Arithmetic Issues in Geometric Computations

D. Michelucci
Ecole des Mines, F-42023 Saint-Etienne 02

micheluc@emse. fr

Abstract

This paper first recalls by some examples the damages that the numerical in-
accuracy of the floating-point arithmetic can cause during geometric computations,
and it intends to explain why damages for geometric computations differ from those
met in numerical computations. Then it surveys the various approaches proposed
to overcome inaccuracy difficulties; conservative approaches use classical geomet-
ric methods but with ‘exotic’ arithmetics instead of the standard floating-point one;
radical ones go farther and reject classical techniques, considering them not robust
enough against inaccuracy.

1 Introduction

Geometric modellers provided by commercial CADCAM softwares, and methods from the
more theoretical field of Computational Geometry all perform geometric computations:
for instance triangulating or meshing geometric domains for finite elements simulation,
or computing intersections between geometric objects. Inaccuracy is a crucial issue for
geometric computations. Not only the numerical results can be inaccurate, but also geo-
metric programs can crash, or enter in infinite loops, or terminate but provide inconsistent
results, the topology of which is the topology of no possible geometric objects.

Today it is widely known that numerical analysis can suffer from numerical inaccuracy,
especially in presence of ill-conditionning. It is perhaps less known that the situation
is even worse for geometric algorithms. Due to the underlying combinatoric properties
of geometric objects, numerical inaccuracy can cause damages even when there is no
ill-conditionning at all, as this paper will show by some typical examples.

To solve or bypass inaccuracy problems in geometric computations, several approaches
have been explored. Conservative approaches use classical techniques but with ‘exotic’
arithmetics, ie they do not rely only on the standard floating-point arithmetic. More
radical approaches have recently proposed to get rid of some classical methods or data
structures because they do not withstand inaccuracy, namely methods from computa-
tional geometry and topology-based data structures like BReps (Boundary representa-
tions). Thus taking inaccuracy into account can radically modify methods and data
structures used in geometric computing.

This paper only deals with the inaccuracy problem, but the latter is not the only arith-
metic issue for geometric computations: there are two others. The first problem is due
to the overwhelming number of degenerate geometric cases (say: alignment of more than
two points, coplanarity of more than three points, cocircularity of more than three points,
intersection of more than two lines in a point, parallelism between lines, etc) which geo-
metric methods have to handle and the programmer has to treat: it is not obvious that
this is an arithmetic problem, but a solution is an arithmetic one: it symbolically perturbs
the data by infinitely small values to remove degeneracies [EM90, EC92, Mic95], using a
non-standard arithmetic (ie an arithmetic computing with non-standard, infinitely small
numbers). However, this arithmetic solution has the drawback of needing an exact arith-
metic. The second arithmetic issue for geometric computations is that data acquired from
some sensors, or mechanical products machined by imperfect tools, are also known only
up to some finite precision: some CADCAM applications need to take into account this
other kind of inaccuracy [Jus92]. These two issues are beyond the scope of this paper.

Plane of this paper. Section 2 explains the typical damages due to inaccuracy: after
section 2.1 fixes notations, section 2.2 shows how a method from Computer Graphics
infinitely loops under inaccuracy, section 2.3 details running-time crashs of a method
from Computational Geometry under numerical imprecision, section 2.4 a topological
algorithm which may also infinitely loop. These failures are always due to the fact that
inaccuracy contradicts geometric properties. Section 2.5 presents other examples of ge-
ometric properties invalidated by inaccuracy and section 2.6 concludes this part about
imprecision ravages on geometric algorithms. Section 3 surveys the different approachs
investigated to fight against (or to avoid) inaccuracy: section 3.1 presents the popular €
heurism, section 3.2 some empirical rules of programming that avoid the more obvious
geometric inconsistencies, section 3.3 the spirit of the approach which tries to always
provide consistant —though approximated— results, section 3.4 some typical exact arith-
metics, section 3.5 an interval confining approach which extents the € heurism, and section
3.6 a new tendency emerging in the CADCAM and Computer Graphic fields which rejects
methods and data structures considered not robust enough against imprecision. Section
4 concludes.

