
Arithmetic Issues in Geometric ComputationsD. MichelucciEcole des Mines, F-42023 Saint-�Etienne 02micheluc@emse.frAbstractThis paper �rst recalls by some examples the damages that the numerical in-accuracy of the
oating-point arithmetic can cause during geometric computations,and it intends to explain why damages for geometric computations di�er from thosemet in numerical computations. Then it surveys the various approaches proposedto overcome inaccuracy di�culties; conservative approaches use classical geomet-ric methods but with `exotic' arithmetics instead of the standard
oating-point one;radical ones go farther and reject classical techniques, considering them not robustenough against inaccuracy.1 IntroductionGeometric modellers provided by commercial CADCAM softwares, and methods from themore theoretical �eld of Computational Geometry all perform geometric computations:for instance triangulating or meshing geometric domains for �nite elements simulation,or computing intersections between geometric objects. Inaccuracy is a crucial issue forgeometric computations. Not only the numerical results can be inaccurate, but also geo-metric programs can crash, or enter in in�nite loops, or terminate but provide inconsistentresults, the topology of which is the topology of no possible geometric objects.Today it is widely known that numerical analysis can su�er from numerical inaccuracy,especially in presence of ill-conditionning. It is perhaps less known that the situationis even worse for geometric algorithms. Due to the underlying combinatoric propertiesof geometric objects, numerical inaccuracy can cause damages even when there is noill-conditionning at all, as this paper will show by some typical examples.To solve or bypass inaccuracy problems in geometric computations, several approacheshave been explored. Conservative approaches use classical techniques but with `exotic'arithmetics, ie they do not rely only on the standard
oating-point arithmetic. Moreradical approaches have recently proposed to get rid of some classical methods or datastructures because they do not withstand inaccuracy, namely methods from computa-tional geometry and topology-based data structures like BReps (Boundary representa-tions). Thus taking inaccuracy into account can radically modify methods and datastructures used in geometric computing.

2nd Real Numbers and Computers Marseille 1996This paper only deals with the inaccuracy problem, but the latter is not the only arith-metic issue for geometric computations: there are two others. The �rst problem is dueto the overwhelming number of degenerate geometric cases (say: alignment of more thantwo points, coplanarity of more than three points, cocircularity of more than three points,intersection of more than two lines in a point, parallelism between lines, etc) which geo-metric methods have to handle and the programmer has to treat: it is not obvious thatthis is an arithmetic problem, but a solution is an arithmetic one: it symbolically perturbsthe data by in�nitely small values to remove degeneracies [EM90, EC92, Mic95], using anon-standard arithmetic (ie an arithmetic computing with non-standard, in�nitely smallnumbers). However, this arithmetic solution has the drawback of needing an exact arith-metic. The second arithmetic issue for geometric computations is that data acquired fromsome sensors, or mechanical products machined by imperfect tools, are also known onlyup to some �nite precision: some CADCAM applications need to take into account thisother kind of inaccuracy [Jus92]. These two issues are beyond the scope of this paper.Plane of this paper. Section 2 explains the typical damages due to inaccuracy: aftersection 2.1 �xes notations, section 2.2 shows how a method from Computer Graphicsin�nitely loops under inaccuracy, section 2.3 details running-time crashs of a methodfrom Computational Geometry under numerical imprecision, section 2.4 a topologicalalgorithm which may also in�nitely loop. These failures are always due to the fact thatinaccuracy contradicts geometric properties. Section 2.5 presents other examples of ge-ometric properties invalidated by inaccuracy and section 2.6 concludes this part aboutimprecision ravages on geometric algorithms. Section 3 surveys the di�erent approachsinvestigated to �ght against (or to avoid) inaccuracy: section 3.1 presents the popular �heurism, section 3.2 some empirical rules of programming that avoid the more obviousgeometric inconsistencies, section 3.3 the spirit of the approach which tries to alwaysprovide consistant {though approximated{ results, section 3.4 some typical exact arith-metics, section 3.5 an interval con�ning approach which extents the � heurism, and section3.6 a new tendency emerging in the CADCAM and Computer Graphic �elds which rejectsmethods and data structures considered not robust enough against imprecision. Section4 concludes.2 Some damages of numerical inaccuracy2.1 NotationsWe will use the following notations :1. Straight lines with equation �x+�y+
 = 0 are represented by a triple of
oating-point numbers (�; �;
).2. The triple for the line through two distinct points A and B is(yB � yA; xA � xB; xByA � xAyB);

2nd Real Numbers and Computers Marseille 19963. The intersection between two given lines D : (�; �;
) and D0 : (�0; �0;
0) is thepoint (x
; y
) with x
 = �
0 � �0
�� 0 � �0� ; y
 = �0
 � �
 0�� 0 � �0�4. Geometric algorithms often use the lexicographical order on coordinates, de�ned by:(x; y) <L (x0; y0), x < x0 or (x = x0 and y < y0):A line with � = 0 (respectively � = 0) ie parallel to the Oy (respectively Ox) axis is saidto be vertical (respectively horizontal).The notation a� denotes the
oating-point approximation of a. fp is a shortcut for`
oating-point'. bxc stands for x
oor, and dxe for x ceil.2.2 Consequences on an algorithm from Computer Graphics
Figure 1: A span, delimited by two vertical lines.This section studies the consequences of inaccuracy on a 2D algorithm. The data aresegments. For all lines Lx parallel to the Oy axis and having integer abscissa: x 2f0; 1; 2 : : : Ng, the problem is to �nd the segments crossing Lx and to sort them byincreasing ordinate. This problem occurs in Computer Graphics as a sub-problem inAtherton's method, which computes images of 3D scenes de�ned by boolean combinations(intersection, union and di�erence) of polyedra.The standard method �rst determines the set of spans: a span is a maximal interval[x0; x1] such that]x0; x1[contains no initial vertex, but possibly contains intersectionpoints. This stage may be achieved for instance by sorting all endpoints by increasingabscissa, then by scanning the resulting sorted list V of vertices while maintaining theset S of active segments: if vj = (xj; yj) is the left (respectively the right) vertex of thesegment sj, insert sj in S (respectively remove sj from S) so that S is still the set of

2nd Real Numbers and Computers Marseille 1996the active segments in the interval]xj; xj+1[. It is also possible to use some bucket-sortscheme instead.Let S be the set of the active segments in the current span]x0; x1[. Let S0 (respectivelyS1) be the result of sorting S by increasing ordinate in x = x0 (respectively in x = x1). IfS0 equals S1 we are done and we study the next span, otherwise let i be the lowest indexsuch that S0[i] 6= S1[i]. Then these two segments S0[i] and S1[i] cut each other somewherein [x0; x1], say in (xi; yi). In such a case, recursively study the span]x0; bxic[and]dxie; x1[.At the end, either there is no intersection points inside the span, or x0 = x1.Though correct, this method in�nitely loops because of inaccuracy, or at least it loopsuntil the stack is �lled up by recursive calls: It happens that the computed intersec-tion point has fp abscissa xi outside the interval [x0; x1], say between x1 and x1 + 1 (ofcourse, this situation is absurd and cannot occur without inaccuracy). Thus the procedurespan(x0; x1) recursively calls span(x0; x1) : : :: an in�nite loop.This problem is trivially solved: when xi is greater than x1, cut [x0; x1] into [x0; x1 � 1].Symmetrically when xi is lower than x0. It is worth noting that the reliability againstinaccuracy of programs from Computer Graphics is much more easily achieved than forthe ones from Computational Geometry.2.3 Consequences on a Bentley and Ottman's algorithmThis section details the consequences of inaccuracy on a classical and representativealgorithm from Computational Geometry, the Bentley and Ottman's method.2.3.1 Bentley and Ottman's algorithm
Figure 2: The situations where two segments become contiguous along the sweeping line.The vertical dotted line represents the sweeping line, the arrows show the couple of con-tiguous segments.In a nutshell, this algorithm computes all the k intersection points between n segmentsin the plane, in time O((n + k) log n). For sake of simplicity, this exposition will ignoredegeneracies: intersection points common to more than two segments, vertical segments,

