2+(8ab+b)X +(b−3) = 0. Convergence around a regular root is quadratic
(like Newton’s method) but this concern is not discussed for conciseness.

Remark: if the line does not cut the Bernstein triangle, more generally if the
LP problem is not feasible, then it proves that the domain contains no root.

5 Application with interval Newton solvers

TBB based solvers are interval Newton solvers, which rely on TBB properties
to compute tight ranges of multivariate polynomials.

This section presents the principle of interval Newton methods, which isolates
real roots of a well constrained system f(x) = 0, x ∈ Rn and f : Rn → Rn, inside
a given initial box B of Rn. Push B on a stack of boxes to be studied. First try
to reduce B: compute with some interval method a range B′ (an enclosing box)
of N(B), where N(x) = x − f(x)M , where M is the inverse of the jacobian
of f at the center of the box B; as usual, a floating point approximation of
the inverse is sufficient, and some LU decomposition can be used instead of an
inverse computation. Roots inside B are located in B ∩ B′. If B ∩ B′ is empty,
B contains no root. Otherwise if B ∩ B′ is significantly smaller than B, try to
reduce B ∩ B′ again, or, if some Kantorovich test guarantees that there is a
unique root inside and that Newton iterations are going to converge (see §7.3),
polish the center of B ∩ B′ with the classical Newton’s method, and add the
resulting root to a list of solutions. If B ∩B′ is not significantly smaller than B,
bissect B ∩ B′ for instance along its longest side, or the side which is the less
reduced in the current iteration, and push the two halves on the stack. Actually,
a set of residual boxes is typically handled: a box is residual when the box is
small and can no more be divided because of the finite accuracy of floating point
arithmetic, but the method can not decide on the status of the box: for instance,

X

it contains a singular root, or very close regular roots, or a ”quasi root” (e.g. 0
is a ”quasi root” of x2 + ε = 0 with ε a positive very small number).

The main difficulty in this algorithm, and one topic of this article, is to
compute a tight range of N(B).

Computing an ε approximation of the exact range is NP-hard, thus re-
searchers in the interval analysis community have proposed several methods
to compute in polynomial time a superset of the exact range, with some trade
off between time complexity and accuracy. It turns out that TBB provide sharp
enclosures.

If all equations are quadratic, it is easy to symbolically compute N(x): it
is a set of n quadratic polynomials Pi(x). Each polynomial is defined by O(n2)
coefficients, represented with floating point values, or better with intervals with
floating point bounds. We can also in polynomial time apply some scaling (§7.1),
so that the studied box B is [0, 1]n, and the main problem is then to compute a
range of a quadratic polynomial p(x) with x ∈ [0, 1]n. To do that, the method
relying on LP is explained in §4.1.

6 A new solver

The principle of the Bernstein polytope can be used to compute tight ranges
of multivariate polynomials, and apply to classical interval Newton methods.
However the Bernstein polytope, or tightened Bernstein polytopes, make possible
new solvers which no more refer to Newton’s method.

In this new method, the Bernstein polytope enclosing the quadratic algebraic
patch (x1, . . . xn, x2

1, . . . x
2
n, x1x2, . . . xn−1xn), where xi ∈ [0, 1], is defined as be-

fore2. Moreover all equations of f(x) = 0 are translated into n linear constraints
in the LP variables. In passing, quadratic inequalities can also be translated
into linear inequalities in the LP variables: this approach deals very easily with
inequalities, contrarily to other solvers, say homotopy solvers. Then 2n linear
optimizations are performed: minimize xi for i = 1, . . . n and maximize xi for
i = 1, . . . n. These problems are independent and can be solved in parallel.

Fig. 1 Right shows this method applied to the equation: 4x2 +x− 3 = 0. Let
y be the LP variable representing x2, and x stands for itself. The intersection of
the convex polygon and the line 4y + x− 3 = 0 gives an interval for x: [3/5, 7/9]
which encloses the root of the equation: 4x2 + x − 3 = 0. This interval is then
mapped to [0, 1]: x = 3/5+(7/9−3/5)X, X ∈ [0, 1] with the scaling in §7.1. The
same method is then applied to the resulting equation in X. The convergence is
quadratic when there is only a regular root. When the box is not significantly
reduced (for instance for the equation x2 − x = 0), a bisection is performed as
usual. Empirically, almost all bisections separate roots; note that bisections are
the only way to separate roots, domain reduction can not.