2 Some damages of numerical inaccuracy

2.1 Notations

We will use the following notations :

1. Straight lines with equation ax 4+ Sy + v = 0 are represented by a triple of floating-
point numbers (o, 3,7).

2. The triple for the line through two distinct points A and B is

(YB — YA, T4 — TB,TBYA — TAYB);

3. The intersection between two given lines D : (o, 3,7) and D' : (¢, 3,7") is the
point (xq, yo) with

_ Oy =y e —ay

af —af’ af' — o'

4. Geometric algorithms often use the lexicographical order on coordinates, defined by:

Qo

(z,y) <z (2",) & v <2’ or(z =2 and y < y').

A line with 8 = 0 (respectively o = 0) ie parallel to the Oy (respectively Oz) axis is said
to be vertical (respectively horizontal).

The notation a* denotes the floating-point approximation of a. fp is a shortcut for
‘floating-point’. |z | stands for x floor, and [x] for x ceil.

2.2 Consequences on an algorithm from Computer Graphics

— T
|

Figure 1: A span, delimited by two vertical lines.

This section studies the consequences of inaccuracy on a 2D algorithm. The data are
segments. For all lines L, parallel to the Oy axis and having integer abscissa: = €
{0,1,2... N}, the problem is to find the segments crossing L, and to sort them by
increasing ordinate. This problem occurs in Computer Graphics as a sub-problem in
Atherton’s method, which computes images of 3D scenes defined by boolean combinations
(intersection, union and difference) of polyedra.

The standard method first determines the set of spans: a span is a maximal interval
[xg, x1] such that |xg, 1] contains no initial vertex, but possibly contains intersection
points. This stage may be achieved for instance by sorting all endpoints by increasing
abscissa, then by scanning the resulting sorted list V' of vertices while maintaining the
set S of active segments: if v; = (a;,y;) is the left (respectively the right) vertex of the
segment s;, insert s; in S (respectively remove s; from S) so that S is still the set of

the active segments in the interval |x;, x;41[. It is also possible to use some bucket-sort
scheme instead.

Let S be the set of the active segments in the current span |z, x1[. Let Sy (respectively
S1) be the result of sorting S by increasing ordinate in @ = x (respectively in @ = x;). If
Sp equals S we are done and we study the next span, otherwise let ¢ be the lowest index
such that Sp[i] # Si[i]. Then these two segments Sy[i] and Si[¢] cut each other somewhere
in [xg, x1], say in (x;,y;). In such a case, recursively study the span |ag, | #;|[and][], z4].
At the end, either there is no intersection points inside the span, or xg = ;.

Though correct, this method infinitely loops because of inaccuracy, or at least it loops
until the stack is filled up by recursive calls: It happens that the computed intersec-
tion point has fp abscissa x; outside the interval [z, z1], say between x; and 1 + 1 (of
course, this situation is absurd and cannot occur without inaccuracy). Thus the procedure
span(xg, 1) recursively calls span(xg, 1) ...: an infinite loop.

This problem is trivially solved: when z; is greater than a1, cut [zq, z1] into [zg,2; — 1].
Symmetrically when x; is lower than zy. It is worth noting that the reliability against
inaccuracy of programs from Computer Graphics is much more easily achieved than for
the ones from Computational Geometry.

2.3 Consequences on a Bentley and Ottman’s algorithm

This section details the consequences of inaccuracy on a classical and representative
algorithm from Computational Geometry, the Bentley and Ottman’s method.

2.3.1 Bentley and Ottman’s algorithm

Figure 2: The situations where two segments become contiguous along the sweeping line.
The vertical dotted line represents the sweeping line, the arrows show the couple of con-
tiguous segments.