2nd Real Numbers and Computers Marseille 1996intersection points confused with initial vertices, and so on. The principle is to sweep theplane by a vertical line from left to right, ie initial vertices are swept in lexicographic order,and to maintain the set of the segments crossing the sweeping line, ordered upwards. Themethod exploits the two following remarks: �rst, the order of the segments crossing thesweeping line obviously depends on the abscissa of the latter, but it changes only locallywhen passing an initial vertex or an intersection point: local changes are insertion ordeletion of a segment when passing a vertex, or permutation of two intersecting segmentswhen passing an intersection point. Secondly, two segments can cross each others onlyafter they have been contiguous along the sweeping line (ignoring degeneracies): thus, ifeach time two segments become contiguous along the sweeping line the algorithm checkstheir possible intersection, then all intersection points will be found. The three situationswhere two segments become contiguous along the vertical sweeping line are shown in Fig.2: when a vertex is the beginning (ie the left vertex) of one or several segments; whena vertex is the end (ie the right vertex) of one or several segments, or when a vertex issimultaneously an end and a beginning, for instance an intersection point.The algorithm is as follows. SetX to all initial vertices: X is ordered by the lexicographicorder. Let Y be the set of segments crossing the current sweeping line. Y is orderedupwards. X and Y may be represented by balanced trees. Initially Y is empty. WhileX is not empty do: Let p be the �rst point of X, and remove p from X. Let b and abe the segment just below and just above e. If there are some segments with p as rightendpoint, remove them from Y . If p is the left vertex of some segments s1 : : : st (orderedby increasing slope), insert them in Y , then compare b with s1 and a with st, since band s1 on one hand and a and st on the other hand become contiguous in Y . Otherwise,when there are no segments with left vertex p, a and b become contiguous in Y and thusare compared. Each time a new intersection point is found, insert it in X and cut thecorresponding segments.2.3.2 A special con�guration BD xy CAFigure 3: A special con�guration of two segments.M. Gangnet communicated me the con�guration of segments in Fig. 3 in 1983. Assumefor convenience that a fp-arithmetic with base 10 is used, with 4 signi�cative digits. Ais the origin, B has coordinates (10:; 1:), C has coordinates (1:; 0:) and last, D hascoordinates (1: + u; 10:). We will see that for u 2] � 0:1; +0:1[, ie for all points Du

2nd Real Numbers and Computers Marseille 1996in the open segment](0:9; 10:); (1:1; 10:)[, all fp intersection points I�u = (AB \ CDu)�have coordinates I0 = I�0 = (1:; 0:1): the coe�cients triple for line AB is (1; 10; 0),the one of CDu is (10; �u; �10), thus �x = �x� = �100, �y = �y� = 10, but� = �(100 + u) is represented in the best case by the fp value �� = 100: for all u inthe open interval] � 0:1; +0:1[(remember we only have 4 digits: due to cancelation,100:0 + (u = 0:07) = 100:0 !).As a �rst consequence, if a con�guration contains segments say CD�0:099, CD0, CD0:099on one hand and AB on the other hand, the fp arithmetic cannot represent it in aconsistant way { and no matter the algorithm used to compute the intersection points:points I�0:099, I0 and I0:099 have the same fp coordinates, whereas CI�0:099 � CD�0:099,CI0 � CD0, CI0:099 � CD0:099 are di�erent segments.Of course, this fp arithmetic may seem unrealistic, it has been chosen only to simplify thestatement. It is possible to �nd similar con�gurations for all fp arithmetic, no matter theused base and the length of the mantissa. We now follow the behaviour of the Bentley-Ottman's method on such a con�guration.2.3.3 ConsequencesConsider the con�guration of two segments AB and DuC, with u < 0 and u in theinconsistant interval, say u = �0:05. From now on, we just use D for Du and I for Iu.To compute if the point I� = (AB \ CD)� = (1:; 0:1) belongs to the segment DC, twotests are possible.First, I� 2 CD i� D �L I �L C: with this test (mathematically correct when there isno inaccuracy), I� does not belong to CD. A �rst mistake: the intersection point I� isforgotten.A second test, mathematically equivalent to the �rst one when there is no inaccuracy, is:I� 2 CD i� xD � xI � xC and yC � yI � yD, taking into account that DC has a negativeslope. Here this test will correctly conclude that I� belongs to CD, in contradiction withthe previous and theoretically equivalent test. Note it is possible to �nd other exampleswhere this last test fails.� If I� is forgotten. Suppose �rst that the �rst test is used, or any test such that I�is forgotten. Thus when the sweeping line passes C, the program believes that (or inless anthropomorphic words, the data structure Y stores that) AB is below CD, whichis wrong. Since C is the right endpoint of DC, the program has to remove DC from Y .When Y is the only data structure accessing segments, as it is the case in the originalBentley and Ottman's paper, a classic binary search through Y is needed to �nd DC inY , starting from the Y root. We can suppose that the left (respectively the right) subtreestores the segments below (respectively above) the one of the root. Here the programwrongly believes that AB is below DC in C, thus for instance the root carries segmentAB, and its right son carries segmentDC. To �nd DC, the program compares the heightof the searched DC segment and the one of the root segment AB, ie it computes andcompares the ordinate of the point DC \ fx = xCg and the one of AB \ fx = xCg.

2nd Real Numbers and Computers Marseille 1996The heights are 0: for DC and 0:1 for AB: thus DC is below AC in C, which is right,but contradictory with the wrong informations stored in the data structure. Thus theprogram searches DC in the left subtree of Y , and it cannot �nd it since it is in theright one. This situation is theoretically impossible and a fatal failure occurs, like sayNil pointer dereferenced.� If I� is not forgotten. Suppose now that the second test is used, or any test suchthat I� is found, when the sweeping line passes D. So DC is cut into DI� and I�C, ABinto AI� and I�B. I� is then inserted in X. Theoretically I < C but for the program:C = C� < I�. Thus I� is inserted in X just after C = C�. Thus the next point to beswept is C. Here, the program has to remove the segment I�C from Y (since C is nowthe right endpoint of I�C). But this segment has not yet been inserted in Y . Again, afatal error occurs.A possible solution is explained in section 3.4.1.It is worth comparing the behaviour of the na��ve method in O(n2) which compares allcouples of segments, and the one of Bentley and Ottman's method. Obviously, the na��vemethod is slower (at least when the number of intersection points k is less than O(n2)), butit never crashes; it can provide some wrong results, but the latters are not propagated,contrarily to Bentley and Ottman's method. The na��ve method is much more robustagainst inaccuracy.2.4 Consequences on a topological methodIn 2D let P be a set of vertices and S 2 P � P a set of non crossing segments, ie twodistinct segments can only cut each other at a known common vertex belonging to P .For instance some method has been used to compute all intersection points between aninitail set of intersecting segments.Thus S and P de�ne what is called a planar map: a combinatorial structure made ofvertices, segments and faces, and supporting various topologic relations of incidency,contiguity or inclusion. Some applications (say Geographic Information Systems) needdata structures for modelling such planar maps.An important notion is the one of half-edges. A segment is made of two half-edges,the left and the right. The left half-edge (respectively the right one) contains the leftvertex (respectively the right one) of the segment, or in more general words its smaller(respectively its greater) vertex for the lexicographic order. Thus if the segment is vertical,the left (respectively the right) half-edge is the below (respectively the above) one. Thetwo half-edges of the same segment are said to be complementary of each other.Moreover each half-edge e having vertex say v is linked with its neighbour: it is an half-edge also incident to v, the �rst one which is met when turning counterclockwise aroundv and starting from e. In this way all half-edges sharing the same vertex v are cyclicallylinked around v, in the counterclockwise orientation. It is obvious that starting from

