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Abstract

We use Cayley-Menger Determinants (CMDs) to obtain an intrinsic formulation of geometric constraints. First, we show that
classical CMDs are very convenient to solve the Stewart platform problem. Second, issues like distances between points, dis-
tances between spheres, cocyclicity and cosphericity of points are also addressed. Third, we extend CMDs to deal with asym-
metric problems. Ir2D, the following configurations are considered: 3 points and a line; 2 points and 2 lines; 3 lin88,In

we consider: 4 points and a plane; 2 points and 3 planes; 4 planes.

Categories and Subject Descriptgaiscording to ACM CCS) 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling

1. Introduction CMDs are much more suitable for solving the Stewart platform
problem than the usual approaches which use cartesian coordinates
[Dur98 HD99]. The obtained system is much simpler, without spu-
rious roots, and easily tractable by symbolic methods. Classical
CMDs [Ber9Q Hav91, Blu53] are shortly presented in sectidh

New CMDs, for some asymmetric problems, are propose@ior
and3D examples in sectiod.

The problem of solving geometric constraints often occurs
in CAD, robotics, computer graphics, molecular biology, etc
[Doh95 BR9g. In CAD, nowadays geometric modelers enable de-
signers to describe geometric elements such as points, lines, cir-
cles, Bézier curves, etc i8D and planes, quadrics, tori, Bézier
patches, etc, i8D by specifying constraints between them. Typ-
ical constraints may be: distances, angles, incidence or tangency
relations. The modeler has to solve a system of constraints usu-
ally composed of polynomial equations. It decomposes the system1 1. Related works
into irreducible subsystemsly01, GHY02], and solves them with
symbolic or numerical methods such as: The Newton-Raphson iter- Recently, D. Lesage, P. Serré and J-C. Léon, within the framework
ations, homotopy-based methods, and interval analysis technique®f Serré’s PhD thesisger0Q, express aleD constraints in a coordi-
[LM95, Dur98 HD99, Yan03. The use of these later is less com- nate free wayl[L SO2]. They don't use the Cayley-Menger formal-
mon in Geometric Constraint Solving (GCS)AMSRO1. How- ism —which proves there are several intrinsic formulations. Instead
ever, numerical methods prevail because today symbolic packageghey find independent angular and vectorial loops in some con-
are not powerful enough to tre3i real world geometric problems.  straint graphs; then each loop gives a constraint, which is translated
) ) ) . into equations. The unknowns are not the coordinates of points,
In this paper, we show that using the cartesian coordinates 10 |ineg vectors, etc, but norms of vectors, and angles between vectors
express equations of geometric constraints is neither the only NOr (which, again, are not represented by their coordinates); in other

the best approach of doing, we propose the use of Cayley-Menger, o4, unknowns are scalar products between vectors. This work
Determinants (CMDs) instead. The rest of this section discussesproyes that coordinate free approaches are indeed feasible, and can
some related works (subsectidril) and presents (subsectiar?) be realized in a systematic way. It also proves the advantages of an

the advantages of the intrinsic formulation: formulation indepen- ntrinsic approach (see sectidr?). Podgorelec infPod03 and Lu
dent from any particular coordinate system. Secfiashows that Yanget alin [ZYY94] also propose non cartesian approaches.

Finally, to prevent a very frequent confusion, note that cartesian
T Corresponding author. Currently guest researcher at the National COOrdinates, Grassman Plucker coordinates, pentaspheric coordi-
Institute of Standards and Technology, Gaithersburg, MD, USA. nhates among others are not intrinsic formulations because each of
sfoufou@cme.nist.gov them is dependent on a particular coordinate system.

(© The Eurographics Association 2004.