In a nutshell, this algorithm computes all the k£ intersection points between n segments
in the plane, in time O((n + k)logn). For sake of simplicity, this exposition will ignore
degeneracies: intersection points common to more than two segments, vertical segments,

intersection points confused with initial vertices, and so on. The principle is to sweep the
plane by a vertical line from left to right, ie initial vertices are swept in lexicographic order,
and to maintain the set of the segments crossing the sweeping line, ordered upwards. The
method exploits the two following remarks: first, the order of the segments crossing the
sweeping line obviously depends on the abscissa of the latter, but it changes only locally
when passing an initial vertex or an intersection point: local changes are insertion or
deletion of a segment when passing a vertex, or permutation of two intersecting segments
when passing an intersection point. Secondly, two segments can cross each others only
after they have been contiguous along the sweeping line (ignoring degeneracies): thus, if
each time two segments become contiguous along the sweeping line the algorithm checks
their possible intersection, then all intersection points will be found. The three situations
where two segments become contiguous along the vertical sweeping line are shown in Fig.
2: when a vertex is the beginning (ie the left vertex) of one or several segments; when
a vertex is the end (ie the right vertex) of one or several segments, or when a vertex is
simultaneously an end and a beginning, for instance an intersection point.

The algorithm is as follows. Set X to all initial vertices: X is ordered by the lexicographic
order. Let Y be the set of segments crossing the current sweeping line. Y is ordered
upwards. X and Y may be represented by balanced trees. Initially Y is empty. While
X is not empty do: Let p be the first point of X, and remove p from X. Let b and «
be the segment just below and just above e. If there are some segments with p as right
endpoint, remove them from Y. If p is the left vertex of some segments s; ... s; (ordered
by increasing slope), insert them in Y, then compare b with s; and a with s;, since b
and s; on one hand and @ and s; on the other hand become contiguous in Y. Otherwise,
when there are no segments with left vertex p, @ and b become contiguous in ¥ and thus
are compared. Fach time a new intersection point is found, insert it in X and cut the
corresponding segments.

2.3.2 A special configuration

Figure 3: A special configuration of two segments.

M. Gangnet communicated me the configuration of segments in Fig. 3 in 1983. Assume
for convenience that a fp-arithmetic with base 10 is used, with 4 significative digits. A
is the origin, B has coordinates (10., 1.), C' has coordinates (1., 0.) and last, D has
coordinates (1. 4+ w, 10.). We will see that for v €] — 0.1, +0.1], ie for all points D,

in the open segment](0.9,10.), (1.1,10.)], all fp intersection points I = (AB N CD,)*
have coordinates Iy = I = (1., 0.1): the coefficients triple for line AB is (1, 10, 0),

the one of C'D, is (10, —u, —10), thus Az = Az* = —100, Ay = Ay* = 10, but
A = —(100 + w) is represented in the best case by the fp value A* = 100. for all u in
the open interval | — 0.1, 40.1[(remember we only have 4 digits: due to cancelation,

100.0 + (u = 0.07) = 100.0).

As a first consequence, if a configuration contains segments say C'D_g 999, C' Do, C Dy .o99
on one hand and AB on the other hand, the fp arithmetic cannot represent it in a
consistant way — and no matter the algorithm used to compute the intersection points:
points 1_g.099, Io and [y g9 have the same fp coordinates, whereas C'1_g099 C C'D_g. 099,
Cly C CDy, Clyggg C C Dy g9 are different segments.

Of course, this fp arithmetic may seem unrealistic, it has been chosen only to simplify the
statement. It is possible to find similar configurations for all fp arithmetic, no matter the
used base and the length of the mantissa. We now follow the behaviour of the Bentley-
Ottman’s method on such a configuration.

2.3.3 Consequences

Consider the configuration of two segments AB and D,C, with v < 0 and u in the
inconsistant interval, say u = —0.05. From now on, we just use D for D, and [for [,.
To compute if the point I* = (AB N CD)* = (1.,0.1) belongs to the segment DC, two

tests are possible.

First, I* € CD iff D <; I <; C: with this test (mathematically correct when there is
no inaccuracy), I* does not belong to C'D. A first mistake: the intersection point [* is
forgotten.