An advantage of this solver is that preconditionning the system (multiplying
equations with the inverse of the jacobian at the center of the box), or inversing

2 An anonymous reviewer remarks that this patch is reminiscent to the Veronese map.

XI

the jacobian is useless, or more precisely all the work is performed by the simplex
method.

Indeed current TBB solvers often need and use some specific procedure to
detect as early as possible that the studied box contains no root [6, 10] (§7.3),
in order to avoid an exponential number of bisections (e.g. to separate two
close and ”parallel” curves in 2D). A recent article [10] proposed a procedure
which also takes into account inequalities gi(x) ≤ 0 in the system: f(x) =
0, g(x) ≤ 0. Its principle is to search with linear programming a polynomial
h(x) =

∑
j αjfj(x) +

∑
βigi(x), with αj ∈ R and βi ≥ 0 such that h(x) is

always greater than 1 in the studied box, i.e. its smallest coefficient in the TBB
is 1: if such an h exists, then the studied box contains no root. It turns out that
the new solver proposed in this article early detects boxes containing no root
without call to specific procedures: the LP problem solved by the new solver is
not feasible.

7 Technicalities

7.1 Scaling

After reduction, the reduced box is no more [0, 1]n. A scaling maps the box
[u, v], where ui ≤ vi, to the unit hypercube [0, 1]n: define xi = ui + (vi − ui)Xi,
wi = vi−ui, X ∈ [0, 1]n. Then x2

i = w2
i X2

i +2uiwiXi +u2
i , xixj = wiwjXiXj +

uiwjXj + ujwiXi + uiuj . Scaling is a linear mapping in the space of the LP
variables.

Another approach scales the Bernstein polytope, leaving unchanged equa-
tions and inequalities of the system f(x) = 0, g(x) ≤ 0. For a box xi = [ui, vi]
with width wi, the hyperplanes of the Bernstein polytope are changed as follows
(as usual, the monomial x2

i is represented with some LP variable qi in the LP
problems, and the monomial xixj with some LP variable xij).

B
(2)
0 (xi) = (1−xi)2 ≥ 0 becomes: (vi−xi)2 = x2

i − 2vixi + v2
i = qi− 2vixi +

v2
i ≥ 0.

B
(2)
1 (xi) = 2xi(1−xi) ≥ 0 becomes: 2(xi−ui)(vi−xi) = 2(−qi+(ui+vi)xi−

uivi) ≥ 0.

B
(2)
2 (xi) = x2

i ≥ 0 becomes: (xi − ui)2 = qi − 2uixi + u2
i ≥ 0.

B
(1)
0 (xi)B

(1)
0 (xj) = (1− xi)(1− xj) ≥ 0 becomes: (vi − xi)(vj − xj) = xij −

vixj − vjxi + vivj ≥ 0.

B
(1)
0 (xi)B

(1)
1 (xj) = (1−xi)xj ≥ 0 becomes: (vi−xi)(xj−uj) = −xij +ujxi+

vixj − viuj ≥ 0.

B
(1)
1 (xi)B

(1)
1 (xj) = xixj ≥ 0 becomes: (xi−ui)(xj−uj) = xij−ujxi−uixj +

uiuj ≥ 0.
Michelucci’s solver uses the first scaling, and Fünfzig’s the second scaling.

XII

7.2 Inaccuracy issue

The Bernstein polytope encloses very tightly the underlying algebraic quadratic3

patch: (x1, . . . xn, x2
1, . . . x

2
n, x1x2, . . . xn−1xn), xi ∈ [0, 1] thus with a naive float-

ing point implementation, some roots are missed because of rounding errors. For
instance, when solving x2−x = 0 with x ∈ [0, 1], the line y−x = 0 is considered
(see Fig. 1); if this line becomes y− x = ε with ε > 0 due to inaccuracy, the two
roots are missed.