2nd Real Numbers and Computers Marseille 1996any initial half-edge, and following the neighbour link will always yield to the startinghalf-edge: : :when the planar map is correct.This neighbour link makes also possible to follow face contours: Starting from any half-edge e1, take the complementary of its neighbour to get e2, and then start again from e2to get e3, and so on until the initial half-edge is reached: this way all half-edges e1, e2 : : :e1 of the same contour are listed. Here again, starting from any half-edge, this travel willalways yield to the initial half-edge: : :when the planar map is correct.1 2345 67Figure 4: A vertex has been forgotten: due to an inconsistent topology, following thecontours will lead to troubles. Here only one contour will be found, which contains allhalf-edges: : : : (14), (21), (32), (43), (74), (67), (56), (45), (34), (23), (12), (41), (54),(65), (76), (47), (14) : : :, where (ij) is the half-edge containing the vertex i. Of coursethe right planar map has one outer contour and three inner ones.Now, these two properties cannot be guaranteed when the planar map is wrong, forinstance when some intersection points have been forgotten (see Fig. 4), or when half-edges incident in the same vertex are too close to be correctly ordered by the neighbourlink when using a fp-arithmetic. In fact, the dual methods of following a contour and ofturning around a vertex until the starting half-edge is reached, may enter in an in�niteloop, because never yielding to the initial half-edge (for instance with a half-edge sequencelike: e1, e2, e3, e4, e5, e6, e3 : : :). The method may also terminate, but provide inconsistantcontours, for instance self intersecting ones (see Fig. 4), which will give troubles to say acolouring method, or a method locating points in the planar map.2.5 Other examples of contradictionsThe methods proposed in the Computational Geometry �eld are theoretically fast becausethey exploit properties of consistent geometric objects, like properties of total orders,algebraic identities, geometric theorems. Maybe the simplest example is the use of thetransitivity of the total orders: if it is known that a < b and b < c, then it is deducedthat a < c without comparing a and c. This property is the basis of the binary searchtechnique used in Bentley and Ottman's method to handle the X and Y data structures.We have seen how inaccuracy ravages this kind of method.

2nd Real Numbers and Computers Marseille 1996Basically, inaccuracy invalidates geometric and mathematical properties. This sectionnow gives several examples of such properties, often used by geometric algorithms, butruined by inaccuracy. It would be too lengthy to detail the consequences on geometricalgorithms relying on such property, but they would now be obvious after the previousexamples.2.5.1 Example 1The power of a point M = (x; y) relatively to a line D with triple (�; �;
) is �x+�y+
.Suppose that A belongs to the line D, because for instance A has been de�ned as theintersection point between D and another line. Theoretically, this power must be 0.Using fp-arithmetic, it is unlikely to be true. So a data structure can store topologicalinformations, like A 2 D, that will be contradicted by numerical computations.2.5.2 Example 2 d' m' hmh'd d mm' hd'h'Figure 5: The two possible lexicographic orders, in the generic case.Consider the three lines of �gure number 5. h is nearly horizontal,m climbs and has slopeabout 45 degrees, d goes down and has slope about �45 degrees. Let the three intersectionpoints be h0 = d\m, m0 = d\h, d0 = m\h. If we exclude the degenerate case where allintersection points coincide, then there are only two possible lexicographic orderings forthem, either d0 <L h0 <L m0 or m0 <L h0 <L d0; in the two cases, h0 is between m0 and d0.Now, if the triangle is small enough, the coordinates of the three points will di�er onlyby their least signi�cant bits, that will be likely corrupted by rounding; so fp-arithmeticwill sometimes produce non consistent triangles, impossible to draw.2.5.3 Example 3The intersection point between a vertical line AB and an oblique one is a point
 withthe same abscissa as A, and B. But the evaluation of the previous formula with fp-arithmetic will the more often give a slightly di�erent point
�, such that either xA < x
�or x
� < xA. Actually this also holds for `almost vertical' line or segment, as previouslyseen.This means that relying on the property :
 2 [A;B], A <L
 <L B (to test if
 reallybelongs to the segment, not only the straigth line) is doomed to failure.

2nd Real Numbers and Computers Marseille 19962.5.4 Example 4If � and �0 are both di�erent from zero, the three following de�nitions for y
 are alge-braically equivalent:�0
 � �
 0�� 0 � �0� ; ��x
 +
� and � �0x
 +
0� 0 :but evaluated with fp-arithmetic, they will generally yield di�erent results. This is quite aserious problem, as programmers frequently rely on such identities to detect the equalitybetween two objects constructed in two di�erent and legal ways.2.5.5 Example 5In the projective plane, if three distinct points P1; P3, and P5 are collinear, and if the threedistinct points P2; P4, and P6 are also collinear, so are the three points P1P2\P4P5, P2P3\P5P6, and P3P4 \P6P1 after Pappus's theorem. Numerical inaccuracy likely prevents thedetection of this property. Actually the same holds for all geometric theorems !2.5.6 The combinatory underlying geometryThis section intends to give an intuitive insight on the combinatoric properties underlyinggeometric objects. The simplest example is perhaps the one of N points in the plane.For each triple (A;B;C) of distinct points, we de�ne jABCj to be:jABCj = sign(������� 1 1 1xA xB xCyA yB yC �������)the determinant is twice the signed area of triangle ABC. As well known, either ABCturns on the left and jABCj = +1, or ABC turns on the right and jABCj = �1, or ABCare collinear and jABCj = 0.There are 3(N3) ways to assign signs for all �N3� triples. But of course very few of themare geometrically possible: triples signs are not independant. For instance they mustverify jABCj = jBCAj = jCABj, and jABCj = �jBACj. Other less obvious rules are:jABCj = jBCDj = jCDAj = jDABj) jABDj = jBCAj = jCDBj = jABCj (hint:ABCD is convex), and jABP j = jBCP j = jCAP j) jABCj = jABP j (hint: P is insidethe triangle ABC). See [Knu92] for details.Of course, when the N points are given by their coordinates, it may happen that com-puting all jABCj with fp-arithmetic yield inconsistent signs.2.6 Consequences of inaccuracyTo conclude this section about consequences of inaccuracy, inconsistent decisions fromnumerical imprecision have two kinds of consequences on geometric algorithms.

2nd Real Numbers and Computers Marseille 1996Either the algorithm crashes or enters in an in�nite loop. It is typically the case forthe most sophisticated and e�cient methods proposed by Computational Geometry, thatrely on various geometrical or mathematical properties, like the transitivity of orders,algebraic identities or theorems : : : and that propage (sometimes corrupted) intermediateresults, for instance: a < b and b < c) a < c. These methods enter in theoreticallyimpossible situations: trying to delete an element which has not yet been inserted fromsome data structure, or ending up in an in�nite loop while scanning a theoretically �nitesequence.Or the algorithm terminates normally; it is generally the case for `brute-force' algorithms,too much stupid to exploit intermediate results and geometric consistency. However thesealgorithms yield inconsistent results, for instance a graph supposed to be planar will notbe (see example in �gure 4). Another algorithm, though mathematically correct andtaking this result as its input, may crash or in�nitely loop or provide inconsistent resultsin turn.Practitioners (programmers or users of geometric modellers) were aware of the inaccu-racy di�culties since the �rst geometric modellers, in the seventies; to overcome them,programmers and users have developped empirical tricks, described below. These tricksdo not always work; however, people in the CADCAM communauty put up rather will-ingly with these limitations : �rst engineers are used with the limitations of the various`physical' devices they use, and then they consider that, anyhow, it is impossible to dootherwise.Thus actual commercial geometric modellers can not work without the active complicityand understanding of their users, who have learned to avoid the easiest traps, and whoaccept to slightly modify their problems until their geometric modeller works: : : In theCADCAM �eld, this is called the robustness problem.Among theorists of Computational Geometry, the awareness of the inaccuracy problem ismuch more recent, say the late eighties, with Milenkovic's work [Mil88]: ComputationalGeometry assumes a theoretic model for computers, where each arithmetical operationis performed exactly in constant time and space. When known, the inaccuracy problemwas not considered as worthy of research, it was just a concern of programming. Thisis probably the reason why there is up to now no available library solving problems ofComputational Geometry.3 Fighting against inaccuracyThis section surveys proposed approches to solve or bypass the inaccuracy problem.

