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Abstract—~Finite-precision leads to many problems in geo-
metric methods from CAD or Computational Geometry. Until
now, wsing evact rational arithmetic was a simple, yet much
too slow solution to be of any practical use 1n real-scale ap-
plications. A recent optimization — the lazy rational arithmetic
([4]) — seems promising: It defers ewact computations until they
become either unnecessary (in most cases) or unavoidable; in
such a context, only indispensable computations are performed
exactly, that 1s: Those without which any given decision can-
not be reached safely using only floating-point arithmetic. This
paper takes stock of the lazy arithmetic paradigm: Principles,
functionalities and limits, speed, possible variants and exten-
stons, difficulties, problems solved or left unresolved.
Keywords: Computational Geometry, Exact Ratio-
nal Arithmetic, Hash Coding, Inconsistencies, Interval
Arithmetic, Lazy Arithmetic, Robustness.

I. Framework

A large number of Computer Science communities are
concerned with finite-precision. Among them, we find
designers of electronic circuits or arithmetic libraries;
specialists of Numerical Analysis, Analytical or Sym-
bolic Calculus; researchers or practictioners in Com-
putational Geometry (CG), Computer Aided Design
(CAD, solid modelling, robotics, ...), Image Synthe-
sis, Signal Processing, Cryptography, and program-
ming language experts. None of these communities
has a full understanding of the techniques used by the
other “tribes”, nor of the way their experts handle
their own problems.

In some such communities, it is often thought
that finite-precision problems only have serious con-
sequences 1n marginal applications, such as Symbolic
Calculus or Cryptography. However, the geometri-
cal algorithms used in CAD or CG are also greatly
perturbed by numerical imprecision, and this even for
such mathematically trivial problems as the detection
of segment intersections in the plane.

Initially, the CAD and CG communities have also
underestimated the problems raised by imprecision,
and their consequences, viz. inconsistencies in the
results and unreliability of the applications. As the
research in these fields developed, it became appar-
ent that such problems were inherent to the imple-
mentation of geometric methods on finite-precision
machines, and some renowned authors (among which

Ottmann, Thiemt, Ullrich, or Edelsbrunner, Karasick,
Milenkovic and Fortune) suggested more and more
elaborate solutions. For example, the XSC language
family was developed to try and solve precision prob-
lems in a systematic way, although not entirely trans-
parently for programmers. Some aspects of this re-
search are summarized in the paper.

Today, correctly handling the side-effects of im-
precision with reasonable losses in execution speed,
memory consumption, or programming comfort has
become one of the major goals in Computational Ge-
ometry (from both theoretical and practical points of
views) for the coming years. The difficulties are such
that some specialists from Solid Modelling (among
which Requicha and Rossignac), are willing to re-
place the fundamental Boundary Representation data
structure, on which most industrial software applica-
tions are built, with the Constructive Solid Geometry
model. The 1994 CSG Symposium was intended to
stimulate research in this direction:

Constructive Solid Geometry representations
of objects are based on set theory and are un-
ambiguous and robust; but commercial CAD
systems are mostly built on boundary mod-
ellers, even though there are difficult numer-
tcal problems in maintaining a boundary rep-
resentation reliably. Is this a sound technical
choice, or an accident of history? Research
aimed at extending the scope and flexibility
of CSG modelling systems will answer this
question®. ..

Others, like Francon, or Réveillés, have opted for
Discrete Geometry because it is a fairly new and in-
teresting branch of computer mathematics where prac-
tical applications have virtually no chance of being
impaired by imprecision. The first two sessions of
the major symposium in this field (called “Géométrie
Discréte en Imagerie : Fondements et Applications”)
were held in Grenoble, France, 1992, and Strasbourg,
France, 1993.

A third approach 1s to resort to exact arithmetic.
This constitutes the most obvious and general solu-
tion to precision problems, and has been used for quite
some time. Unfortunately, its prohibitive cost makes
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it unapplicable to Computational Geometry. One has
to remember that typical applications in this field ma-
nipulate very large amounts of data (e.g. for mod-
elling terrains or real-scale scenes), and that represent-
ing exact quantities may become next to untractable
when dealing on-line with thousands of points whose
co-ordinates involve several digits in a very large base!

However, the authors have recently suggested a new
solution ([4], [3]) for efficiently handling imprecision
in Computational Geometry. A specialized library
(LEA, short for Lazy Fract Arithmetic), has the re-
sponsibility of switching from finite-precision to exact
computations (and then back...) whenever approxi-
mations are not sufficient to allow safe decisions. Such
switchings are made by the library itself, without ex-
plicit code for this in the programs. The expected
result is to defer exact computations until they are
either not needed or inevitable: This agrees strongly
with the intuition that most decisions may be made
using approximations, while only a few are too “tight”,
and cannot be made without the help of an exact arith-
metic.

To paraphrase David Goldberg ([12]), this paper
could be entitled “What Every Computer Scientist
Should Know about Laziness in Computer Arith-
metic”. Section IT presents the consequences of numer-
ical imprecision on geometric methods. These prob-
lems are hardly acknowledged at all outside the fields
of Computational Geometry and CAD. Section III
lists classical solutions for solving such problems, and
analyzes their advantages and drawbacks. Section IV
presents the lazy paradigm. Section V presents two
important problems that had to be solved for imple-
menting our lazy library, Section VI extensions for the
lazy library, and Section VII some of its limitations.
Finally, Section VIII concludes on future directions.

II. Imprecision in geometry
A. Stating the problem

From our point of view (theory and application in
Computational Geometry), there are two types of nu-
merical computations with machines:

o Those for which an approximation of numbers is
sufficient, provided of course the committed error
is less than a given tolerance.

o Those for which an approximation of numbers is
not sufficient, whatever its quality. This 1s typi-
cally the case when the sign of a quantity is re-
quested. The approximation x. of a number x to
within ¢ is insufficient to determine the sign of z
as soon as |z.| < €, whatever the magnitude of ¢.

Furthermore, with such arithmetics, it is funda-
mentally impossible to detect the equality of two
numbers.

Symmetrically, there are also two types of arithmetic:

o Approzimate arithmetics such as floating-point
arithmetic, interval arithmetic ([31], [22] [23]), or
stochastic arithmetic ([41]) cannot guarantee the
nullity of a number, or, equivalently, the equality
of two numbers.

o Eract arithmetics which represent numbers in an
exact way?, and allow to compute the sign of a
number, or to compare two numbers, with no pos-
sible error.

It 1s well known that Symbolic Calculus or Cryptogra-
phy cannot be content with approximate arithmetics.
However, the geometric algorithms from CAD or Com-
putational Geometry are themselves greatly perturbed
by numerical imprecision for the following reason:

The many decisions made by a geometric algorithm
are not independent.

A few simple examples of this are given in II-B. Nu-
merical imprecision may then force geometric algo-
rithms to make contradicting decisions, the implica-
tions of which are detailed in TI-C.

B. Examples of imprecision

Let us consider a few bi-dimensional examples to illus-
trate the imprecision problems that the finite-precision
implementation of a typical geometric algorithm may
run into. We shall use the usual following notations:

1. Infinite lines with equation az + By + v = 0 are

represented by a triple of real numbers («, 4, 7).
2. The triple for the infinite line through two dis-
tinct points A and B is

(YB — YA, Ta — TB,TBYA — TAYB);
3. The intersection between two given lines D :

(o, B,7) and D' : (o, 7,%") is the point Q@ with
co-ordinates

By =By
T af —a'p

aly —avy!
T af —ao'p

rQ ya

4. Geometric algorithms often use the lexicographi-
cal order on co-ordinates, defined by:

(z,9) <z (¥ )Y ® z< 2’ or(z=2"andy < y').

2Provided the problems to be solved may effectively be mod-
elled in such conditions! This naturally calls for squaring dis-
tances if one is using a rational arithmetic package, and so

forth...