For conciseness, we will only mention the principle of three solutions: the first
and the simplest one is to resort to an exact rational arithmetic; unfortunately
it is terribly slow. Michelucci’s solver uses this first solution. We then considered
a second solution. It resorts to interval arithmetics [17, 4]; intervals bounds are
floating point numbers, and intervals are rounded outwards at each operation.
The used intervals are typically some ULPs (Units in the Last Place) large:
they only account for the rounding inaccuracy. However, the simplex algorithm
has to be modified, so it is impossible to use a pre-existing LP solver. For this
reason, we prefered a third approach: interval arithmetics in the second approach
is replaced with some error analysis à la Wilkinson. Fünfzig’s solver used this
approach [15].

7.3 Guarantees and theorems

Interval solvers use procedures to prove that the studied box contains no root,
or contains at least one root, or contains a unique regular root. These tests rely
on mathematical theorems, e.g. Miranda or Kantorovich. This section presents
mathematical theorems which fit well with TBB solvers, including the new solver
in §6. Details will be given elsewhere in a forthcoming article.

Some solvers require an existence test. Miranda’s theorem, also called Poincaré-
Miranda’s theorem, can be used in TBB solvers [10] to prove that a given box
contains at least one root of a system of equation. This theorem states that,
under mild assumptions (e.g. the continuity of the functions fi, which is fulfiled
in our context), if n continuous functions from Rn to Rn are such that each func-
tion fi(x) is always negative on the hyperface xi = 0 of the hypercube [0, 1]n

and fi(x) is always positive on the opposite hyperface xi = 1 for i = 1, . . . n,
then the system f1(x) = . . . = fn(x) = 0 has at least one root in the hypercube
[0, 1]n. The hypothesis of Miranda’s theorem is more likely to hold if the sys-
tem is preconditionned: instead of solving the initial system f(x) = 0, a linear
combination of the fi is considered, so that its jacobian is (approximately) the
identity matrice at the center of the studied box; this preconditionned system is
g(x) = J(xc)−1f(x) = 0.

Some solvers require an uniqueness test. Kantorovich’s theorem (also called
Newton-Kantorovich’s theorem) can be used to prove that a box contains a
unique regular root of a system of non-linear equations. This theorem is espe-
cially convenient for algebraic quadratic systems, where second derivatives are
3 This quadratic patch is reminiscent to the Veronese map. But Veronese map is

homogeneous and unbounded.

XIII

constant. A second computable condition for uniqueness is given by Kim and
Elbert [8]: they prove that if the null vector is the only common tangent vector
to hypersurfaces fi(x) = 0, then the uniqueness of the root is guaranteed. An
equivalent condition is that all enclosing cones of normals of the n hypersurfaces
fi(x) = 0 are disjoint; after preconditionning, this condition becomes likely for
a small enough box enclosing a unique regular root r: in this case, precondi-
tionning makes hypersurfaces close to orthogonal planes passing through r. A
third computable condition which guarantees uniqueness considers the Newton’s
map: n(x) = x −Mf(x), where f(x) = 0 is the system to be solved and where
M is close to the inverse of the jacobian of f at the center of the studied box;
it also considers the norm of its jacobian: n′(x) = I −Mf ′(x): when for some
norm ||n′(x)|| is smaller than 1 in the studied box, then n(x) is guaranteed to be
contractant in the studied box, which proves that the root is unique. An upper
bound of the max and infinite norms can be computed with interval analysis.
In passing, the approach proposed in this article is also able to compute such
upper bounds for matrice norms.

Several methods have been proposed to detect quickly that a studied box
contains no root [6, 10]. A recent one [10] also takes into account inequalities
gi(x) ≤ 0 in the system. Its principle is to search with linear programming a
polynomial h =

∑
j αjfj +

∑
βigi, with αj ∈ R and βi ≥ 0 such that h is greater

than 1 in the studied box (the smallest coefficient in the TBB is 1): if such h
exists, then the studied box contains no root. It turns out that the new solver in
§6 straightforwardly supersedes this method: the studied box contains no root
when the feasible set of the LP problem is empty.