2nd Real Numbers and Computers Marseille 19963.1 The � heurism and other probabilistic approachs3.1.1 The popular � heurismTo overcome inaccuracy, the most popular trick used in geometric modellers is the �heurism. When two fp-numbers di�er by less than a given threshold traditionally called�, they are considered to be the same. The test may be made in an absolute manner :ja� bj < �, or in a relative one : ja � bj < ��max(jaj; jbj). Some modellers use several�, say one for lengths, another for areas, another for angles.This heurism lost the transitivity of the equality : it is easy to �nd a, b and c such thata =� b, b =� c, but a 6=� c where =� means `equal for the � heurism': thus inconsistenciesremain possible.Moreover, �nding the relevant value(s) for �(s) is a very di�cult task, depending on theusual range of numbers (it depends on the applications), and on the format of used fp-numbers : it is common folklore in the CADCAM communauty that the conversion from32-bits fp-numbers to 64-bits has needed a not so easy updating of �s. Of course the �heurism may fail, and it does sometimes. In practice, it seems to work not so bad andto improve the robustness of the geometric modellers, but it is also due to the activecomplicity of their users!3.1.2 Gap arithmeticsThe � heurism is based on a right intuition, following Canny's gap theorem [Can88]:Canny's gap theorem : Let x1, x2 : : : xn be the solutions of an algebraic system of nequations and n unknowns, having a �nite number of solutions, with maximal total degreed, with relative integers coe�cient smaller or equal to M in absolute value. Then, for alli 2 [1; n], either xi = 0 or jxij > �c where�c = 1(3Md)ndnThis theorem gives a way to numerically prove that a number is null : compute a (guar-anteed) interval containing it, with width smaller than �c. As soon as the interval doesnot contain 0, the number is clearly not 0 and its sign is known. Otherwise, if the intervalcontains 0 and has width less than �c, the number can only be 0.Alas, there are several problems. First �c is much, much smaller than the epsilon usedin geometric modellers; actually �c is generally much smaller than the smallest positivefp-number, even in simple examples. So, an extended arithmetic providing big
oats isneeded. Secondly, even if such an arithmetic is available, such a computational schemewill have an exponential cost : an exponential number of digits is needed to prove thenullity of a number, because of the term ndn in Canny's theorem. Now, there is no hopeto signi�cantly improve the Canny's gap in the worst case, because it is already sharp;it is almost reached in the following simple case : x1(Mx1 � 1) = 0, Mx2 � x21 = 0

2nd Real Numbers and Computers Marseille 1996: : :Mxn � x2n�1 = 0. A possibility will be to �nd a more convenient � depending on thesystem at hand, and not only on d, M and n. I am currently not aware of people usingthis kind of techniques.A variant of this gap arithmetic is possible in the rational case, ie when only rationalnumbers and operations are used. The idea is to maintain for each met number x anupper bound of the number of digits of its denominator: d(x), and another bound forthe number of digits of its numerator: n(x), for a given base, say B = 2. These upperbounds are known for the input numbers, and they are computed as follow for x+ y, xy,1=x and �x, without explicitly computing the exact rational form:n(x+ y) = 1 +max(n(x) + d(y), n(y) + d(x)), d(x+ y) = d(x) + d(y)n(x� y) = n(x) + n(y), d(x� y) = d(x) + d(y)n(1=x) = d(x), d(1=x) = n(x)n(�x) = n(x), d(�x) = d(x)Now, to know if a number x vanishes, it is enough to compute a good enough approxi-mation x� of x, by using some on-line big
oat library: the smallest (in absolute value)non-zero rational number, having denominator with at most d(x) digits in base B, is��x with �x = 1Bd(x)�1 . Thus x vanishes i� x 2] � �x; �x[, or more conveniently whenx 2 [�B�d(x); B�d(x)]. When a number appears to be 0, its �elds n and d, and the onesof its dependent numbers may be strengthened on the
y.The previous scheme may be extended for other �elds than Q, for instance quadraticalgebraic extensions Q[pa], where a > 0 is not a square in Q. The main idea is to maintainan upper bound of the size of an exact and virtual representation, virtual meaning thatthis exact representation is never computed. From this bound for any number z, itmust be possible to e�ectively deduce a gap �z such that z 2] � �z; �z[) z = 0. In theprevious example Q[pa], the smallest non vanishing number z = x + ypa, x; y 2 Q,with an upper bound on the size of x and y, is such that �xy is a convergent to pain the continued fraction expansion of pa, and the classic theory of continued fractionexpansions of quadratic numbers [Bak84] provides an explicit �z gap.3.1.3 Other heurismsAnother more practicable but only probabilistic method is to compute with some big
oats library, and to use the � heurism, with say 10�200, and hope that life will not be sobad to provide a counterexample: : : Some people currently investigate such an approach,but I don't know any publication.Another probabilistic trick stems from modular arithmetic. The idea is to perform allcomputations modulo one (or several) �nite �eld Fn (for instanceZ=nZwhere n is a primeinteger, about say 2 � 109). Clearly, if a mod Fn does not vanish, a cannot be 0, evenwhen a� is very small: we have to precise a� in some way to reliably �nd its sign, forinstance using some big
oat library or some on-line arithmetic. On the other hand, if a�

2nd Real Numbers and Computers Marseille 1996is small, and if amod Fn vanishes, one can take the risk to assume a = 0. This schemeis straightforward to implement when only rational operations (+; �; �; :) and numbersare used, because each rational number has only one homomorphic element in the �nite�eld. The only di�culty arises when a division by 0 occurs in the �nite �eld, which is veryunlikely. Such a scheme has been investigated by A. Agrawal and A. Requicha [AA94],and by M. Benouamer and his colleagues [BJMM94] (see below section 3.4.3 about hashcoding lazy numbers). However this approach becomes more problematic when algebraicnon rational operations and numbers are involved: for instance each quadratic numberhave two homomorphic images in the �nite �eld (or in its cloture) and it is impossibleto discriminate them, for example to distinguish a positive and a negative square root inFn. Thus to know if an algebraic number vanishes, all its homomorphic images in Fn orits cloture must be tested. As far as I know, this scheme has never be investigated in thealgebraic non rational case, for geometric computations.3.2 Careful programmingSome computer scientists prefer to avoid the � heurism and have settled a set of tricks,say :� Check �rst in the data structures before computing; for instance, before computing thepower of a vertex relatively to some line, verify �rst if the line is topologically incidentto the vertex from the data structures at hand. This avoid the inconsistency 2.5.1.� Handle in a special way some particular cases, for instance the intersection point be-tween a vertical line and an oblique one : in this case, assign the abscissa with the abscissaof the vertical line, not with the expression �x=�. This avoid the inconsistency 2.5.3.� Do not use several distinct formulas for the same value (though it seems to contradictthe previous rule: : :). This avoid the inconsistency 2.5.4.� The computation of ab \ cd, ab \ dc, ba \ cd, ba \ dc (they are, say, segments in 2D)generally give slightly di�erent results. Before computing an intersection, it is worthsystematically orienting segments at hand, so that a <L b and c <L d and so on, byexchanging vertices, so that we will indeed have : ab \ cd = ab \ dc = ba \ cd = ba \ dc.M. Iri and K. Sugihara [IS89] used this kind of approach for computing Vorono��'s dia-grams. They ensure that their program will never crash because of inaccuracy, that theresulting graph is correct when there is no numerical di�culty, and otherwise that thegraph is connected with all vertices having degree 3, like a correct Vorono��'s diagram.It is impressive, but there is no guaranty that another program, mathematically correct,and using this Vorono��'s diagram as an input, will not crash !To conclude, all these stratagems are sometimes clever but they can only avoid the moreobvious inconsistencies. But avoiding more convoluted ones (for instance the non respectof Pappus's theorem, see 2.5.5) seems an impossible task: the next section explains why.