A second test, mathematically equivalent to the first one when there is no inaccuracys, is:
I"eCDiftzp <z <ze and yo < yr < yp, taking into account that DC has a negative
slope. Here this test will correctly conclude that I* belongs to C'D, in contradiction with
the previous and theoretically equivalent test. Note it is possible to find other examples
where this last test fails.

o If [* is forgotten. Suppose first that the first test is used, or any test such that [*
is forgotten. Thus when the sweeping line passes C, the program believes that (or in
less anthropomorphic words, the data structure Y stores that) AB is below C'D, which
is wrong. Since (' is the right endpoint of DC', the program has to remove DC from Y.
When Y is the only data structure accessing segments, as it is the case in the original
Bentley and Ottman’s paper, a classic binary search through Y is needed to find DC in
Y, starting from the Y root. We can suppose that the left (respectively the right) subtree
stores the segments below (respectively above) the one of the root. Here the program
wrongly believes that AB is below DC in (', thus for instance the root carries segment
AB, and its right son carries segment DC'. To find DC', the program compares the height
of the searched DC' segment and the one of the root segment AB, ie it computes and
compares the ordinate of the point DC N {& = x¢} and the one of ABN {z = 2¢}.

The heights are 0. for DC and 0.1 for AB: thus DC' is below AC in C', which is right,
but contradictory with the wrong informations stored in the data structure. Thus the
program searches DC' in the left subtree of Y, and it cannot find it since it is in the
right one. This situation is theoretically impossible and a fatal failure occurs, like say
Nil pointer dereferenced.

o If [* is not forgotten. Suppose now that the second test is used, or any test such
that I is found, when the sweeping line passes D). So DC' is cut into DI* and I*C, AB
into Al and [*B. I* is then inserted in X. Theoretically I < C but for the program:
C = C* < I*. Thus I* is inserted in X just after C' = C*. Thus the next point to be
swept is C'. Here, the program has to remove the segment [*C from Y (since C' is now
the right endpoint of I*C'). But this segment has not yet been inserted in Y. Again, a
fatal error occurs.

A possible solution is explained in section 3.4.1.

It is worth comparing the behaviour of the naive method in O(n?) which compares all
couples of segments, and the one of Bentley and Ottman’s method. Obviously, the naive
method is slower (at least when the number of intersection points k is less than O(n?)), but
it never crashes; it can provide some wrong results, but the latters are not propagated,
contrarily to Bentley and Ottman’s method. The naive method is much more robust
against inaccuracy.

2.4 Consequences on a topological method

In 2D let P be a set of vertices and S € P x P a set of non crossing segments, e two
distinct segments can only cut each other at a known common vertex belonging to P.
For instance some method has been used to compute all intersection points between an
initail set of intersecting segments.

Thus S and P define what is called a planar map: a combinatorial structure made of
vertices, segments and faces, and supporting various topologic relations of incidency,
contiguity or inclusion. Some applications (say Geographic Information Systems) need
data structures for modelling such planar maps.

An important notion is the one of half-edges. A segment is made of two half-edges,
the left and the right. The left half-edge (respectively the right one) contains the left
vertex (respectively the right one) of the segment, or in more general words its smaller
(respectively its greater) vertex for the lexicographic order. Thus if the segment is vertical,
the left (respectively the right) half-edge is the below (respectively the above) one. The
two half-edges of the same segment are said to be complementary of each other.

Moreover each half-edge e having vertex say v is linked with its neighbour: it is an half-
edge also incident to v, the first one which is met when turning counterclockwise around
v and starting from e. In this way all half-edges sharing the same vertex v are cyclically
linked around v, in the counterclockwise orientation. It is obvious that starting from

any initial half-edge, and following the neighbour link will always yield to the starting
half-edge. .. when the planar map is correct.

This neighbour link makes also possible to follow face contours: Starting from any half-
edge ey, take the complementary of its neighbour to get e;, and then start again from e
to get e3, and so on until the initial half-edge is reached: this way all half-edges €y, €5 . ..
e1 of the same contour are listed. Here again, starting from any half-edge, this travel will
always yield to the initial half-edge. .. when the planar map is correct.