7.4 Michelucci’s solver, Fünfzig’s solver

Dominique Michelucci implemented the first variant of the new solver in §6 in
May 2009. He used exact rational arithmetic to avoid errors due to numerical
inaccuracy, and a straightforward simplex solver [18] with rational arithmetic, in
Ocaml. His program proves the correctness and the feasibility of the LP reduction
approach, but this solver is too slow in practice.

Then Christoph Fünfzig implemented the first floating-point variant of this
solver, in January-June 2009, during his post doc in Dijon [15]. For solving
LP problems, Christoph’s solver relies on the freely available revised simplex
solver SoPlex 1.4.1 developped by Roland Wunderling [19, 20] in his PhD the-
sis. Christoph’s solver needs only floating point arithmetic, and routinely solves
non-linear systems with several dozens of non-linear algebraic (quadratic or
higher degrees) equations and unknowns, which previous Bernstein based solvers
are not able to solve. Fünfzig et al [15] generate quadratic systems with arbi-
trary size from circle-packing representations of planar and completely triangu-
lated graphs. [15] gives other examples from 3D geometric constraints, like the
molecule problem (for instance the Stewart platform, also called the octahedron
problem), or the computation of the 3D lines tangent to 4 given spheres.

2D examples can be displayed, and permit to visually compare the new solver
with a standard interval Newton solver. Figure 5 (from [15]) shows the compu-

XIV

Fig. 5. The same 2D examples are used above and below. Above: the sequence of boxes
computed with the new solver; the convergence is super-quadratic around each (regular)
solution. Below: the sequence of boxes computed with a standard interval Newton
solver. Clearly, the new solver detects much earlier empty boxes, and its convergence
rate is greater.

tation on intersection points between two conics, above with the new solver, and
below with a standard interval Newton solver.

Both solvers run on CPU. We are considering the project of GPU implemen-
tations: for each box reduction, the 2n LP problems can be solved in parallel.
Moreover, there is some intrinsic parallelism in the simplex method (and in
interior-point LP solvers). Thus GPU may divide running times by more than
2n, where n is the number of unknowns.

8 Empirical results

For completeess, this post-scriptum section summarizes some empirical results
detailed elsewhere [13–15]. Fünfzig et al [13] define and compare several Bern-
stein related polytopes. They also give their volume, their number of vertices,
and their number of hyperfaces, for a number of unknowns n < 5. These data
were computed with David Avis software. Fünfzig et al show that current TBB
solvers implicitely use a TBB simplex, which has as many vertices as hyperfaces
(simplices): 3n, which grows exponentially with the dimension n. The conclusion
of [13] is that the Bernstein polytope defined in §3 achieves the best trade-off:
first it provides polynomial time methods, while methods based on TBB simplex
are exponential time; moreover the width of ranges provided by the Bernstein
polytope is only 10 or 15 % larger than the ranges provided by the TBB simplex

XV

+

0

1

2

e

0 1

y

x

y = exp x

e

e−

Fig. 6. A convex polygon enclosing the arc of curve (x, y = exp x), 0 ≤ x ≤ 1. e is
enclosed in [e−, e+].

(i.e. by the smallest and the greatest coefficients in the TBB) for n smaller than
10. For n > 10, the TBB becomes terrily slow and unusable: it has to compute
3n coefficients for enclosing a quadratic polynomial in n unknowns (310 = 59049,
311 = 177147). Fünfzig et al [13] also compare with the interval arithmetic; the
latter gives much larger ranges than methods based on the Bernstein polytope
or the TBB simplex, and the difference quickly grows with n, the number of un-
knowns. It is already known [21] that, for computing covers of algebraic curves or
surfaces implicitely defined by their equation f(x, y) = 0 or f(x, y, z) = 0, space
subdivision methods which use interval arithmetics are outperformed by meth-
ods which rely on TBB: for computing ranges of polynomials, interval arithmetic
is faster than Bernstein based methods, but since ranges are much less accurate,
more subdivisions are required.