Example 1

From a theoretical point of view, the power of point
Q(zgq, ya) with respect to D and its power w.r.t. D',
defined respectively as Pp(Q2) = (azq + Bya +7) and
Ppi(Q) = (/za+ F'ya +7'), should both be null. In
practice, this is not true, due to floating-point impre-
cision, as this is shown in the following example:

D:(a,8,7) =(3,13,6), D" : (¢, #,%) = (5,17, 11)

Pp() = —8.88 - 1071 Ppi(Q) = 0.

Note that, by modifying the value of any coefficient
in either triple, it is possible to simulate situations
in which both powers are 0, different from 0, or only
one is! As a consequence, checking the position of €
against either line at a later stage of the algorithm may
yield contradicting results. Worse still, this example
shows that, in transforming any given graph into a
planar one, finite-precision alters the true geometry of
objects: One initial segment is transformed into two
subsegments that are not collinear with it!

Example 2

Let us note that all numbers in the preceding exam-
ple were integers, and that the problem is even worse
as soon as decimal numbers are entered. Consider
for instance solving such a simple system as Az = b,
where « is the unknown vector:

0.2 0.3 1
A:<0.3 0.45) and b:<1)'

Obviously, the determinant of A s null, because the
lower row is equal to the upper one multiplied by 1.5.
However, since converting decimal numbers such as 0.2
and 0.3 or 0.45 in base 2 does not terminate in a finite
number of steps, the algorithms using these figures as
inputs may fail to detect nullity, and come out with
incongruous answers. This example? is typical of any
geometric algorithm for finding, say, the inverse image
of a point through a given linear transformation.

But machines can be even more mischievous than
this! Consider the following determinant (quoted from
[16]), the exact evaluation of which is —1:

72450100 732698713
212345677 2147483637

The following pseudo- C program segment implements
two methods for computing this determinant using
doubles:

double a = 72450100.0, b = 732698713.0;

3 Communicated by G. Bohlender, Universitit Karlsruhe, dur-
ing the September 1993 SCAN Symposium in Vienna.
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Fig. 1. A numerical and topological error.

double ¢ = 212345677.0, d = 2147483637.0;
double detl, ad, bc, det2;

detl = axd — bx*c;

ad = axd;
bc = b*c;
det2 = ad - bc;

In the first case det1 yields the correct result (—1),
while det2 contains 0. The reason for this i1s that
the larger number of bits used in the registers of the
floating-point co-processor in the first case allows to
get the correct answer, while storing intermediate re-
sults in double precision floating-point numbers in-
duces a loss in precision and a wrong result in the
second. Thus,

holds instead of
ad 155585404249013690.0 | 155585404249013700.0
bc 155585404249013690.0 | 155585404249013701.0

Such discrepancies between exact and computed re-
sults are enough to lose one’s faith in machines

Example 3

Now consider Figure 1, where dotted squares have
unit-length sides: Points £ and F' have been chosen
so as to have the same abscissa 0.6666667. The in-
tersection between [A, B] and [C, D] should be Q@ =
(% = 0.6,2), and thus, the exact lexicographical or-
der should be Q <y F <y F. Unfortunately, € is
computed as {*, whose abscissa (0.6666667) is such
that, the lexicographical order in the machine will be
E* <p O <p F*. As a consequence, all subsequent
decisions regarding the relative positions of these three
points will be irrelevant! This is how a numerical er-
ror, small though it may be, becomes a topological er-
ror, an extremely frequent situation in Computational
Geometry.

In general, intersecting a vertical segment [A, B]
and another, non-vertical, segment yields a point Q



with the same abscissa as A or B. However, finite-
precision transforms €2 into a “machine” point * such
that either x4 < xg« or 4 > ra», which means that
relying on a (real space) property such as:

Qe[A,BleA<, Q<. B

always fails in finite-precision contexts.

The most efficient geometric algorithms exploit or-
der properties, in particular transitivity: If it is known
for instance that A <y B and B <z C, it will be in-
ferred that A <z C| without further checking. This
shows how initial errors do not remain isolated, but
are propagated and amplified all along the execution
of the algorithm.

Example 4
If 8 and B’ are both different from zero, the three

following definitions for yq are algebraically equiva-
lent:

O/’}/ _ a,y/

azxa+ v o+
, ———— and — ———.
afff —a'f g o4
When evaluated in floating-point precision, they gen-
erally yield different results, due to truncature. This
is quite a serious problem, as programmers frequently
rely on such identities to detect the equality between
two objects constructed in two different and legal
ways, in different routines from the same program.

Example b

In the projective plane, if the three distinct points
Py, Ps, and Ps are collinear, and if the three distinct
points Ps, P4, and Ps are also collinear, so are the
three points [Py, P3] N [Py, Ps], [P2, P3] N [Ps, Ps], and
[Ps, Pa] N [Ps, P1] by Pappus ’s theorem. Numerical
imprecision generally prevents the detection of this
property.

Another example of the same class 1s the follow-
ing: If six distinct points Py, Ps, P35, Pa, Ps, Ps belong
to the same conic, then the three points [Py, Ps] N
[P4,P5],[P2,P3] N [P5,P6], and [P3,P4] N [P6,P1] are
aligned, by Pascal’s theorem. Here again, numerical
imprecision will rarely allow to check this property.

One last example of the same kind is given by the
following problem: Prove that N(> 4) given points
are on the same circle. It 1s always possible to state
the problem of cocircularity for four points in terms
of a determinant ([25]), by observing that four points
on a same circle in the plane are transformed into four
coplanar points on the paraboloid of revolution

F:{Q(x,y,z)ERS | z:xz—l—yz}.

Repeating this process on more than four points is
doomed to failure, due to imprecision. Note that the

other solution, which consists of comparing the center
of the circumscribed circles of all triples of points, is
even more unstable.

Example 6

To detect whether three given points A, B, (' in the
plane are aligned, form a convex angle (greater than
7) or a reflex one, one may use the sign of the follow-
ing determinant, expressing twice the signed area of

triangle ABC"

1 1 1
XA ITB o
Ya YB Yc

There are many ways to fool a program into finding
a wrong answer to the original question, using this
scheme. In general, it 1s sufficient to choose A and B
very close, and B and C' very far apart, or to choose
triples such that the angle they form is very close to
(but provably different from) =. Tt is thus possible to
pick many (about 100, 000) random points on the unit
circle, and to construct inconsistent convex hulls on
them, through numerical imprecision.

C. Consequences

Inconsistent decisions have two types of consequences
on a given algorithm:

1. The algorithm may terminate normally. This
is what generally happens for “brute-force” algo-
rithms (which process one item at a time, without
relying on properties of all the already processed
ones). However, such algorithms may (and will)
produce results which are not only approximate
but incoherent, ¢.e. the topology of which relates
to no possibly valid object: For instance, a brute-
force algorithm to detect all intersections among a
set of segments in the plane will most likely out-
put non-planar graphs (refer to Figure 2). Any
such graph fed to another program that will as-
sume 1its planarity, will invariably cause errors or
infinite loops at execution time.

2. The algorithm may abort. This is what generally
happens with the more sophisticated algorithms,
which exploit geometrical consistency (e.g. tran-
sitivity of orders between geometric elements, or
some of the properties listed in the examples),
and whose execution is guided by intermediate
results. Such algorithms err in theoretically im-
possible situations: Trying to delete an element
which has never been inserted from a data struc-
ture, or ending up in an infinite loop while scan-
ning a supposedly closed boundary that never re-
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Fig. 2. An example of inconsistent topology: a forgotten vertex.

turns to its starting point. Misadventures of this

kind are detailed in [27], [32], or [6].

ITI. A catalogue of solutions

As we have just seen, any valid geometric property
may be ”"proved wrong” due to numerical imprecision.
Hence, even the simplest problem may be badly han-
dled by finite-precision, however accurate the approx-
imations used.

The examples above should have clearly illustrated
that:

1. In some cases, there is a solid quantum leap be-
tween the conclusions of a finite-precision test,
and its conclusions using exact computations.