D. Michelucci & S. Foufou / Cayley-Menger determinants

1.2. Advantages of the intrinsic formulation

The intrinsic  formulation has several advantages
[LLSO02, PTRTO3. First, under this formulation some prob-

lems become tractable with symbolic computations. Second, it
naturally takes into account technical unknowns and constraints

Another possibility is to use CMDs. SeBg¢r9Q Hav9] or sec-
tion 3 for more details. It directly yields to 2 degree 4 equations in
2 unknowns. The CMD gives the relations between the distances
between 5 points ir8D (between 4 points ir2D, betweenn + 2
points innD). The CMD for the Stewart platform problem can be

. . . N defined as follows:
(eg price, temperature, strength, etc). Thus it avoids the limitations

of many geometric decomposition methods. Third, the qualitative e First, for pointss; andsp, sz, s, S5 (the equatorial square and
study of the resulting systems of equations is straightforward: the the north vertex in the right part of Fid). It gives an algebraic
number of equations and unknowns are equal in correct systems; equation between squared distances

the resulting system of equations can be decomposed with bipartite
graph matching method#APJM93], and structurally irreducible
subsystems can be studied with the probabilistic numerical
methods [M98]. This contrasts with the classical cartesian
formulation, where the correct systems are fixed only modulo a
displacement in space; such systems are called rigid; they have less
equations than unknowns (coordinates): 2[n(2 translations and °
1 rotation), 6 in3D (3 translations and 3 rotations); their resolution
and their geometric decomposition are thus confronted by several
complications. Moreover, with the non cartesian approach, the
qualitative analysis can detect mistakes often hidden with the
cartesian formulation.

d12,d13,d14,d15,d23, 04, dos, A4, ds, das

whered;; = (x — xJ-)2+ (vi —yj)2 +(z — 21)2. All these dis-
tances are known, excepps anddss, the squared lengths of
diagonals of the equatorial square in Fig.The equation has
degree 4 and involves 2 unknowns.

Second, for pointsg andsp, s3, 4, S5 (the equatorial square and
the south vertex in the right part of Fi@). It gives another 4
degree algebraic equation, with the same 2 unknosggsand
dss. It is obvious that this equation is generically independent of
the previous one.

Thus we obtain an algebraic system in 2 unknowns and 2 equa-
tions, each of degree 4. The corresponding curves can be drown
in the plane using any standard curve plotting method. From the
Bezout theorem, this system cannot have more than 16 solutions
in complex projective spacé€. taking into account multiple solu-
tions, real and complex solutions, and solutions at infinity). Other
methods yield to systems with greater Bezout number (typically
64), and in such a case it is not obvious at all to prove that there are
no more than 16 solutions.

2. The Stewart platform problem

Given the lengths of the 12 edges of 3 octahedron; the
Stewart platform problem, also called the octahedron problem
[Dur9g HD99, NW91], is then to find compatible coordinates for
the 6 vertices,i € [1;6]. The 12 edges of the octahedron are:

$253, 5354, 4S5, S5, S12, S13, S134, S155, 6525 563, S645 S655

This problem is met in CAD as a typical irreducibB8® prob-
lem in constraint-based geometric modeling, and in robotic
with the Stewart platform: the Stewart triangular platform
515983 (Fig. 1) is driven with 6 jacks (with variable lengths)
14,5155, S5, 56,585,534 from a ground triangular base
s4555. Edges of the triangular platform and of the base are rigid,
i.e.their lengths are constant.

'\ <]

Figure 1: Two isomorphic graphs of the Stewart platform.

The system can be solved by any standard numerical method,
say homotopy. But since there are only 2 equations in 2 un-
knowns, it becomes tractable with symbolic methods. For instance
the Sylvester resultant, gives a degree 16 equation in only one of
the unknowns. It also becomes possible to discuss degeneracies,
but this question has not been investigated at this moment. Once
we have the length of diagonatls, and dss, it is trivial to find
consistent coordinates for the six vertices.

The trick here is to not to use coordinates, but to compute dis-
tances, which are independent of the coordinate system (once the
scale, say meters or millimeters, has been chosen). Other parame-
ters independent of coordinates system are angles and cross ratios,
and they may be more convenient in other cases.