Fünfzig et al [14] compare the new solver relying on the Bernstein poly-
tope with a solver similar to Mourrain et al [6]. For small quadratic systems
(n = 2 equations and unknowns) equivalent to the computation of intersection
points between two conics, Mourrain’s solver needs to compute only 32 = 27
coefficients and is about 3 times faster than Fünfzig’s solver. In 3 dimensions,
Mourrain’s solver needs to compute 33 = 81 coefficients, and running times are
closer. For n ≥ 7, Mourrain’s solver becomes very slow, due to the exponential
number of basis functions in the TBB. In comparison, Fünfzig’s solver still works
for arbitrarily large systems: Fünfzig generate quadratic systems with arbitrary
size from circle-packing representations of planar and completely triangulated
graphs. See [13] for details of running times. The problem with 20 unknown
circles is solved in less than 8 minutes, which is encouraging for a first imple-

XVI

mentation; this problem has almost 60 unknowns: for each circle i in 1, . . . 20,
the unknowns are xi, yi the coordinates of the center and ri the radius. Some
optimizations are likely possible. Moreover a GPU program can divide running
times by more than 2n, due to intrinsic parallelism in the simplex method.

Fünfzig et al [15] give other examples from 3D geometric constraints, like
the molecule problem (for instance the Gough-Stewart platform, also called the
octahedron problem), or the computation of the 3D lines tangent to 4 given
spheres. We detail the case of the Gough-Stewart platform. This problem can be
expressed in two ways: either with cartesian coordinates, or in a coordinate free
way relying on Cayley-Menger determinants [22]. With cartesian coordinates,
there are 9 unknowns (xi, yi, zi), i = 1, 2, 3, which is too big for TBB solvers
like Mourrain’s; Fünfzig’s solver solves it in 10-16 seconds, depending on the
number of roots. For the coordinate free system provided by Cayley-Menger
determinants, the system has 2 unknowns and 2 equations with degree 4, and
both solvers can solve it. An extra variable is introduced to make the system
quadratic; we feed both solvers with the same quadratic system; the TBB solver
needs 0.015-0.55 seconds and is about 2-4 times faster than Fünfzig’s solver.
Clearly the formulation has a strong influence on the running time.

9 Conclusion and future works

This article has proposed the first polynomial time method to overcome the diffi-
culty due to the exponential cardinality of the TBB. It has defined the Bernstein
polytope. Here are possible future works and concerns which could not be dis-
cussed for conciseness:

Examples of geometric constraints solving, implementations, and implemen-
tation issues such as accounting for inaccuracy in the simplex method, are de-
tailed elsewhere [15, 14].

GPU implementations of the new solver are possible and planned for the near
future.

The Kantorovich theorem (also called Newton Kantorovich) provides a simple
and convenient test to prove the uniqueness of a regular root in a box, especially
for quadratic systems where all second derivatives are constant. This concern,
not specific to TBB solvers, could not be detailed here, as well as tests deciding
the existence of at least one root in a given box, e.g. the test relying on Miranda
theorem [10].

The Bernstein polytope should be defined for higher degrees, and for other
geometric bases, e.g. splines bases. It will extend the scope of the geometric
solver by Kim and Elbert [8].

The new solver can be generalized in order to manage non-algebraic equa-
tions, using for instance transcendental functions cos, exp, etc. It suffices to com-
pute a convex polygone enclosing the 2D curve: (x, cos x) and the 2D curve
(x, exp x) for x ∈ [a, b]. Figure 6 shows a possible convex polygon for (x, expx)
for x ∈ [0, 1]. This feature is a great advantage when compared to other solvers,
e.g. homotopy.

XVII

The new solver applies without modification to over-constrained systems
(again, inaccuracy is a serious issue), but more work is needed to extend it
to under-constrained systems, and to compute in a certified manner the topol-
ogy of semi-algebraic or semi-analytic sets defined by a system of equations and
inequalities [23, 24]. However we already use the two solvers to compute sharp
covers of constrained curves and surfaces [15].

Acknowledgements

We gratefully acknowledge the ”Conseil Régional de Bourgogne” (Regional Coun-
cil of Burgundy) which is funding the post doc position of C. Fünfzig in LE2I,
Dijon. This funding has been essential.