2. It is impossible to identify all such cases in ad-
vance!

Let us emphasize that the problems here have nothing
to do with the ill-conditioning considerations of Nu-
merical Analysis: The wrong ordering of vertices in
Example 3 cannot be imparted to ill-condition!

Somehow, the only way-out 1s to rely on an impar-
tial Oracle to let the programs know whether they are
right or wrong to make the decision they are currently
making. .. Solutions to simulate this Oracle differ, and
may be classified as follows.

A. Approximate solutions

In this class of solutions, all decisions are made on
the basis of finite-precision only. Once the idea that
the results may be erroneous is accepted, there are
different ways to cope with it:

A.1 Warned programming

To our knowledge, forewarned programming (as in
“forewarned is forearmed”) has never been addressed
in any Computer Science paper, so far. This term en-
compasses the whole set of common good-sense tricks

used by practitioners in order to avoid the simplest
and most common inconsistencies. A more detailed
account of these may be found in [2] and [16].

Warned programming is about preventing certain
kinds of inconsistencies by judiciously tailoring (or
sometimes curbing) algorithms and data structures,
so they “behave”: For instance, in Example 1, a
warned programmer will tag intersection points with
where they come from, and use this information when
checking points against lines. He or she will also be
quite cautious not to split the original segments into
new, fundamentally different ones, but will rather keep
track of the fact that the newly created vertices belong
to original segments, without altering the structures of
the latter! In Example 2, a warned programmer might
design special input functions to allow exact represen-
tation of decimals, or control the accuracy of data rep-
resentations. To prevent errors in lexicographical or-
der (Example 3), warned programmers will handle the
intersection of vertical segments as a special case (im-
posing the abscissa of intersection points to be equal
to that of the endpoints of the vertical segment). As
for Example 4, no warned programmer will ever ex-
pect computing the same value using different (but
equivalent) algebraic expressions!

Warned programming, as opposed to naive pro-
gramming, manages to prevent in this fashion the
“simplest” cases of inconsistencies (Examples 1-4).
But preventing more complex inconsistencies, as those
in the last two examples, looks much more like an
LM.F. task!... It is this sort of impossible mission
that Symbolic Programming (presented below) is ad-
dressing, with more or less success.

A.2 Epsilon heuristics

Using “epsilons” is another popular heuristic. It
has been widely used among practitioners ([14], [28])
because it is simple and straightforward: As soon as
two values are closer than a given ¢, consider them to
be equal. Such an ¢ may depend on the values to be
tested (angle, length, area...), on the application, or
on the dynamic range of the data. While this solution
may, in practice, improve the reliability of algorithms,
the fine tuning of epsilons for a given application and
its various typical data sets remains empirical and
rather involved. Moreover, there is no way to guar-
antee that such a technique will effectively succeed:
If one is relying on lexicographical order to decide on
the next action, losing track of the true topology of
objects inside an e-wide strip has the same effect as
shuffling objects inside that portion of space, and in-
variably results in making hazardous decisions.



A.3 Symbolic programming

This technique, suggested by well-known theori-
cians in Computational Geometry ([7], [28], [24], [15]),
proscribes the use of exact arithmetics, on the (reason-
able) pretense that their cost is prohibitive, and com-
pensates by designing algorithms that exploit strong
topological or geometrical properties of the objects be-
ing manipulated. For instance, V. Milenkovic and Z.
Li ([24]) explain how to build e-strong convex hulls,
that is, objects that remain convex when any of their
vertices 1s moved in any direction by a distance less
than €. Another technique, suggested by K. Sugihara
and M. Iri ([15]) is to ensure certain topological prop-
erties during the incremental updation of a specific
data structure, whatever actions the floating-point re-
sults would otherwise drive the program to take. For
instance, if it 1s known that inserting a new point in a
dynamic structure yields a well-identified graph invari-
ant, then this invariant is ensured from the topologi-
cal point of view, independently of what the available
arithmetic would drive the algorithm to do.

A.4 Historical book-keeping

(first suggested by V. Milenkovic ([28])) consists in
recording all decisions made at any time by a pro-
gram, and then in consulting these “minutes” to make
consistent decisions: For instance, if, at one point of
execution, two objects have been found to lie in a
certain order, any subsequent decision involving these
two objects must be made in agreement with this or-
der. Although this technique may induce inconsis-
tencies between the computed and ideal results, it al-
lows self-consistent results. On the other hand, it is
extremely cumbersome and asks for vast amounts of
memory space.

The straightforward advantages of the last two tech-
niques are their robustness, and the fact that they
allow consistent results. Their main drawback is that
a specific solution must be developed for each and ev-
ery problem to be solved, with a heavy implication for
programmers. Until now, only a few algorithms have
undergone such a dramatic treatment.

A.5 Confidence intervals

“e-Geometry” ([13]) formalizes the empirical
heuristic of epsilons. It allows computing “confidence
intervals” for specialized predicates, within which
floating-point results are reliable. Unfortunately, -
Geometry does not help much in deciding what to do
outside such intervals. A typical situation is given by
Example 6, where one wishes to build a routine to de-
cide whether the angle formed by three distinct points
is reflex, null, or convex. The associated predicate

TypeOfAngle computes a determinant as mentioned
in the same example, and returns a certified answer
(“convex”, “reflex”) when this determinant is reliably
found to be different from zero (using absolute error
analysis) and a “fuzzy” answer (“don’t know”) other-
wise. Of course, this last situation is exactly the one
where something more “precise” would be expected
from any predicate designed to help solve precision
issues!

B. Classical exact solutions

B.1 Definitions

Suppose an algorithm is implemented on a com-
puter as a program using a certain arithmetic. Let us
use the term “ideal” to refer to the real mathematical
constructs (tests, arithmetic operations, and so forth)
in the abstract real space. Then, a computed value is
said to be ezact if it is equal to the ideal corresponding
value, and two computed values are said to be consis-
tent if and only if their mutual ordering is the same as
their corresponding ideal ordering. An ezact decision
in a computed test is one that is guaranteed to be con-
sistent with the decision implied by the ideal underly-
ing test, for any set of operands. More prosaically, ex-
act decisions are outcomes of tests which can never be
biased by the implementation (finite-precision, over-
flow, underflow, ...).

As most problems from Computational Geometry
may be modelled with an algebraic decision tree*,
what is actually needed is a method that yields consis-
tent (if not exact) results, by means of exact decisions.
Since methods that would only compute approximate
values cannot be guaranteed to yield consistent results
— as the previous examples have shown — one has to
resort to using exact values. There are two “classical”
ways to do this, as we shall now see.

B.2 Entirely exact methods

Using an exact arithmetic obviously rids programs of
all precision issues and of their consequences, i.e. in-
consistencies in the results. Another advantage is that
since such solutions do not require the existing algo-
rithms to be redesigned, all classical geometric theories
(compatible with the exact library at hand) become
readily available.

However, exact arithmetics (either rational or alge-
braic) have the disadvantage to yield irrelevantly pre-
cise results, 7.e. results with a much greater associated
precision than that of the initial data — which are only,
at their best, reasonable approximations. Obviously,

4Refer to the seminal book by M.I. Shamos and D.F.

Preparata ([37]) for a discussion.



such extremely precise solutions are unnecessary, if not
absurd: Consistency is the only thing that matters.
Furthermore, exact arithmetics provide such
minute information at a prohibitive price: They are
extremely costly both in execution time and memory
consumption. It must be understood that, in general,
exactly represented numbers are unbounded integers
(built up of machine integers), or rationals (built up
of unbounded integers), and that any intermediate re-
sult may grow as large as the problem at hand has a
need for. The number of digits required to compute
intermediate values in arbitrary precision may indeed
be astronomical. To quote M. Karasick ([26]) on this:

Ten random points with double-precision co-
ordinates were triangulated using floating-
point arithmetic in .1 seconds; ten random
points with rational co-ordinates (2-digit nu-
merator, 3-digit denominator, in base 21°)
were triangulated using rational arithmetic in
1 200 seconds, generating intermediate val-
ues with as many as 81 digits.