3. Classical Cayley-Menger determinants

This section presents an introduction to classical CMDs. See
[Ber9Q Hav9] for more details.

3.1. Distances between points

Given 5 points in the EuclideaBD space, the following relation

It is possible to use cartesian coordinates to pose the problem, ) )
holds, between all their squared distances:

but from the solving point of view choosing the more convenient

coordinate system is not obvious, nowadays computational algebra 0 1 1 1 1 1
packages are not powerful enough to solve the system, and a heavy 1 0 dyip diz dig dis

work need to be done, by hand, in order to reduce the system to Ml — 1 dyy O dpz Opg dps | 0
an irreducible system in 3 unknowns and 3 equations of degree 4 M= 1 d3; dzgp O dgg dz5 |
[Dur98 HD99]. The resulting system has Bezout numBex 4 x 1 dgp dgp dgz O dgs

4 = 64, and BKK bound (or mixed volume) equals to 16. 1 ds3 dsp dsz3 dsg O
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where dijj = (pi — pj).(pi — pj) is the square of the distance Proof K = AB' andA andB have rank at most equal to 5 (6 rows,

between pointsandj. |M| is the so called CMD. 5 columns), so:
In order to save spaces in equation writings, we define, for the rest
of the paper, valueg = x? +yZ +Z with i € [1;6]. vi-R x o1 oz 1
V2 — 225 X Y2 1
A z?,—Rg X3 Y3 Z3 1 and
Proof M = AB' whereA andB' are matrices with rank at most equal v4 _ Rg XX4 ya_ 1
to 5 (A andB have 6 rows but only 5 columns), so: 5 5 B %
Ve—RE X6 Yo Z 1
1 -2 -1 -2z w-R
1 0 0 00 1 -2 -2, -2 v,-R
Vi 2 2y1 277 1 B_ 1 —-2x3 —2y3 —2z3 Vv3— R%
A=| V2 22;22 2Y2 222 i and 1 -4 -2y -2z wu-R;
v 5 g}’ys = 1 -2 25 25 Vs R
\Z At 4 2 _ _ _ _
w > % 27 1 1 -2 2% -2 V%R
o0 o 0 1 U
1 X -1 -z v This relation also holds when some radii are 0. It is then possible to
B— 1 % -2 -z W compute the relation between any point and any 5 spheﬂ@%.in
1 —x —-y3 —z3 V3
1 ox s -~z Vs g S
1 —xs —Yy5 —25 Vs 3.3. Cocyclicity or cosphericity of points
It is possible to express the cocyclicity of 4 p%intSZB, or the
Actually, [M| still vanishes when points iAand points irBare not ~ cosphericity of 5 points i8D, of d +2 points inR™ without coor-
the same. It gives another non trivial relation for distances between dinates, just by using squared distances between points.
two point sets? andQ; for i, j € [1;5] (the diagonal entries iM In 2D, 4 points are cocyclic (belong to the same circle) iff:
ar_e noEr]nore zeros. They represent squared distances béRvareh 0 dip diz dig
Q). | = d1 0 dpz g | _ 0
dz1 dpz O da
The previous determinant can be extende2Dp4D, etc. Finally din daz sz O

let us mention that the CMD is equal to a signed volume, up to some

> I whered;j = (X — Xj)2+ (Vi —yj)2 is the squared distance between
multiplicative constant.

pointsi andj, and thus is independent of cartesian systems. This is
equivalent to the Ptolemy theore@go71.