Figure 4: A wvertex has been forgotten: due to an inconsistent topology, following the
contours will lead to troubles. Here only one contour will be found, which contains all
half-edges: ...(14), (21), (32), (43), (74), (67), (56), (45), (34), (23), (12), (41), (H54),
(65), (76), (47), (14)..., where (i) is the half-edge containing the vertex i. Of course

the right planar map has one outer contour and three inner ones.

Now, these two properties cannot be guaranteed when the planar map is wrong, for
instance when some intersection points have been forgotten (see Fig. 4), or when half-
edges incident in the same vertex are too close to be correctly ordered by the neighbour
link when using a fp-arithmetic. In fact, the dual methods of following a contour and of
turning around a vertex until the starting half-edge is reached, may enter in an infinite
loop, because never yielding to the initial half-edge (for instance with a half-edge sequence
like: €1, eg, €3, €4, €5, €6, €5 . ..). The method may also terminate, but provide inconsistant
contours, for instance self intersecting ones (see Fig. 4), which will give troubles to say a
colouring method, or a method locating points in the planar map.

2.5 Other examples of contradictions

The methods proposed in the Computational Geometry field are theoretically fast because
they exploit properties of consistent geometric objects, like properties of total orders,
algebraic identities, geometric theorems. Maybe the simplest example is the use of the
transitivity of the total orders: if it is known that @ < b and b < ¢, then it is deduced
that @ < ¢ without comparing ¢ and ¢. This property is the basis of the binary search
technique used in Bentley and Ottman’s method to handle the X and Y data structures.
We have seen how inaccuracy ravages this kind of method.

Basically, inaccuracy invalidates geometric and mathematical properties. This section
now gives several examples of such properties, often used by geometric algorithms, but
ruined by inaccuracy. It would be too lengthy to detail the consequences on geometric
algorithms relying on such property, but they would now be obvious after the previous
examples.

2.5.1 Example 1

The power of a point M = (x,y) relatively to a line D with triple (a, 8,7) is ax + By + 7.
Suppose that A belongs to the line D, because for instance A has been defined as the
intersection point between D) and another line. Theoretically, this power must be 0.
Using fp-arithmetic, it is unlikely to be true. So a data structure can store topological
informations, like A € D, that will be contradicted by numerical computations.

2.5.2 Example 2

Figure 5: The two possible lexicographic orders, in the generic case.

Consider the three lines of figure number 5. h is nearly horizontal, m climbs and has slope
about 45 degrees, d goes down and has slope about —45 degrees. Let the three intersection
points be i’ = dNm, m' =dNh, d =mnNh. If we exclude the degenerate case where all
intersection points coincide, then there are only two possible lexicographic orderings for
them, either d' <; h' <p m' or m’ <y h' <p d’; in the two cases, b’ is between m’ and d'.
Now, if the triangle is small enough, the coordinates of the three points will differ only
by their least significant bits, that will be likely corrupted by rounding; so fp-arithmetic
will sometimes produce non consistent triangles, impossible to draw.

2.5.3 Example 3

The intersection point between a vertical line AB and an oblique one is a point) with
the same abscissa as A, and B. But the evaluation of the previous formula with fp-
arithmetic will the more often give a slightly different point 0, such that either x4 < zq«
or xgx < x4. Actually this also holds for ‘almost vertical’ line or segment, as previously
seen.

This means that relying on the property : Q € [A, B] & A <p Q <, B (to test if Q really
belongs to the segment, not only the straigth line) is doomed to failure.

2.5.4 Example 4

If 3 and 3’ are both different from zero, the three following definitions for yq are alge-
braically equivalent:

o'y —ay arg + v org 4+
_, —— and — ——.
af' —o'f3 8 ey
but evaluated with fp-arithmetic, they will generally yield different results. This is quite a

serious problem, as programmers frequently rely on such identities to detect the equality
between two objects constructed in two different and legal ways.