2nd Real Numbers and Computers Marseille 19963.3 Respecting Consistency: the QuestThe aim of careful programming, of Iri and Sugihara's work [IS89], and of some V.Milenkovic's work [Mil88], can be paraphrased as:In Numerical Analysis, it is possible to �nd an approximation of the solution of theproblem at hand which is the exact solution of another but close problem of the samekind. It is even possible to measure in some way these distances. We would like to dothe same in geometric algorithms, ie to �nd an approximation of the solution that is theexact solution of another close problem.It means that, at least, the found solution must be `geometrically realizable'. To take anexample, let us turn back to the problem in section 2.5.6: let P1; P2 : : : Pn be n points inthe plane. We want to compute with fp-arithmetic any of the jABCj; we accept that sometriple-sign to be wrong (relatively to exact arithmetic), but we want to get a consistentsigns set, which is the signs set of another set of points Q1; Q2 : : :Qn, close to P1; P2 : : : Pn.This algorithm will be something like this: all triple signs ABC (yes, there are O(n3)such triples, but here our problem is not to obtain an e�cient algorithm, but a robustone!) are computed straigthforwardly with fp-arithmetic, by the devoted formula, andwith an error bound. The value of the majority of signs will be clearly positive, or clearlynegative. For remaining ambiguous signs, we want to resort to some oracle who will giveus a set of missing signs that is geometrically realizable.The question now becomes: is it possible to decide if a partial signs system implies suchother missing sign, or equivalently, if a given sign system is consistent (geometricallyrealizable) or not?This problem is not only a `toy problem', because a lot of methods (convex hull com-putations, intersection between polygons, for example) proposed by Computational Ge-ometry in 2D can be reformulated so that they will only use triple-sign in geometrictests. For instance, two segments pq and rs intersect each others (with no degeneracy)i� jpqrj � jpqsj = �1 and jrspj � jrsqj = �1. Thus, for applications where all geometrictests can be reformulated only with triple-sign test, the robustness problem will be the-oretically solved. It is worth remarking that this approach can be extended to 3D andbeyond.The combinatoric properties of the sign systems of triples of points in 2D have beenstudied. They are partly characterized, notably by D. Knuth's CC (CounterClockwise)axioms (see Fig. 6), or equivalently by uniform acyclic oriented matroids of rank 3: see[Knu92] for details. Though illuminating, this axiomatic system and the correspondingcombinatorial structure are too poor to capture all properties of the `true' geometry: forinstance, Pappus's theorem is not a consequence of Knuth's axioms, and one can �ndsome sign systems that though verifying Knuth's axioms are not geometrically realizable.Up to now a complete combinatoric characterization is not known, and perhaps there canbe no �nite set of purely combinatoric axioms (in Knuth's style, ie not using continuity,or coordinalization by some continuous �elds like C or R and so on) that characterizes

2nd Real Numbers and Computers Marseille 1996Axiom 1 (cyclic symmetry). pqr) qrpAxiom 2 (antisymmetry). pqr) :prqAxiom 3 (nondegeneracy). pqr _ prqAxiom 4 (interiority). tqr ^ ptr ^ pqt) pqrAxiom 5 (transitivity). tsp ^ tsq ^ tsr ^ tpq ^ tqr) tprFigure 6: The �ve Knuth's axioms, to explore the combinatoric properties of the genericsign systems of triple of points. pqr means: jpqrj = 1 and :pqr means jpqrj = �1.geometrically realizable systems: see [Knu92] pp 96 for more. Another very bad new isthat the decision problem (is this given set of triple-signs consistent?) for Knuth's signsystems is NP-complete.Actually, it seems that the problem is even more complicated. D. Knuth only consid-ers generic situations, where the triples have sign +1 or �1, but never 0. Now somedegenerate con�gurations are realizable in some �elds (say the algebraic real �eld) butnot in others, like Q. Such a con�guration is given in B. Gr�unbaum's book [Gr�u67] andillustrated in Fig. 7: Place nine points A, B, C, D, E, F , G, H, I so that the followingsubsets of points, and only these subsets, are colinear: ABEF , ADG, AHI, BCH, BGI,CFI, DEI, DFH, and obviously of couples of points. There are 2 solutions, needingregular pentagons, thus this con�guration is not realizable in Q2, but it is in R2, actuallyin Q[p5]2. A(F) E(A) F(B) B(E)G(D) I(I) H(C)C(G) D(H)Figure 7: This above con�guration is not realizable in Q2, but it is in R2.In conclusion, the approach of `Computing with fp-arithmetic but respecting geometricconsistency' is not so easy to achieve.3.4 Exact arithmeticsAn obvious solution against inaccuracy is the use an exact arithmetic. Alas, even whenan exact arithmetic on big integers or big rational is su�cient, a straigthforward imple-mentation is much too slow. From an experiment of M. Karasick, D. Lieber and L.R.Nackmann [KLN91], the Vorono��'s triangulation of 10 random points in 2D needed 0.1

2nd Real Numbers and Computers Marseille 1996second; that of 10 random points with rational coordinates (2 digits for the numerator,3 for the denominator, with radix 216) needed 1200 seconds with a standard rationallibrary and generated intermediate values up to 81 digits long. Of course computers arenow faster, but the order of magnitude of the ratio between the two running times is stillcorrect. It is easy to understand why exact arithmetic are so seldom used in geometricmodellers.In some cases, the machine numbers are su�cient to achieve exact computations, withsome tricks. Section 3.4.1 presents this fast but limited solution.When this solution does not apply, one can envisage to exploit the fact that the fp-arithmetic (or some interval arithmetic to have an upper bound of errors) is very oftensu�cient to decide the sign of an expression, and to use an exact arithmetic only whenthe fp-arithmetic is not reliable. In practice, this idea is implemented in several way,this paper only presents the LN library due to S. Fortune and C. Van Wyk [FVW93]in section 3.4.2, and the lazy exact arithmetic due to M. O. Benouamer, P. Jaillon, J-M. Moreau and the author [BJMM93, MM96] in section 3.4.3. Due to lack of space,other approaches in the same tendency cannot be detailed but are worth mentionning:[OTC87, KLN91, Yam87, GT91, NSTY93].3.4.1 The poor man's exact arithmeticIn some restricted cases, it is possible to use an exact arithmetic which is as fast as thefp one. This section describes the various tricks I have used in 1982{1983 to implementsuch an arithmetic, for a 2D graphic editor [GM84, Mic87, GHPT89]: Probably otherpeople confronted with inaccuracy problems have used similar tricks at this time, butvery few of them were published {if any{ because the latters were considered shameful inthe Computational Geometry �eld and inaccuracy was not considered as a relevant issueat this time.The 2D graphic editor used the Bentley and Ottman's method to compute the intersectionpoints between the data segments. First the coordinates of the initial vertices wererounded on integers in the range 0 to G = 30; 000: it was not a trouble for the application.Thus the straight lines equations could also be stored in 3 int (machine integer): (�; �;
)such that j�j � G, j�j � G and j
j � 2G2, a trivial consequence of formula 1 in section2.1. The intersection points between segments (x = �x� ; y = �y�) could be represented(assuming w.l.o.g. that � > 0) by an int tuple (xe = b�x� c; xr = �x mod �; ye =b�y� c; yr = �y mod �;�): it is easy to see that 0 � xe; ye � G, and that 0 � xr; yr <� � 2G2. Some temporarily needed values, such �x or �y, could exceed the maximumint value, but these computations were exactly performed using double numbers. A �naltrick was used to compare and sort these coordinates: the comparision of the two rationalnumbers ab and cd , with 0 � a < b and 0 � c < d, cannot reduce to the comparision of acand bd, since in some cases, these values were too large to be exactly represented by int,or even by the mantissa of double numbers. Using a simultaneous continuous fraction