Proof let (Xg,Yo) be the center an&, be the radius of the (un-
known) circle. We have, in some cartesian frame (we will re-
move this dependency latei) — xo)2 + (yi — yo)? — R = 0 for

3.2. Distances between spheres i =1,2,3,4. We can express these conditions this way:

X% +y§ X1 y1 1 1 0
In 3D, one can define the signed distance (or power) of 2 spheres x§+y§ X y» 1 —2% 0
S=(x ¥y z)withradiusR andS;=(x; y; z)withradius x§+y§ X3 y3 1 —2¥0 1l o0
Rj as: X+ys Xa ys 1 X5+ Y5 — R 0

5 5 5 It can be seen as a linear homogeneous system with unknowns in
Kij = Kji = (5 —x)?+ (i —¥))* + (@ —7)° — (RR+ ) the column vector. There is a non zero solution iff the determinant
of the matrix (call itC;) is zero. We have a condition for cocyclicity,

lIv. this sianed di d q d h ¢ but it depends on the cartesian frame.
Actually, this signed distance does not depend on the system of co-\\/ .an also express the system this way:

ordinates used (once the scale is chosen, say meter or millimeter).

Then the distances between any six spher@ifulfill: 1 -2q -2y X+y; X6 +Y5— RS 0
1 20 -2y xg +y3 x |_| o
1 —2x3 — X3+ 0
Kiz Kiz Kiz Kig Kis Kig 1 _2); _33 X% +§ yi 0
Ko1 Koz Koz Kaa Kos Ko 4 4T
K| = Kar Ks2 Kzz Kz Kz Kgg | _ 0 Here again, the determinant of the matrix (ca#) must vanish.
Kai Kaz Kaz Kag Kgs  Kge Now remark thaiC = C;C5. Thus the determinant & = C;C5
Ks1 Ksz2 Ksz Ksg Kss Ksg must also vanish. We have proved the cocyclicity condition. This

Ke1 Ks2 Kez Kes Kes Kes relation can be easily extendedkS and beyond. [
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4. New Cayley-Menger determinants Proof The5 x 5 matrix M is the product of the followiné x 4 and
4 x 5 matrices, which have ranks at most equal to 4, so the rank of

Classical CMDs apply to very symmetric problems. Nevertheless matrixM is also at most equal to 4:

typical problems, in CAD and constraint-based geometric model-
ing, are not as symmetrical as the Stewart platform problem. Con-
straints involve heterogeneous data: points, planes, lines, spheres ...
Here are simple examples of heterogeneous CMDs.

1 0 0 0

+y; 2q4 2 1

M=| x3+y3 2 2y, 1 |x
—C1 a b1 0
0

4.1. 3 points and 1 line in2D —C a b,

In 2D, consider 3 points,, Sp, 3 and a linel. Let d;j for i, j = 0 1 1 0 0
1,2,3 be the squared distances between pogniandsj, and let 0 —X1 —Xo a a
d; be the signed (non squared) distance between gpentd line 0 —y1 -V by b
I:di = ax +by; +c. Assuming has equationax+ by+ ¢ = 0 with 1 X¥+y, XB+y3 20 20

a2+b?= 1, in the cartesian frame we want to get rid of.

Due to coplanarity, there is a relation betweendheand thed Note that|M| is not iQenticglly zeroi(e. V\{e cgn. find entries such
(in passing, there is only one equality: the configuration involves that|M| does notvanish), since we can find in it a perfect matching
6 distances but has only five "degrees of freedom". Other possible (i-€- One generically non zero element in each and every row and
constraints, like triangular inequalities for the triangle to be realiz- column). U
able; are not considered). This relation may seem a bit strange:

0o 1 1 1 o0
Ml=]1 da O dpz
0 d d dz

where diagonal zeros stand iy andd;j = dj; of course. Note that

4.3. 3linesin2D

Letl;,i =1,2,3 be any 3 lines irkD having equationsajx+ bjy +
¢ = 0. Assume without lose of generality thaf + b? = 1. Let
Cij = Cji = ga; +bib; be the cosine of the angle betwdeandl;.

M is symmetric despite the dissymmetry of the problem.