For all these reasons, exact arithmetics are very sel-
dom used in Computational Geometry or CAD. When
one 1s used, it is most likely a rational arithmetic, since
pure algebraic arithmetics (i.e. non-rational ones) still
seem impractical today. Their use is limited to specific
applications of Symbolic Calculus.

B.3 Mixed methods

Such techniques have been used at different levels
by T. Ottmann et al ([35]), M. Karasick et al ([26]),
Fortune and van Wyk ([10]), F. Yamagushi ([43]), M.
Gangnet and J-M. van Thong ([11]), J. Nakagawa et
al ([34]) and one of the authors ([32]). The main idea
is to use a mixed representation for the data, one of
which is approximate (e.g. floating-point), and the
other exact (e.g. rational, or unbounded integers).
Every program test is rewritten — by the programmer,
or by a pre-compiler —in such a way as to be performed
using approximations first, and if finite-precision is not
sufficient, in exact form.

T. Ottmann, G. Thiemt, and C. Ullrich use the
XSC language family in the following way ([18], [35]):
They first perform numerical tests with approximate
XSC long reals; the properties of these languages (ex-
act truncature, etc.) enable the authors to implicitly
attach a confidence interval to each approximation.
When these intervals are insufficient to safely make
a numerical decision, the exact corresponding test is
performed by determining the sign of a scalar product
involving standard floating-point numbers (considered
as exact numbers) from original data. Partial multipli-
cations and additions in scalar products are computed

exactly, thanks to the long enough mantissa register
emulated in the XSC library. Of course, it is often
necessary to retrieve original data, and this i1s done
through some kind of book-keeping by the program-
mer. In the example of the detection segment intersec-
tions, it is necessary to store, together with the usual
standard information (co-ordinates, attributes, etc.),
the way a point was generated (if original data: Co-
ordinates, if intersection of two segments: references
to the endpoints of these segments, etc.).

M. Karasick or F. Yamagushi reduce all tests to
computing the sign of the 4 x4-determinant with “long
integer” coefficients. From an informal point of view,
their methods are equivalent: They both consist of
computing with more and more “digits” (starting from
most significant digits) until the sign is safely deter-
mined. This may lead to complete exact evaluations
in certain cases, but in most situations, only a few
operations are needed.

S. Fortune and C. van Wyk proceed in two stages:
First the program is pre-compiled and the minimum
number of digits needed for the exact arithmetic (the
longest “integer” generated by the algorithm, knowing
the data range and the arithmetic expressions in the
program) is determined. For each test in the program,
they automatically generate C'++ code:

1. to compute the test in standard floating-point
arithmetic, using references to original data only;

2. to test, in the context of comparison against 0, if
the absolute floating-point value is greater than
the maximum possible error for the expression at
hand, and thus to determine its sign reliably;

3. finally, to call the exact, “long integer”, library
to evaluate the expression.

The program is then compiled and linked with the
exact library.

Note that in the three previous techniques, every
exact test must be made with reference to original
data. These techniques are fast, and yield consis-
tent results. But they have several drawbacks: First,
they systematically bound data range and computa-
tion depth, in order to use “long integers” (or long
reals) of maximum constant size. Thus, they forbid
fully on-line computations and reentrant algorithms:
Suppose one wants to dynamically insert line seg-
ments in an initially empty set, and the endpoints
of the newly inserted segments are allowed to be al-
ready detected intersection points. A simple back-
of-the-enveloppe estimation shows that the quantity
of information needed to allow exact computations is
multiplied by four from one “generation” of points to
the next. Secondly, they force programmers to pro-
vide explicit book-keeping mechanisms, which i1s most



demanding. For instance, a given vertex will belong
to one among different classes, depending on its his-
tory (original point, intersection point between origi-
nal edges, intersection point between edges from dif-
ferent generations, and so on). Each time a procedure
has to manipulate N vertices belonging to C' possible
classes, the programmer will have to write the code
for the CV different cases!...V. Milenkovic ([8]) gives
a fairly good account of problems of this kind in the
case of Fortune-van Wyk’s LN library ([10]). Remark.
Very often, implementations do not use fully rational
arithmetics, but only long integer or long real arith-
metics, so they have to forbid or limit the use of di-
visions, since division introduces numbers with an in-
finite mantissa (% = 0.333...). In Computational
Geometry, this is not too much of a problem, because
division may be easily avoided by using homogeneous
co-ordinates.

The originality of the lazy paradigm presented below
is to allow the book-keeping of any object to be made
implicitly and dynamically, without any extra work
from the programmer, as long as the essence of the
problems to be treated remains consistent with that
of the exact library being used. Moreover, lazy arith-
metics allow fully dynamic (on-line) applications, and
re-entrant algorithms.

IV. Lazy arithmetic
A. Principles

The lazy rational arithmetic exploits the two following

remarks ([2], [4], [16]):

1. A floating-point interval bracketing the ratio-
nal value is very often sufficient to represent this
value.

2. Tt is impossible to know beforehand (i.e. when
a computation is called for) whether intervas will
be sufficient or not.

A lazy arithmetic package performs computations in
approximate form first. If it encounters a precision
problem, it uses exact arithmetic to solve it, and then
goes back to finite-precision. All this is done with-
out any extra work from programmers: The library is
totally transparent in that sense.

Hence, the basic idea is to defer exact evaluations
until they become unnecessary (most of the time) or
inevitable. Thus, no exact computation that is not
strictly necessary will ever be performed.

B. Data structures for laziness

A (rational) lazy number is a cell containing:

¢ An interval with two floating-point bounds, guar-
anteed to bracket the rational number, be it
known (exactly evaluated) or not.

¢ A symbolic definition, to allow retrieving the ex-
act value of the underlying rational number.

Intervals are governed by interval arithmetic ([23],
[31]). The usual rational numbers have minimum
width intervals associated with them, and the inter-
val associated with any cell has bounds determined
by simple rules, such as: If z, 2’ are two lazy num-
bers with associated intervals [, 5,] and [a./, B./],
respectively, then the interval for the sum z + 2’ is
[V(ay + ), NS, + 5], where 7 (A) denotes the
function returning the nearest machine number below
(above) its argument. Some care must be taken to
avold overflow and underflow problems.
A symbolic definition is either:

o A standard (evaluated) rational number, repre-
sented, for instance, by a numerator and a de-
nominator, i.e. two lists of digitsin a given (large)
base,

¢ A ‘sum’ or ‘product’ cell, referencing two other
lazy numbers,

¢ An ‘opposite’ or ‘reciprocal’ cell, referencing an-
other lazy number.

Thus, a lazy number is the root of a “tree” of lazy
numbers, the internal nodes of which are binary (sum
or product) or unary (opposite, reciprocal) operators,
and the leaves of which are standard rational num-
bers. Actually, since any node or leaf may be shared,
lazy numbers induce directed acyclic graphs (dag for
short), rather than trees. Lazy numbers may access
their children (the operand(s)) but not their ancestors.

C. Lazy elementary arithmetic operations

Performing an elementary lazy operation consists in
allocating a cell (sum, product, opposite, reciprocal),
in computing the bounds of the interval associated
with the cell, and in assigning the references of the
definition. This is done in constant time, except in
the special case described in point 3 below. The exact
arithmetic operation is not performed, and never will
be if the interval proves sufficient for all subsequent
computations.