2nd Real Numbers and Computers Marseille 1996expansion of ab and cd , it is possible to say that ([Mic87] pp 38):order(ab ; cd) = order(dc ; ba) = order(bdc c+ dmod cc ; b bac+ bmod aa)If bdc c 6= b bac, then: order(ab ; cd) = order(bdc c; b bac)otherwise: order(ab ; cd) = order(dmod cc ; bmod aa)Since c < d and a < b, the recursion eventually terminates. For instance,order(27 ; 310) = order(103 ; 72) = order(3 + 13 ; 3 + 12) = order(13 ; 12)= order(21 ; 31) = order(2 + 01 ; 3 + 01) = order(2; 3) = smallerRemark: Obviously, the same trick can be used to compute the sign of the determinant����� a cb d �����: this idea has since be used and extended to 3 by 3 determinants with integerentries [ABD+95] by F. Avnaim, J-D. Boissonnat, O. Devillers, F.P. Preparata and M.Yvinec.Despite its interests, the limitations of such tricks are obvious. It cannot work in 3D orbeyond because the computation depth increases, so involved numbers become too big tobe exactly representable by machine numbers. For the same reason, algorithms cannotbe reentrant.3.4.2 The LN libraryS. Fortune and C. van Wyk proceed in two stages: First the program is pre-compiledand the minimum number of digits needed for the exact arithmetic (the longest integergenerated by the algorithm, knowing the data range and the arithmetic expressions inthe program) is determined. For each test in the program, they automatically generateC++ code:1. to compute the test in standard fp-arithmetic, using references to original data only;2. to test if the fp-value is greater than the maximumpossible error for the expression;3. �nally, to call the exact, long integer library to evaluate the expression.The program is then compiled and linked with the exact library. Note that every testmust be made with reference to original data. This permits a static (ie before running-time) computation of the maximum possible error for each expression when evaluated in

2nd Real Numbers and Computers Marseille 1996fp-arithmetic; so the error bound has not to be computed at run time with intervals orwhatever method. It speeds up execution, but it is not always very convenient for theuser [CM93]; it forbids on-line and reentrant algorithms, where the depth of computationis not a priori known.3.4.3 The lazy arithmeticThe lazy arithmetic computes with lazy rational numbers. A lazy rational number is�rst represented by an interval of two fp-numbers, guaranteed to bracket the rationalnumber, be it known (exactly evaluated) or not; and then by a symbolic de�nition, topermit recovering the exact value of the underlying rational number, if needed. Thede�nition is either a standard representation of a rational number (for example 2 arraysor lists of digits in some basis, for the numerator and the denominator), or the sum orthe product of two other lazy numbers, or the reciprocal or the opposite of another lazynumber. Thus each lazy number is the root of a tree, whose nodes are binary (sum orproduct) or unary (opposite or reciprocal) operators, and whose leaves are usual rationalnumbers; actually, lazy numbers form a directed acyclic graph rather than a tree, sinceany node or leaf may be shared. Each operation is generally performed in constant timeand space : a new cell is allocated for the number, its interval is computed from theintervals of the operand(s), and the de�nition �eld is �lled (operation type, and pointersto the operand(s)). Intervals are the more often su�cient during computations; theonly cases when they become unsu�cient, and when the de�nition has to be `evaluated'(ie with rational arithmetic) are : when one wants to compare two lazy numbers theintervals of which overlap, when one wants the sign or the reciprocal of a lazy numberwhose interval contains 0. The evaluation method is the natural and recursive one. Tosummarize, rational computations are postponed until they become either unavoidable :they are done, or useless in the majority of the cases : thus they will never be done ifthey are useless. Using such a lazy library is transparent: classical geometric methodsneed not to be modi�ed.The lazy library also provides hashing of lazy numbers. Hashing techniques typically per-mit to recover topologic data from numerical ones, for instance vertices from coordinates.Obviously this technique needs to compute hash codes from numbers. Here we face adi�culty since the exact value of lazy numbers is unknown, and approximations are notrelevant for reliably computing hash keys. The solution stems from modular arithmetic[BJMM94, MM96].Contrarily to LN, the lazy library is fully dynamic and so equally applies to on-lineand reentrant algorithms : the computation depth needs not to be known a priori. Incompensation, LN when usable should be a little faster than the lazy library.3.4.4 Open problemsThese two arithmetics have serious limitations : they apply only when a rational arith-metic is su�cient; but geometric problems met in the real world involve for instance

2nd Real Numbers and Computers Marseille 1996intersection between algebraic curves or surfaces. Rotations by k� with k 2 Q also in-troduce algebraic numbers. Or lengths of some squares: : : it is an old story ! For themoment, no lazy algebraic arithmetic has been proposed.3.5 Interval Con�ningThe � heurism lost the transitivity of ordering (it is possible to have a =� b, b =� c anda 6=� c), so inconsistencies remain possible. In such a case, a solution is to abandon thedistinction between a, b and c, and to merge them into another larger entity, actually aninterval. Computations are performed with an interval arithmetic or another equivalentmethod providing error bounds; as soon as two entities overlap, they are merged in a thirdlarger entity that contains the two previous ones. One can remark that two close but nonoverlapping entities have to be merged when is introduced a third entity that overlap thetwo �rst ones: one may deplore this loss of information (the distinction between the �rsttwo entities is lost, whereas they are not modi�ed), but it is the spirit of this approach,the principle that ensures its consistency. The example of �gure 5 will become somethinglike �gure 8. This approach has been investigated by M. Segal [Seg90] and by D. Jacksond mhFigure 8: Three lines with their halos, incident to a fuzzy point (the circle).[Jac95] in solid modelling. In 3D, geometric elements (vertices, edges or arcs, surfaces)are surrounded by a thin halo of imprecision; two distinct and not adjacent elements musthave not overlapping halos. During say the computation of some boolean set operation(intersection or union or di�erence between two `solid' geometric objects), two elementsthe halos of which are found to overlap must be cut or merged to restore the consistencyof the data structures. In 1995, D. Jackson has implemented this way a robust algorithmto compute boolean set operations between 3D geometric objects with curved surfaces.The main advantages of this approach are that it applies not only to `linear' problemsbut also to algebraic ones, and that it does not rely on an exact arithmetic; so it isfast. Moreover, it is intuitive. Finally, it can handle in a natural way inaccurate data:either these data are obtained from some sensors and thus are known only up to someprecision, or on the other hand, the modelling stage has taken into account the fact thatmechanical objects can be manufactured only within some tolerance. Up to now, it is theonly approach that can represent fuzzy data.