Proof Just check below thaMl is the product of the followin x 4
and4 x 5 matrices(thus with rank 4, generically):

1 0 0 0
Gy, 2a 4 1
M=| x3+y3 2 2y, 1 |x
By 2@ 23 1
c -a —-b O
0 1 1 1 0
0 —X1 —X2 —X3 %
0 —wn —Y2 -y3 3
1 X+y2 X%+y5 X+y;

O

4.2. 2 points and 2 lines ir2D

In 2D, consider 2 points; ands; and 2 lined; andl,. Call sl;
with i,j = 1,2 the distance between poist and linel;j. Lines
lj have equationgjx+ bjy+cj = 0, in the cartesian frame we
want to eliminate, we suppose for simplicity thﬁt‘l’ bf =1.Thus
slj = ajx + bjyi +¢j. Call I1]> the "distance", actually the co-
sine, between the 2 line directiongl, = ajay + biby. Call 515,
the squared distance betwegrands,. The relation between these

distances is given by the nullity of the non symmetric determinant:

0 1 1 0 0

1 0 1 251y 2s1lp
Mi=11 s% 0 25l 2%l |=0

0 —sli -1 1 I11o

0 7Sl|2 752|2 |1|2 1

As well known, they fulfill:

1 ci2 ci3
Co1 1 Co3 =0
C31 C32 1
1 c C a3 b
_ 12 C13 1 D1 a a as
since Co1 1 Co3 = az b2
1 b b1 by bs
C3a1 C32 ag D3

the ranks of these 2 last matrices is equal to 2. derl vectors
to belong to the same vectorial space of dimensiptheir Gram
matrix (the matrix of their scalar produdroq) must have rank
d, thus the determinant must vanish.

4.4. 4 points and 1 plane i3D

In 3D, consider 4 points;, i € [1;4] and 1 planep with equation:
ax+ by+cz+d = 0, wherea® + b? + ¢? = 1. The squared distance
between two points ands; is dij and the signed distance between
s andpisd =ax + by, +cz +d.

This is the relation between all these distances:

0 1 1 1 1 0
1 0 dip diz dig oy
M| = 1 dogx O dpz dpg _0
1 d3y dgz O d3g ds
1 dgg dgp daz O g
0 d d d3 di F

(© The Eurographics Association 2004.
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Proof Proof
1 0 0 0 O 1 0 0 0 O
Vi 2X1 2y1 27z 1 \%1 2 21 217 1
M = Vo 2% 2y 27 1 % M = Vo 2 2 2o 1 %
V3 23 2y3 273 1 —d; a by cg O
Vo 24 2ys 224 1 - a by & 0
d -a -b -c 0 —d3 a3 b3 cz O
0 1 1 1 1 0 0 1 1 0 0 0
0 —x1 —X —-X3 —X¢ a2 0 —Xg —X & a ag
0 —-y1 —Y2 -y —Vy4 b/2 0 -y1 -2 b by b3
0 -z -z -zz -z /2 0 -zz - ¢ C C3
1 \%4 Vo V3 V4 d 1 V1 Vo 2d; 2dy, 2d3
| ]

4.5. 3 points and 2 planes ir8D

4 4 5
5 3 5 2 4 3
1 2 1 3 1 2

Consider 3 pointsy, S, 3 and 2 planeg; andp, in 3D. Assume
that p; has equationajx+ bjy + ¢jz+ di = 0 in some coordinate
frame we want to get rid of, wite? +b? + ¢ = 1. Notes pj the
signed distance between postind planej: s pj = ajx +bjy +
Cjz +dj, and notep; pj the cosine of the angle betwepnandp;:
pipj = &a;j + bibj +¢icj.