The intervals associated with two lazy numbers are
sufficient to compare them when they do not overlap.
In the opposite case, the library must perform an ex-
act evaluation of their symbolic definitions, in order
to give a safe answer. The only situations where the



exact rational evaluation of lazy number z is required
are:

1. When the library needs to compare z to another
lazy number with an overlapping interval.

2. When the library needs to determine the sign of
z, and its interval contains Q.

3. When the library needs to compute the interval
for the reciprocal of number z whose interval con-
tains 0.

4. When the library is evaluating another lazy num-
ber whose dag references z.

As mentioned earlier, point 3 corresponds to the only
situation where the simple initialization of the interval
for a lazy number actually involves an evaluation, and
is not, therefore, a constant time process: Since the
interval for z includes 0, its image under # — =1 is
not a finite, closed interval: Evaluation is the most
natural way to assign z7!

case.

one valid interval in that

D. Evaluation strategies

The simplest form of evaluation is a recursive func-
tion which evaluates the children of the lazy number
at hand, then performs the operation carried in its
associated cell, using rational arithmetic. The uneval-
uated definition field is then physically replaced by the
evaluated definition (e.g. the actual irreducible ratio-
nal fraction). In this process, all lazy numbers that
are no longer referenced become obsolete, and are re-
cycled through a garbage collection mechanism.

The library also refreshes the intervals of the eval-
uated numbers during evaluation. Note that the more
operations involved in a definition, the slacker its root
interval. Complete evaluation can thus be regarded
as the ultimate tool for refining the intervals of defi-
nitions corresponding to numbers which have become
too imprecise due to the complexity of their definition.

In that regard, the multiplicative inverse may cer-
tainly be regarded as the worst possible operation:
Suppose the interval for lazy number z is [1- 1076 2
10~°] (quite a reasonable assumption for standard in-
put data), then the interval for its reciprocal will be
something like [57(5 - 10%), A(10%)], an interval with a
very large amplitude indeed! Obviously, only the ra-
tional evaluation of z will allow the library to refine
this interval down to near the ulp. ..

One may imagine different and more elaborate eval-
uation strategies. For instance, if some descendant d of
a given lazy number z has been evaluated recently, the
interval for z may be refined, but has no reason to have
been refined during the evaluation of d. One so-called
“refreshing” strategy first re-evaluates the interval for
the considered number (z): Thus, it may happen that

the usual bottom-up process makes the interval of z
small enough to allow the operation (which primarily
failed) to succeed without the library having to per-
form any evaluation.

Another (“up and down”, or “yoyo”) strategy con-
sists in only evaluating the lowest internal nodes (those
whose children are ‘leaves’), then in bubbling interval
information up to the root, as in the previous strategy.
This process is iterated as long as necessary (until all
nodes referenced by the lazy number considered are
evaluated, in the worst case).

A final ‘asymmetrical’ strategy first evaluates the
children whose intervals are largest, then bubbles up
interval information. .. All these strategies have been
tested, and have proven to have about the same be-
haviour, within 10%, in our applications.

E. Usage, performance, applications

A lazy exact rational arithmetic library (LEA) has
been developed in C++ at EMSE, where it has also
been tested. It i1s possible — if need be — to obtain
the standard floating-point version, the exact version,
and the lazy version of the same algorithm by simply
using a nickname type, say MyNumbers, that will be
a synonym of double in the floating-point version, of
Rat in the exact version, and of LazyNumber in the
lazy version. To obtain either version, one only has to
make the appropriate changes in the type declaration,
and to link the program with the appropriate library.

Empirical tests have shown that the lazy implemen-
tation of Bentley and Ottmann’s segments intersection
algorithm ([17]), can be more than 150 times faster
than its purely rational counterpart. The lazy arith-
metic version is only 4 to 10 times slower than the
resident floating-point version (that is when the latter
manages to terminate successfully, obviously...).

This library has also been tested on a program
for computing the intersections of several polyhedra
by members from the “lazy group research team”
at EMSE ([6]). Table T shows the lazy-to-float and
rational-to-lazy ratios for the running times of this
algorithm on scenes with 4, 8, 12, 16, and 20 cubes
and initial data precision ranging from 1073 to 10712,
The cubes have unit sides, and are randomly rotated
around the origin. The lazy-to-float ratio is ten or
less when the number of cubes increases, and does not
depend on the precision of the initial data. On the
other hand, the rational-to-lazy ratio increases with
the precision of initial data.

LEA — which is to be shortly used in large-scale
applications, such as the Delaunay triangulation of
terrains, or the development of a geometric library —
has also been used with some success to triangulate



TABLE 1
RUNNING TIME RATIOS OF THE LAZY, FLOATING POINT, AND
EXACT (RATIONAL) VERSIONS OF THE SAME PROGRAM. THESE
FIGURES ARE QUOTED FROM P. JaiLLon’s PHD THEsIs ([16]).

| Lazy/Float | 4 [ 8 | 12 | 16 [ 20 ]
10—2 10.4 10 9.2 8.8 8.3
108 10.4 9.8 9.2 8.8 8.3
10—° 10.5 9.9 9.2 8.8 8.3
10—12 10.5 9.9 9.3 8.8 8.3

| Rats/Lazy || 4 | 8 | 12 | 16 | 20
10—2 57.8 80.9 91.1 97.9 101.6
106 172.2 | 249.9 | 278.6 | 297.7 | 307.7
10—° 348.9 | 485.7 | 531.7 | 568.6 | 588.6
1012 573.2 | 836.7 | 921.9 | 987.9 | 1038.2

linear systems, and to find the sign of determinants
using Gauss’s elimination method. It is true that the
now classical modular arithmetic ([19]) also allows to
solve linear systems, without the hussle of numerical
imprecision, nor the problems pertaining to ill condi-
tioning. However, modular arithmetic neither allows
to efficiently compute the sign of numbers, nor to or-
der them. Thus, lazy arithmetic solutions are very
promising alternatives.

Another potential usage for lazy arithmetic is Nu-
merical Analysis, which often uses iterative and con-
vergent algorithms. Numerical imprecision sometimes
lead to problems, e.g. wrong convergence or non-
convergence. Let us take an example from J-M.
Muller’s authoritative book on Computer Arithmetic
([33]): Define

1130
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3000

ApGp—1

_|_

Ap41 = f(an—laan) =111 -

z = f(x,x) has three solutions (5, 6 and 100). If one
fixes ap = &L and a; = &L:

2 T
1. The sequence ideally converges to 6.
2. Using floating-point arithmetic, it converges to

100: The successive values of a, using double-
precision 80-bit numbers (extended doubles) ex-
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hibit the following general pattern:

a1=5.54545454545454

a15=5.98143989459209
a16=06.65729723987226
a17=16.6000501930843
a18="70.0744205165950
a19=97.4532928295079

a30=99.9999999999999

3. Using LFEA, it successfully converges to 6: The
width of the lazy intervals for the same se-
quence grows from as : [5.59016... 5.59016.. ]
to ajp : [—40.9888 ... 47.7436..]. Computing
the next term implies division by an interval
containing 0. This causes an exact evaluation
which “shrinks” the intervals of all already com-
puted terms (due to the structure of the compu-
tations), and, for instance, the interval for aj;
is [5.89915 ... 5.89915..]. From then on, succes-
sive terms are computed using interval arithmetic
only, until another degenerate interval is encoun-
tered by the library.

In conclusion, lazy arithmetic packages automati-
cally detect when intermediate values should be com-
puted with more precision. This property seems very
interesting for Numerical Analysis, but we have been
too lazy to study the question in detail.

V. Two lazy questions

Two important problems had to be specifically solved
to allow an efficient implementation of LEA, as de-
scribed in this section.

A. Labelling lazy numbers

Some geometric algorithms require that labels (hash
keys) be attached to numbers. For instance, such la-
bels allow to retrieve vertices from their co-ordinates
in a hash table. The lazy paradigm does not readily
allow this: Since the values of lazy numbers are not
necessarily available, how is it possible to assign labels
without evaluation?

One basic requirement is that the same label should
be assigned to two equal numbers, with possibly dif-
ferent definitions, such as those from Example 4:

o'y —ay arg + 7

o —a'd T

o xq + v

6/

and



TABLE II
COMPUTATION RULES FOR W(q + ¢'), FOR U(q = ¢’), AND FOR
U(—g) anD W(g™1). (A, N ARE ANY TWO VALUES IN ]0,p[, AND
“7” STANDS FOR INDETERMINATION).