2nd Real Numbers and Computers Marseille 1996Its drawbacks are that all algorithms must be modi�ed. Moreover it is also not clearfor the moment that this approach really solves the inaccuracy issue. For instance, thedistance between two geometric elements can be computed in several but algebraicallyequivalent ways; with a �rst formula, and in fp-arithmetic, one may �nd that two elementsdo not overlap, but they will with another formula: so contradictions remain possible.3.6 Bypassing the inaccuracy problem3.6.1 The CSG representationYou can always try to bypass problems you do not know how to solve: in the CADCAMcommunauty (by opposition to the more theoretician communauty of ComputationalGeometry), this tendency emerges since the conference CSG94 and CSG96 [csg94]: Itconsiders that algorithms or data structures that do not withstand inaccuracy are sayparanoiac and must be avoided. First, this tendency wants to get rid of methods fromComputational Geometry: to achieve a good complexity, these last methods rely ongeometric consistencies and are made muchmore sensitive to inaccuracy than `brute force'methods. Second, this tendancy rejects topology based data structures, like the BoundaryRepresentations (BRep for short). In a nutshell, BReps explicitly handles representationsfor vertices, edges and surface patches, and all the topologic incidency relations betweenthem; they are very explicit but their redundancy (does this vertex numerically lies onthis surface though it topologically does?) exposes them to inconsistencies. In particular,it is known that robustness is exceedingly di�cult to achieve when performing boolean setoperations between geometric objects represented by Breps. The new tendency prefersCSG representations.CSG representations (Constructive Solid Geometry) describe objects in only an implicitway, by CSG trees. A leaf of a CSG tree carries a primitive object, described by some(typically algebraic) inequation f(x; y; z) < 0, for instance a quadric or a torus. Anode is either the union or the intersection or the di�erence between other CSG trees.Mathematically speaking, a CSG is a semi algebraic set, modulo some regularizationproblems (is it f(x; y; z) < 0 or f(x; y; z) � 0 ?) which are not relevant here.Thus the contour of the object represented by a CSG tree is not explicitly described,and it is not obvious that a CSG tree does not describe only the empty set, contrarilyto BReps. But there exist very robust methods to display objects de�ned by CSG trees,say by ray-casting methods, and to approximately triangulate them by the so-calledmarching-methods. We brie
y present the principles of these techniques in the followingsections, to show they are insensitive to inaccuracy.For people standing up for the CSG approach, the latter solves all problems, not only theinaccuracy one, but also say di�culties met when blending surfaces with Breps. On theother hand, all commercial CADCAM softwares rely on BReps, and perhaps not only bychance ! It is too early to conclude.

2nd Real Numbers and Computers Marseille 19963.6.2 Ray-casting methodsPictures are described in Computer Graphics by 2D arrays of points, the so called `pixels',a shortcut for `picture element'. To compute such a picture of an object described by aCSG tree, the ray-casting method computes which object is seen in each pixel: the eyelocation and the point to be computed de�ne a half straight line: the ray, whose inter-section with the scene has to be computed. When the object is a primitive f(x; y; z) < 0,where f is typically a polynomial in x, y, z, this problem boils down to the resolution ofan algebraic equation in t: just replace x, y, z in f(x; y; z) = 0 by x = xe+at, y = ye+bt,z = ze+ ct, where (xe; ye; ze) is the eye location and (a; b; c) the support vector of the ray.The numeric resolution yields the intersection, a set of intervals [t0; t1], [t2; t3] : : :alongthe ray, where 0 � t0 � t1 � t2 � t3 : : :. When the object is a boolean combination,say A \B for instance, it su�ces to recursively compute the intersection of the ray withsubtrees A and B, which give two resulting sets of intervals A[] and B[], and then tocalculate A[] \B[]: a trivial merge.It is rather easy to protect this method against inaccuracy, since, if a di�culty occurs,it is always possible to cheat and slightly perturb the ray: after all, each pixel standsfor a little square area in the picture and not only a point! In the worst cases, someintersection intervals [ti; ti+1] between the ray and an object F (t) < 0 may be forgotten,or added, but this only occurs in two cases: �rst for exceedingly thin objects which onlyoccur when I decided to make fail the software (see Fig. 9) and secondly, when the rayis almost tangent to the surface of the object: this last situation often happens but it isimmaterial for the �nal picture. Moreover, even when such errors are made, they are notpropagated to the other pixels, and the program never crashes.
Figure 9: Two ray-traced ellipsoids, with radius 1, and thickness 10�5 for the left one,10�7 for the right one. The latter is so thin that some intersections are missed.3.6.3 Marching-methodsTo approximately triangulate objects de�ned by CSG trees within a given tolerance � (see[PA94] in [csg94]), the space R3 is �rst partitioned with a regular cubic lattice, with side�; each cube is then partitioned into tetrahedra; for all vertices v = (x; y; z) of the lattice,the value of the CSG tree at v is computed: for a primitive described by an inequationf(x; y; z) < 0, it is f(v); for nodes A \B and A [B, it is respectively max(A(v); B(v))and min(A(v); B(v)) where A(v) and B(v) recursively stand for the value of CSG trees A

2nd Real Numbers and Computers Marseille 1996and B at the point v. The surface of the object cut a given tetrahedron when the valuesat the 4 vertices have opposite signs. These 4 values de�ne, by linear interpolation, aunique linear map l(x; y; z) from R3 to R, and the plane l(x; y; z) = 0 is considered as agood enough approximation of the contour of the object inside the tetrahedron: it givesa triangle or a quadrilateral. The same is done for all tetrahedra. This technique isillustrated in 2D in Fig. 10.Marching-methods are not sensitive to inaccuracy: in the worst cases, a vertex value isclose to 0, and fp evaluations may yield a wrong sign for the value, but the only andimmaterial consequence will be to move a little the approximation surface.
Figure 10: A 2D curve and its piecewise linear approximation. The topology may be dif-ferent, and some small components of the real curve may be forgotten. But this techniqueis perfectly robust.Of course, it is better to use some optimizations to not consider all cells of the lattice,like some computation by intervals [dFS95, Tau93], or like exploiting the continuity: oncea starting tetrahedron crossed by the surface is known, the sides by which the contoursurface leaves the tetrahedron are easily computed and the contour surface is then followedin the neighbouring tetrahedron. These optimizations are beyond the scope of this paper,but the reliability of the marching-methods is preserved.Thus a BRep (and all its precious informations) can be obtained from a CSG tree, withouthaving to perform boolean set operations on BReps, a very unreliable process. But itis possible to go farther and to question the need for a BRep: why not stop at thediscretization stage?, as the next section argues.

2nd Real Numbers and Computers Marseille 19963.6.4 DiscretizationBoundary representations are basically used to approximately `evaluate' a CSG object.However they are not the only possible way, only the usual one, due to the history of theCADCAM �eld. Discretization is another solution: the space is represented by a 3D arrayof points, the so called `voxels', a shortcut for `volume element'. This discrete represen-tation makes trivial the most frequent geometric problems (estimating mass properties,interference detection, boolean operation, etc) and it virtually removes the inaccuracyproblem.Today, Computer Tomography and Magnetic Resonance Imaging make it possible toacquire such image data in 3D. On the other side, from such a voxel-based representation,Rapid Prototyping [SBE95] can produce real tactile plastic prototypes for manufacturers,chemists or biologists by `printing in 3D', using stereolithography: the stereolithographyapparatus builts the prototype slice by slice, by laying down a thin layer (between 0:1 and0:5 millimeters) of liquid resin on the previous slice, instantly curing it into solid plastic,and starting again. Moreover, at this level of precision, almost the molecular level, thevoxel-based representation is also the most precise one: this is in contrast with the notso old reluctancy of some theorists for this discrete representation, which they consideredas a trivial and very rough approximation of `exact' CSG models. Last, the voxel-basedrepresentation is always the simplest one, obviously.It is worth comparing the history of the representation of the space with the one ofpictures: In the beginning of Computer Graphics and CADCAM, more than twentyyears ago, pictures were usually not represented by discrete representations, ie 2D arraysof pixels, but by boundary representations, because discrete representations were toocumbersome at this time, and available devices only provide wire frame display, whichboundary representations were best suited for. The related algorithms, for removinghidden parts for instance, already had troubles with inaccuracy. Nowaday, pictures arerepresented by discrete representations, and everybody has forgotten these algorithmsand their inaccuracy problems. One can wonder if, similarly, the time is not comed fordiscrete representations of space to supplant boundary representations of solids, and toremove the inaccuracy problem in geometric computations?4 ConclusionThis paper has shown how crucial for geometric computations the inaccuracy issue is.Some examples has shown the speci�city of geometric computations, the fact that belowgeometry lay deeper combinatorial structures, the non respect of which lead to topologicalinconsistencies and running time crashs.This paper has surveyed the more typical proposed approaches to overcome the inaccu-racy problem: the arithmetical approach tries to improve the used arithmetic to savegeometric methods and also Computational Geometry itself from inaccuracy. On theother hand, the Computer Graphics and CADCAM communauties reject data structure