References

1. Michelucci, D.: Solving geometric constraints by homotopy. In: IEEE Trans on
Visualization and Computer Graphics. (1996) 28–34

2. Durand, C.B.: Symbolic and Numerical Techniques for Constraint Solving. PhD
thesis, Purdue University (1998)

3. Sommese, A., Wampler, C.: Numerical solution of polynomial systems arising in
engineering and science. World Scientific Press, Singapore (2005)

4. Kearfott, R.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht,
Netherlands (1996)

5. Garloff, J., Smith, A.P.: Investigation of a subdivision based algorithm for solving
systems of polynomial equations. Journal of nonlinear analysis : Series A Theory
and Methods 47(1) (2001) 167–178

6. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations.
Technical Report RR-5658, INRIA (August 2005)

7. Sherbrooke, E.C., Patrikalakis, N.M.: Computation of the solutions of nonlinear
polynomial systems. Comput. Aided Geom. Des. 10(5) (1993) 379–405

8. Elber, G., Kim, M.S.: Geometric constraint solver using multivariate rational
spline functions. In: SMA’01: Proc. of the 6th ACM Symp. on Solid Modeling and
Applications, New York, NY, USA, ACM Press (2001) 1–10

9. Reuter, M., Mikkelsen, T.S., Sherbrooke, E.C., Maekawa, T., Patrikalakis, N.M.:
Solving nonlinear polynomial systems in the barycentric Bernstein basis. Vis.
Comput. 24(3) (2008) 187–200

10. Michelucci, D., Foufou, S.: Bernstein basis for interval analysis: application to
geometric constraints systems solving. In Bruguera, Daumas, eds.: 8th Conference
on Real Numbers and Computers. (July 2008) 37–46

11. Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval
methods for plotting algebraic curves (2002)

12. Yamamura, K., Fujioka, T.: Finding all solutions of nonlinear equations using the
dual simplex method. J. Comput. Appl. Math. 152(1-2) (2003) 587–595

13. Fünfzig, C., Michelucci, D., Foufou, S.: Polytope-based computation of polyno-
mial ranges. In: ACM SAC, 25th Symposium On Applied Computing. (Sierre,
Switzerland, 2010)

XVIII

14. Fünfzig, C., Michelucci, D., Foufou, S.: Optimizations for Bernstein-based solvers
using domain reduction. In: Proceedings of International Symposium on Tools and
Methods of Competitive Enginee ring (TMCE). (April 2010)

15. Fünfzig, C., Michelucci, D., Foufou, S.: Nonlinear System Solver in Floating-Point
Arithmetic using LP Reduction. In: SPM’09: Proc. of the ACM Symp. on Solid and
Physical Modeling, San-Francisco, California, october 5-8, 2009. to be published

16. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Academic Press
Professional, Inc., San Diego, CA (1988)

17. Beaumont, O.: Algorithmique pour les intervalles. PhD thesis, IRISA, projet
Aladin (1999)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
Second edn. MIT Press, Cambridge, MA (2001)

19. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD the-
sis, Technische Universität Berlin (1996)

20. PhD thesis http://www.zib.de/Publications/abstracts/TR-96-09/.
21. Michelucci, D., Foufou, S., Lamarque, L., Schreck, P.: Geometric constraints solv-

ing: some tracks. In: ACM Symp. on Solid and Physical Modelling. (2006) 185–196
22. Michelucci, D., Foufou, S.: Using Cayley-Menger determinants for geometric con-

straint solving. In: SM ’04: Proceedings of the ninth ACM symposium on Solid
modeling and applications, Aire-la-Ville, Switzerland, Switzerland, Eurographics
Association (2004) 285–290

23. Delanoue, N., Jaulin, L., Cottenceau, B.: Guaranteeing the homotopy type of a
set defined by nonlinear inequalities. Reliable Computing 13(5) (2007) 381–398

24. N. Delanoue, L.J., Cottenceau, B.: Using interval arithmetic to prove that a set is
path-connected. Theoretical Computer Science, Special issue: Real Numbers and
Computers 351(1) (2006) 119–128