U(g) =0 | ¥(g)=0 | Y(g) =)
() =Q ? Q Q
U(7) =0 Q 0 X
T(q) = X ) X D+ V% p
U(g) =0 | ¥(g)=0 | W(g) =2
() =Q Q ? Q
U(7) =0 ? 0 0
U(q) =N Q 0 D= N%p
[ Y [ @ [ 0 ] A |
V(-g) Q 0 [p =]
(g 0 Q N %p

The solution presented in ([5]) exploits the morphism
between @ and the finite field Z, = Z/pZ: Let p be a
(large) prime, typically chosen so that p, and even p?,
may be represented by one machine integer. Labels
are integers from [0, p[U{Q}, where  may be chosen
equal to p.

The label assigned to an irreducible rational frac-
tion ¢ = ¥ is, by definition, \I!(g) = z(y~1)%p (where
% stands for the modulo operator), whenever y has an
inverse in Z,, and \I!(g) = Q otherwise. In general,
the label for ¢ + ¢’, ¢ * ¢’, —q, ¢~ may be efficiently
computed using the labels for ¢ and ¢’, as shown in
table II.

It is readily seen that there are only three indetermi-
nate cases for which the label may not be uniquely
defined (refer to [5] for more detail): this is mainly
because, fundamentally, @ and Z, are not isomorphic.
In such cases, labels must be computed, for instance
directly after the lazy numbers have themselves been
evaluated.

One may notice that only one among the p? cells
of the first table, and two in the second, yield indeter-
minate answers. Interestingly enough, empirical tests
have shown that, for random data, the frequency of

indeterminations was close to %, while it was under

1 in a million for “real-world” data (p being chosen
equal to 65,521 in both cases).

The elementary arithmetic operations in Z, may be
performed in constant time, except, possibly, for the
computation of reciprocals: If the library provides an
O(p)-space table of reciprocals for numbers in [1, p%l],
this operation requires O(1) time. Otherwise, the li-
brary must resort to using either Euclid’s extended
algorithm, or exponentiation (¢=! = ¢*=2 %p), both
of which methods take O(logp) time.
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Another representation for hash keys virtually rids
the library of the need to compute reciprocals in Z,:
a key U (as defined earlier) is represented by a cou-
ple (,8) € 7* »» such that n = W x 6 %p. All couples
(A% p, A6 %p) with A # 0 are equivalent representa-
tions of key ¥. Couples ( # 0, 0) represent . Couple
(0,0) represents the indeterminate key.

Computation rules over couples may then be ex-
pressed as:

(775’ +1/'8) %op, 66" % p)
' % p, 86" % p)
n % p, 6)

n)

When the result is (0, 0), the key is indeterminate, and
the lazy number may be evaluated by the library. This
only happens in the same cases as previously, the only
difference being in the notation:

(7,0)+ (n',0) = (0,0)
(1,0) % (0,8") = (0,0)

With this representation, computing reciprocals in Z,,
is only necessary when the hash key is effectively re-
quired (by user programs!), and no longer each time
the reciprocal of a number is found in a lazy expres-
sion the key for which is being computed: This specific
operation may now be done through a simple swap in
the couple elements!

Labels may also be used for the needs of the lazy
library proper: for instance, if two lazy numbers have
different labels, then they must be different (although
they still cannot be ordered). Tt is thus possible to
detect the non-equality of two numbers when their in-
tervals overlap, provided they are wise enough to have
different labels. Note that, with this new representa-
tion, testing the equality between two couples (7, 6)
and (7', 6") does not require computing an inverse in
Zy,: In effect,

(n,6) =

B. Difficulties related to identity

(
=
(—
=,

(', 8" & ns~ =0 (6") " %p < ns' = n'6%p.

Implementing a lazy library such as described in the
preceding sections involves solving various problems,
all of which there i1s not enough space to detail here.
Let us only mention those related to dealing with iden-
tical definitions, which actually greatly hampered the
very first implementation of LEA, before the cause of
the problem could actually be identified and gotten
rid of in a generic way.

Suppose a program uses a function Slope whose
result is a lazy number representing the slope of the
segment it 1s given as argument. If the program has



tests like if (Slope(s) = Slope(s’)) and if s and
s’ are two pointers on the same entity, a naive imple-
mentation of laziness will have to evaluate the expres-
sions for Slope(s) and Slope(s’) before proving they
are numerically equal. However, these expressions are
necessarily equal in this specific case!

To prevent such useless evaluations, two so-
lutions may be considered: the user program
test should rather be written as if (s = s’ ||
Slope(s) = Slope(s’)), or the library should detect
such equalities without letting programmers worry
about them. The latter solution has been chosen in
LEA, simply because one global objective of such a
library 1s to be easy to use, and to keep computer
arithmetic issues at the lowest possible level.

In theory, identical expressions may be detected at
two specific stages:

During comparisons: In its current version, the
lazy library only detects identical expressions at this
stage. The method used is a straightforward recur-
sive “clone” checking procedure, which stops as soon
as the subexpressions it is testing have the same ad-
dresses, disjoint intervals, or different labels. These
tests greatly speed up the detection of “distinctness”
when the library tries to compare two expressions the
dags of which only differ at the leaves (e.g. two deter-
minants). In practice, testing whether two expressions
are identical only takes time proportional to their ac-
tual length when the expressions are indeed “clones”
and do not share any common subexpression (think of
comparing two n x n determinants with the same nu-
merical coefficients, each represented by two different
lazy numbers).

During creation: Identical expressions could also
be detected whenever a copy of an already existing
expression® is being created by a program. In this ap-
proach, any lazy expression can only be represented
once in memory, and two identical expressions neces-
sarily occupy the same memory location. To do this,
the library needs to silently maintain a hash table con-
taining all lazy numbers that have been created. The
main drawback of this method is that it 1s not really
lazy in its principle, since it may never be useful for
a program to know that one particular couple of lazy
numbers are clones, if they happen never to be com-
pared in the sequel!

The final solution? A third, and better solution
would be to wait for comparisons to detect equality,
and then to use some sort of equivalence class scheme
for equality, for instance the so-called union-find tech-
nique ([40]). One advantage is that it would be pos-
sible to deduce a = ¢ from knowing ¢ = b and b = c.

5More explicitly, of a cell-expression, itself source of a lazy
expression dag.
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It is also important to note that this scheme would be
equally interesting whatever the method used to de-
tect equality (clone detection, algebraic identity, etc.)

One final problem is that once a lazy number has
been evaluated, it becomes impossible to compare it
to one of its clones, because the two numbers now
have different definitions: The “clone” still has the
original symbolic definition which the other has lost
in favor of a new, compact, irreducible fraction form.
It would then suffice to use the last solution and to
add an extra (initially void) field to store evaluated
definitions, once the associated numbers have actually
been evaluated. This would readily allow to keep the
original symbolic definition untouched, and to make
use of the clone detection procedure if needed.

VI. A few possible extensions

The wide collection of algorithms in the literature of
Computational Geometry gives rise to certain classes
of problems that may be dealt with using the follow-
ing list of extensions to the lazy paradigm as it has
been described earlier. It is our intention to implement
some of these extensions in the later development of

LEA.
A. Lazy exponentiation

The lazy arithmetic product i1s enough to compute
z" when z is a lazy number, and n an integer, but
a specialized operator is more convenient. One rea-
son for this is that it is possible to associate with
such an operator a specific interval computation pro-
cedure that is finer and faster than the straightfor-
ward multiplication of n intervals. For instance, while
[-3,2][-3,2] = [-6, 9], using the general definition of
interval product, one may prefer getting [0, 9], using
basic properties of the squaring function. The eval-
uation in rational form of 2" may also benefit from
the classical “russian algorithm” using O(logn) mul-
tiplications or rational squaring operations. This new
operator also saves memory space.