2nd Real Numbers and Computers Marseille 1996and algorithms considered not robust enough against inaccuracy, typically the boundaryrepresentations and theoretical algorithms from Computational Geometry. They arguethat simpler algorithms, like ray-tracing or marching-methods, and data structures, likeCSG trees, ray-representations or voxel-based representations, are insensitive to inaccu-racy and potentially solve all problems met by geometric modellers.It is sure that arithmetic issues are the current crucial challenge for the ComputationalGeometry �eld: as long as the inaccuracy problem will not be solved, ComputationalGeometry will not apply to problems in the real world, and its algorithms and datastructures will not be used.On the other hand, it is not sure that the approach advocated in the Computer Graphicsand CADCAM �elds de�nitively avoid the inaccuracy problem: maybe the latter is onlydefered for a moment, but will soon reappear.References[AA94] Agrawal A. and Requicha A.G. A paradigm for the robust design of algorithmsfor geometric modeling. Computer Graphics Forum (EUROGRAPHICS'94),13(3):C{33{C{44, 1994.[ABD+95] F. Avnaim, J-D. Boissonnat, O. Devillers, F.P. Preparata, and M. Yvinec.Evaluation of a new method to compute signs of determinants. In Proceedingsof the 11th Symposium on Compututational Geometry, pages C16{C17. ACMPress, 1995.[Bak84] A. Baker. A concise introduction to the theory of numbers. Cambridge Uni-versity Press, 1984.[BJMM93] M.O. Benouamer, P. Jaillon, D. Michelucci, and J-M. Moreau. A lazy arith-metic library. In Proceedings of the IEEE 11th Symposium on ComputerArithmetic, Windsor, Ontario, June 30-July 2, 1993.[BJMM94] M.O Benouamer, P. Jaillon, D. Michelucci, and J.M. Moreau. Hashing lazynumbers. Computing, 53(3{4):205{217, 1994.[Can88] J. Canny. The complexity of robot motion planning. M.I.T. Press, Cambridge,Mass., 1988.[CM93] J.D. Chang and V. Milenkovic. An experiment using ln for exact geometrycomputations. In Proceedings of the 5th Canadian Conference on Computa-tional Geometry, pages 67{72, Waterloo, Canada, August 5-9, 1993.[csg94] Set Theoretic Solid Modelling Techniques and Applications. Information Ge-ometers Ltd, 47 Stockers Avenue, Winchester, SO22 5LB, UK, 1994. Pro-ceedings of the CSG 94 Conference, Winchester, UK, 13-15 april 1994.

2nd Real Numbers and Computers Marseille 1996[dFS95] L.H. de Figueiredo and J. Stol�. Adaptive enumeration of implicit surfaceswith a�ne arithmetic. In Proceedings Eurographics Workshop on ImplicitSurfaces, pages 161{170. INRIA, 1995.[EC92] I. Emiris and J. Canny. An e�cient approach to removing geometric degen-eracies. In Proc. 8th ACM Symp. on Comp. Geometry, pages 74{82, Berlin,Germany, 1992.[EM90] H. Edelsbrunner and E.P. M�ucke. Simulation of simplicity: a technique tocope with degenerate cases in geometric algorithms. ACM Trans. Graph,9:66{104, 1990.[FVW93] S. Fortune and C. Van Wyk. E�cient exact arithmetic for computationalgeometry. In Proceedings of the 9th ACM Symposium on Computational Ge-ometry, pages 163{172, San Diego, May 1993.[GHPT89] M. Gangnet, J.C. Herv�e, T. Pudet, and J.M. Van Thong. Incrementalcomputation of planar maps. ACM Computer Graphics (SIGGRAPH 89),23(3):345{354, July 1989.[GM84] M. Gangnet and D. Michelucci. Un outil graphique interactif. In Proceedingsof MICAD 84, pages 95{110. Herm�es, Feb.-Mar 1984.[Gr�u67] B. Gr�unbaum. Convex polytopes. London Interscience, 1967.[GT91] M. Gangnet and J.M. Van Thong. Robust boolean operations on 2d paths. InProceedings of COMPUGRAPHICS91, volume 2, pages 434{443, Sesimbra,Portugal, 1991.[IS89] M. Iri and K. Sugihara. Construction of the Voronoi diagram for one milliongenerators in single-precision arithmetic. In Proceedings of the 1st CanadianConference on Computational Geometry, Montr�eal, 1989.[Jac95] D. Jackson. Boundary representation modelling with local tolerances. InProceedings of the Symposium on Solid Modeling Foundations and CAD/CAMApplications, pages 247{253, 1995.[Jus92] N.P. Juster. Modelling and representation of dimensions and tolerances: asurvey. CAD, 24(1):3{17, jan 1992.[KLN91] M. Karasick, D. Lieber, and L.R. Nackmann. E�cient delaunay triangulationusing rational arithmetic. ACM Transactions on Graphics, 10:71{91, Jan.1991.[Knu92] D.E. Knuth. Axioms and hulls. Lecture Notes in Computer Science (606),Springer-Verlag, 1992.

2nd Real Numbers and Computers Marseille 1996[Mic87] D. Michelucci. Les repr�esentations par les fronti�eres : quelques constructions;di�cult�es rencontr�ees (in french). PhD thesis, �Ecole Nationale Sup�erieuredes Mines de Saint-�Etienne, 1987.[Mic95] D. Michelucci. An epsilon-arithmetic for removing degeneracies. In Pro-ceedings of the IEEE 12th Symposium on Computer Arithmetic, Windsor,Ontario, July 1995.[Mil88] V.J. Milenkovic. Veri�able Implementations of Geometric Algorithms UsingFinite Precision Arithmetic. PhD thesis, Carnegie-Mellon, 1988.[MM96] D. Michelucci and J-M. Moreau. Lazy arithmetic. to be published in IEEETransactions on Computers, 1996.[NSTY93] J. Nakagawa, H. Sato, K. Toshimitsu, and F. Yamagushi. An adaptive error-free computation based on the 4x4 determinant. The Visual Computer, 9:173{181, 1993.[OTC87] G. Ottmann, G. Thiemt, and Ullrich C. Numerical stability of geometricalgorithms. In Proceedings of the 3rd ACM Symposium on ComputationalGeometry, pages 119{125, 1987.[PA94] R.M. Persiano and A. Apolin�ario. Boundary evaluation of csg models byadaptative triangulation. In CSG 94 : Set Theoretic Solid Modelling Tech-niques and Applications, Information Geometers Ltd, april 1994.[SBE95] P. Stucki, J. Bresenham, and R. Earnshaw. Computer graphics in rapidprototyping technology. IEEE Computer Graphics and Applications (specialissue on Rapid Prototyping), 15(6):17{19, Nov. 1995.[Seg90] M. Segal. Using tolerances to guarantee valid polyhedral modeling results.Computer Graphics (SIGGRAPH '90 Proceedings), 24(4):105{114, August1990.[Tau93] G. Taubin. An accurate algorithm for rasterizing algebraic curves. In SecondSymposium on Solid Modeling and Applications, ACM/IEEE, pages 221{230,May 1993.[Yam87] F. Yamagushi. Theoretical foundations for the 4x4 determinant approach incomputer graphics and geometrical modeling. The Visual Computer, 3:88{97,1987.