Figure 2: Isomorphic subgraphs of the same class monomials

This is the relation between all these distances:

4.7. 4 planes in3D

0 1 1 1 0 0 Like in section4.3 we only need to make the determinant of the
1 0 S 1S3 2p1 2s1p2 Gram matrix of 4 plane normals BD vanish.
M| = 1 s 0 $83  2%p1  29P2 | _ 0
1 si53 $S3 0 23p1  2s3p2 .
0 —sip1 -SSP -SSP 1 P1P2 5. Future extensions
0 —sip2 —$P2 —S3p2 P12 1 A first open problem is to find relations involving also lines3m,
Proof and not only points and planes. May be Grassman Plicker coor-
dinates for lines in some cartesian frame must be used, before the
1 0 0 0O O frame elimination. One such relation, due to Neil White, is given in
Vi 2 2y 271 1 Sturmfels’s book $tu93, th. 3.4.7: it is the condition for five lines
Vo 2 2 2 1 in 3D space to have a common transversal line. Philippe Serré, in
M= va 23 2y3 273 1 X his PhD thesis$er0Q, also gives the relation involving distances
—d a bh, ¢© O between two line&\B andCD and between point4, B, C, D.
- & b c 0 A second problem is to find such polynomial relations. From a the-
0 1 1 1 0 0 oretical point of view, it suffices to use a Grobner package to elim-
0 —X3 —X -—-X3 @& a inate variables representing coordinates in some set of equations
0 -y1 —-¥Y -y3 b by (for instance equationgx; — Xj)z + (Vi — Y )2 +(z —zj )2 — dizj =
0 -zz - -7z ¢ Co 0,i € [1;4),] € [i+1;5, to find the Cayley-Menger equation re-
1 v Vo vz 2d1 2dy lating distances between 5 points 8D). In practice, Grobner
0 packages are not powerful enough. The polynomial condition can

4.6. 2 points and 3 planes ir8D

In the same way as above, distances between 2 pairgsand 3
planesps, p2, p3 in 3D are linked by the following relation:

be computed by interpolation: for instance, to guess the Cayley-
Menger equation i8D, one can proceed in three steps:

e GeneratdN random configurations of 5 poin(s;, Vi, z) € 73,

e Compute square distanod#,i € [1;4 andj € [i + 1,5 for each
configuratiork € [1;N]. This givesN 15D points.

e AlltheseN 15D points lie on the zero-set of an unknown polyno-

0 1 1 0 0 0 mial in t_he variablesl;j. We search for this polynomial by trying
1 0 S 2P 250 25.Ps increasing degrees.

IM| = 1 s 0 2P 2%P2  2%P3 | _ This polynomial has an exponential number of monomials, so there
0 —sipp —&p1 1 PPz P1P3 is an exponential number of unknown coefficients. However, due
0 —sip2 —SP2 PPz 1 P2ps to the symmetry some monomials have the same coefficients and
0 —sips —SP3 PPz P2P3 1 are said to lie in the same "class”. For instance mononigis2,,
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d25d3,, etc lie in the same class: Monomials of the same class cor- [GHY02]
respond to isomorphic edge weighted subgraph&sfthe com-
plete graph with5 vertices and with edges weighted by the de-
gree of the corresponding monomial (FRB). To be feasible this
approach must exploit this symmetry to reduce the number of un-
known coefficients to the number of classes. The fast generation of
these classes (and of one instance per class) is an interesting an
non trivial combinatorial problem by itself, related to the Polya’s
counting theory.

To validate this approach we implemented a simple algorithm that [HD99]
computes Cayley-Menger relations and distance relations for 6 2D

points to lie on the same conic as well as for 10 3D points to lie on

the same quadric. We noticed that this first implementation works yo1]
slowly because it doesn't exploit the symmetry. Moreover its out-

put (the polynomial coefficients) has an exponential size and is thus
unusable. Exploiting symmetry is thus essential.
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6. Conclusion

This paper has shown that CMDs may give simpler algebraic sys-
tems, with less spurious roots, and tractable with today’s symbolic
algebra packages. Examples of points/points, circles/circles and
spheres/spheres relations are given. Unfortunately, these classicaﬁ
CMDs involve only relations between geometric primitives of the
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