B. Lazy determinant

Lazy arithmetic must be paid for by allocating one
memory cell for each single operation: Thus, the sym-
bolic definition of the determinant of an n x n matrix,
as computed using Gauss’s algorithm, requires O(n?)
such cells, since this method performs O(n?) opera-
tions. It is possible to consider a lazy determinant
that would only store a matrix (or the reference of a
matrix) and evaluate the determinant interval without



explicitly developing the rather cumbersome symbolic
definition.

C. Lazy booleans

When confronted with a test such as

if ((a <b) Il (¢ < 4d)),

LEA —in its present state — may have to perform a ra-
tional evaluation of the first condition before even test-
ing whether the second is not true using interval arith-
metic only. Hence the need for lazy boolean operators,
that could be defined in the following way (with the
convention that afj, !a[],aq% respectively mean “true
according to intervals”, “false according to intervals”,
and “true according to exact arithmetic”):

a OR b ::
jor brp) return true;
(] and !bf7) return false;
la) return bQ;
[

1) return agy;

Lazy

Note that “true according to intervals” means that the
corresponding condition is tested using the interval
arithmetic only, and that a negative answer to such a
question is: The condition is either false according to
intervals, or nothing can be said.

Unfortunately, rare are the languages that allow
such redefinitions®. C++, the language used to imple-
ment LFEA, does not allow the overloading of boolean
operators. We may have to either switch to other pro-
gramming environments, or else design specific func-
tions, but this is quite contrary to the general philos-
ophy of transparence we have opted for in the imple-
mentation of the library.

D. Lazy extrema

Whenever the lazy numbers z and 2’ have overlapping
intervals [A,, p,] and [A,/, p.], the lazy mazimum op-
erator should defer the evaluation of the two numbers
by returning a symbolic definition of a new type, to-
gether with the interval [maz(X,, A,r), max(py, ).
The lazy minimum operator may be defined in a sim-
ilar fashion.

These operators are unfortunately not compatible
with the immediate computation of labels. However,
using them would be rather interesting: Since one in-
terval is known for the result @ priori, 1t 1s possible
to stop the evaluation of candidate z or 2z’ as soon as

6 X5C being one exception.
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its value is outside the interval. This optimization is
similar to af-pruning in the Minimaz method ([42]).
(Refer also to [16] for more detail.)

E. Lazy absolute value

Whenever a lazy number z has an associated interval
[A:; 2] containing 0, the lazy absolute value operator
should defer the evaluation of z by returning a sym-
bolic definition of a special kind, together with the
interval [0, maxz(|A;], |p2])]. The evaluation method
is straightforward. Unfortunately, such an operator
is not compatible with the immediate computation of

the label for |z|.
F. Hardware implementation

Classical arithmetics over unbounded integers have
already been successfully hardware implemented.
Whether such a thing is possible (let alone interest-
ing) for lazy arithmetics is still not known, although
there is no apparent reason why it should not be. It
remains to find out if using a rational arithmetic core
is not necessarily too cumbersome, and if adapting
the paradigm to a library driven by some inherently
on-line scheme (for instance continued fractions ([36]),
[20], [21]) would not be more beneficial.

G. Intervals as input data

Most of the time, data are realistic approximations
of reality, with a known bound on errors. Data are
often given as unique mean values in such intervals,
but some applications may output actual intervals for
their results. Is it possible to consider using lazy arith-
metic packages when data are represented by intervals
only?

In Computational Geometry, a few similar situa-
tions have been studied by authors like M. Segal and
C.H. Séquin ([39]), Z. Li and V. Milenkovic ([24]).
More recently, C. Barber ([1]) studied this problem
from a very theoretical point of view in the case of the
construction of 3-D convex hulls for sets of “fuzzy”
points. He suggests very involved methods for defin-
ing and constructing such objects consistently, noting
himself that the applications are necessarily slowed
down by such constraints. The main difficulty in deal-
ing with interval inputs is that no simple topology may
be defined, as illustrated in the simple example on Fig-
ure 3. Consequently, only complex topologies may be
used, and only a few problems have beeen treated with
that in mind, so far. Whether the lazy paradigm is of
any interest in such approaches is an open question,
still.
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Fig. 3. Fuzzy topology and intervals. “Fuzzy” point A may be
located at the left or at the right of the vertical line segment
[D, E] (that we have supposed fixed for simplicity), which
induces fundamentally different topologies.

In other fields, where combinatorial properties are
not exploited, the lazy paradigm may be extremely
beneficial: The example about the badly convergent
sequence, should have suggested the capability of lazy
arithmetics to detect when intervals should be refined.
This again is an open research area.

VII. Limitations of the lazy solution
A. Programming environments

Because they are intended to be “user-friendly”, lazy
arithmetic packages require programming environ-
ments that allow to consider lazy numbers as stan-
dard numbers, z.e. floating-point numbers, or machine
integers. The only environments with the necessary
functionalities are Lisp, functional or object-oriented
languages. C++ is a limit case: While it allows to
redefine arithmetic operators (but not boolean opera-
tors, as already mentioned), it does not allow garbage
collection, nor does it allow to consider the basic nu-
meric types (float or integer) as forming a class — a
serious handicap.

According to us, such drawbacks are more related
to the limitations of programming environments than
to an inherent misconception in the lazy arithmetic
principle.

B. Growth of numbers

During the tests that were performed at EMSE ([4],
[16]), the initial size of the data had next to no influ-
ence on the running times of the applications running
with LFEA, as shown in Table I. However, these appli-
cations were nowhere near geometric editors or mod-
ellers, for which it is known that incremental modifi-
cations on data (affine transformations, intersections,
creation of new geometric objects from old ones) in-
duce a considerable increase in the size of the numbers
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involved ([44]).

mentations.

This question calls for more experi-

C. Interface with the floating-point world

Currently, the constant use of an exact arithmetic is
not considered to be realistic. Exact arithmetics are
only used temporarily, during the execution of algo-
rithms that do not withstand numerical imprecision:
Most of the time, floating-point data are used. This
approach has the merit to keep the size of numbers rea-
sonably low (VII-B), but raises the question of com-
municating with the “outside world”, where only ap-
proximations are known.

It is of course necessary to provide the conversion of
floating-point inputs into rationals, and wice versa for
the output.
numbers can only be done approximately, in most

Converting rationals into floating-point

cases. Conversely, converting floating-points into ra-
tionals may be done exactly. However, such a preci-
sion 1s useless, since floating point numbers are never
more than reasonable approximations. One possible
solution is to use continued fractions to perform con-
versions with a specified precision (refer to [2]).

Numerical conversions are not all there is to worry
about: One must also preserve information consis-
tency. One first minor problem is that of data re-
dundancy. Consider a set of segments; the (z,y)
co-ordinates of their endpoints cannot be converted
independently from the coefficients («, 3,7v) for the
lines supporting them without introducing inconsis-
tencies. A trivial solution is to convert the endpoint
co-ordinates, and then to deduce the (o, 3',7") triples
associated with the lines through these converted end-
points, without trying to relate them to the triples
associated with the unconverted segments. More gen-
erally, one must prevent any sort of such redundancy
in the data.

The second problem is more difficult, and 1s related
to preserving the topological consistency of the ge-
ometric objects. For instance, one should be careful
not to introduce unwanted self-intersections when con-
verting a “rational polyhedron” into its floating-point
version ([2]). Unfortunately, this problem has been
proved to be NP-hard, even in the two-dimensional
case ([30]). However, S. Fortune has recently given
a new and simple framework to avoid such problems

([9])-
D. The need for warned programming

We have already seen that floating-point arithmetic
calls for some sort of warned programming to avoid the
simplest and most frequent inconsistencies. Unfortu-
lately, the lazy exact paradigm does not eradicate this



need completely: When compiled with a lazy library,
valid programs never fail, but may become extremely
slow.

One reason for this is that a naive programming
style will too often use non identical but algebraically
equivalent expressions, such as ab+ac and a(b+¢), or
to mention more realistic examples, expressions such
as those from Examples 1 or 4. The lazy library then
has no solution other than to evaluate all these defi-
nitions in exact form before finding out that they are
equal.

Three approaches to solve the problems related to
algebraically equivalence may be considered: One is to
use warned programming; we have already seen in V-
B that another approach is to “teach” the lazy library
how to handle equality between numbers; however,
this is not really a solution for the problem at hand.
The last approach, discussed in the next subsection,
is to detect them in the compilation phase or even in
a pre-processing phase.

To apply the first solution (warned programming
style), it is best to first develop algorithms using
floating-point numbers only: When the programs un-
der development are robust enough, the simplest forms
of inconsistencies have surely been seen to, and only
the more sophisticated forms remain to be tackled. It
is then possible to use the lazy rational arithmetic to
solve these complex problems — and only those — with
the help of exact computations. It is important to
emphasize that in the lazy context, algorithmic issues
are the ones that matter most: programmers are not
asked to outsmart the idiosyncrasies of limited preci-
sion using wizards’ tricks, but, on the contrary, to not
worry about precision issues and to concentrate on
the understanding of their algorithms, in terms of effi-
ciency in a lazy programming environment. Whenever
one has to write a test, it should be of the utmost im-
portance to guess whether it is likely or not to induce
unduly evaluations, even in the most trivial cases.

There is in fact a very simple rule of thumb to help
programmers design efficient algorithms in a lazy set-
ting: It is always possible to imagine very simple sets
of data for a given geometric problem for which abso-
lutely no evaluation should be performed in the lazy
version. One good example of this is given by choos-
ing a few random segments (preferably non vertical)
to feed the algorithm supposed to detect their inter-
sections. If the floating-point version works on such
data sets, then the lazy version should be run (i.e.
the same program should be linked with the lazy li-
brary, see IV-E), and no evaluation should be made
— which may be easily checked using some specific in-
formation available from the lazy library itself. In the
case where unduly evaluations are found, then some-
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thing should be said about the way the program is
written: Most likely, something is being done which
is close to comparing equivalent but algebraically dis-
tinct expressions!

Let us now reconsider the problem described in Ex-
ample 3. Obviously, it makes much more sense to im-
pose that all the abscissa of the intersections between
a single vertical line (# = () and a collection of non
vertical segments be explicitly expressed as g, and
not as AAx’. To be sure, the first version will never in-
duce any Tational evaluation, but nothing of that sort
may be guaranteed for the second one!

One last word concerning warned programming:
Consider a dynamic data structure for storing, say,
random points in some structured order (e.g. a linked
list, a binary tree, a priority queue, an AVL, etc.).
Insertion is usually straightforward, as random points
will rarely come so close as to force the lazy library to
evaluation. But deletion is a very much different mat-
ter: It requires searching the data structure until the
element with the same key as the one given as param-
eter is identified. A naive programming of such an op-
eration will invariably end up doing much more work
than necessary (just imagine that the random points
are now the results of complex operations). There may
not be any evaluation performed, thanks to the clone
detection procedure described earlier, but still, the li-
brary will have quite a hard time identifying each and
every item to be deleted, from its key. It is a good idea
to design a scheme to prevent the library from doing
any extra work at all, besides searching the structure
for the correct location. In general, it is most benefi-
cial for programs to have their data structures slightly
augmented with pointer information. Such modifica-
tions will never slow down the algorithms noticeably,
while they will greatly speed up the performance of
the lazy versions, for almost no extra programming
work at all.

On the other hand, the major open question is: Is
it possible to augment the data structures in the lazy
library to prevent most of the evaluations that would
be induced by naive programming? Of course, the
limitation of such an entreprise is the ratio of extra
work to put into it to the decrease of work performed
by the library. In other words, how much work is one
prepared to do, in order to be as lazy as possible!. ..

E. Automatic of

equivalences

treatment algebraic

Unfortunately, warned programming is slightly artifi-
cial, sometimes under-estimated, and not to be found
in the books. The next question is, therefore: Is au-
tomatic detection of algebraic equivalences possible?



The current implementation of LEA only detects
the most trivial algebraic equivalences:

1
= —=1 —z)=0
T yx+ (=)

8| =

and so forth. One may consider ordering operands for
the sum and the product, so that the operands with
larger label always lie to the left of all binary operator
nodes, for instance. Thus ab — ba would be found
to be identically null without any rational evaluation.
However, this scheme is not sufficient to detect the
equivalence between such simple expressions as (a+b)c
and ac + be.

Detecting algebraic equivalences like the ones above
constitutes the ABC of symbolic calculus, but in the
general case, the known methods are much more pro-
hibitive than the simple identity test between two ex-
pressions we have described earlier: Symbolic compu-
tations may themselves involve computations on large
integers or rationals (expansion of (z + y)", for in-
stance). In short, a fully deterministic detection of al-
gebraic identities during execution seems unrealistic.
On the other hand, another approach is possible, by
means of a fast, yet probabilistic, algorithm to detect
algebraic identities ([38]), whose spirit is very close to
the principle of hash coding. The authors did not test
either approach.

Is detection during compilation or during a pre-
processing phase possible? This remains to be seen.
Let us simply point out that the whole problem of alge-
braic equivalences is not raised by the lazy paradigm
only; it is already present in the conversion of algo-
rithms to floating-point programs, and we have seen
the number of tricks warned programmers have devel-
oped in order to prevent inconsistencies.

Even in the now classical framework of floating-
point arithmetic, no general (i.e. independent of the
programs) solution is known to solve the problems re-
lated to algebraic equivalences. To our knowledge,
Computer Science has never fully addressed this phe-
It 1s our hope that this paper will have
stated the question in a proper fashion, and that it
will be recognized as worth considering and studying,
in the future.

nomenoin.

F. Discontinuous operators

Standard arithmetics over unbounded integers pro-
vide operators such as modulo, ged, or lem. These op-
erators are fundamentally discrete and discontinuous,
and are thus incompatible with interval arithmetic.
The lazy rational arithmetic, as we have defined it,
cannot therefore be applied to problems that require
such operators — namely cryptography, calculus in fi-
nite fields, primality tests, or factoring large integers.
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Finding out whether other types of lazy arithmetic
may allow to break this limit 1s an open problem.

G. Algebraic arithmetic

Finally, the lazy arithmetic package presented in this
paper is of rational essence, while many problems that
arise in Computational Geometry or Computer Aided
Design are of algebraic nature. For instance, rota-
tions with angle kw, k € @, and intersections between
algebraic curves or surfaces naturally involve algebraic
numbers. The possibility to use a lazy algebraic arith-
metic still is an open problem.

Remark. In general, when rotations are needed in
applications, the coefficients of their matrices are ap-
proximated by rational values (see for example the pa-
per by V. Milenkovic [29]). Another method is to per-
form the rotations usign finite-precision transcenden-
tal functions, and then to convert the finite-precision
co-ordinates into rational ones, but this is likely to
introduce topological inconsistencies in the objects.
However, S. Fortune recently suggested a solution ([9])
to skirt this problem.

VIII. Conclusion

Numerical imprecision seriously impairs the imple-
mentation of geometric methods, forcing more and
more authors to use mixed rational arithmetics in
Computational Geometry ([44]).

The lazy rational arithmetic is a recent (1993) op-
timization of such arithmetics, which only performs
necessary exact computations by deferring them until
they either become unnecessary or unavoidable. Some
variants and extensions of this arithmetic have been
presented, which seem both promising and interesting.

The lazy paradigm leaves several problems open:

o The current implementation of the lazy library
still calls for a careful, warned programming style,
just as the standard floating-point arithmetic
does. Such a problem is induced by algebraic
equivalences. This paper has described the prob-
lem, shown its stakes, but fails to give a complete
solution, so far.

¢ What about the use of the lazy paradigm with
interval inputs in fields such as Numerical Anal-
ysis?

o Last, but not least: Is it possible to develop an
algebraic arithmetic that would be practical in
Computational Geometry and Computer Aided
Design, as well as in Symbolic Calculus?
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