2.5.5 Example 5

In the projective plane, if three distinct points Py, P53, and Ps are collinear, and if the three
distinct points P, Py, and Fs are also collinear, so are the three points Py P,N P, Ps, P, P3N
PsPs, and P3Py N Ps Py after Pappus’s theorem. Numerical inaccuracy likely prevents the
detection of this property. Actually the same holds for all geometric theorems !

2.5.6 The combinatory underlying geometry

This section intends to give an intuitive insight on the combinatoric properties underlying
geometric objects. The simplest example is perhaps the one of N points in the plane.

For each triple (A, B, C') of distinct points, we define |[ABC| to be:

1 1 1
|ABC| = sign(| x4 xp x¢ |)
Ya YB Yc

the determinant is twice the signed area of triangle ABC. As well known, either ABC
turns on the left and |[ABC| = +1, or ABC turns on the right and |ABC| = —1, or ABC
are collinear and |ABC| = 0.

There are 3(3) ways to assign signs for all (g) triples. But of course very few of them
are geometrically possible: triples signs are not independant. For instance they must
verify |[ABC| = |BCA| = |CAB|, and |ABC| = —|BAC|. Other less obvious rules are:
|ABC| = |BCD| = |CDA| = |DAB| = |ABD| = |BCA| = |[CDB| = |ABC]| (hint:
ABCD is convex), and |[ABP| = |BCP| = |CAP| = |ABC| = |ABP| (hint: P is inside
the triangle ABC'). See [Knu92] for details.

Of course, when the N points are given by their coordinates, it may happen that com-
puting all |ABC| with fp-arithmetic yield inconsistent signs.

2.6 Consequences of inaccuracy

To conclude this section about consequences of inaccuracy, inconsistent decisions from
numerical imprecision have two kinds of consequences on geometric algorithms.

Either the algorithm crashes or enters in an infinite loop. It is typically the case for
the most sophisticated and efficient methods proposed by Computational Geometry, that
rely on various geometrical or mathematical properties, like the transitivity of orders,
algebraic identities or theorems ...and that propage (sometimes corrupted) intermediate
results, for instance: @ < b and b < ¢ = a < ¢. These methods enter in theoretically
impossible situations: trying to delete an element which has not yet been inserted from
some data structure, or ending up in an infinite loop while scanning a theoretically finite
sequence.

Or the algorithm terminates normally; it is generally the case for ‘brute-force’ algorithms,
too much stupid to exploit intermediate results and geometric consistency. However these
algorithms yield inconsistent results, for instance a graph supposed to be planar will not
be (see example in figure 4). Another algorithm, though mathematically correct and
taking this result as its input, may crash or infinitely loop or provide inconsistent results
in turn.

Practitioners (programmers or users of geometric modellers) were aware of the inaccu-
racy difficulties since the first geometric modellers, in the seventies; to overcome them,
programmers and users have developped empirical tricks, described below. These tricks
do not always work; however, people in the CADCAM communauty put up rather will-
ingly with these limitations : first engineers are used with the limitations of the various
‘physical’ devices they use, and then they consider that, anyhow, it is impossible to do
otherwise.

Thus actual commercial geometric modellers can not work without the active complicity
and understanding of their users, who have learned to avoid the easiest traps, and who
accept to slightly modify their problems until their geometric modeller works...In the
CADCAM field, this is called the robustness problem.

Among theorists of Computational Geometry, the awareness of the inaccuracy problem is
much more recent, say the late eighties, with Milenkovic’s work [Mil88]: Computational
Geometry assumes a theoretic model for computers, where each arithmetical operation
is performed exactly in constant time and space. When known, the inaccuracy problem
was not considered as worthy of research, it was just a concern of programming. This
is probably the reason why there is up to now no available library solving problems of
Computational Geometry.

3 Fighting against inaccuracy

This section surveys proposed approches to solve or bypass the inaccuracy problem.

3.1 The ¢ heurism and other probabilistic approachs
3.1.1 The popular ¢ heurism

To overcome inaccuracy, the most popular trick used in geometric modellers is the €
heurism. When two fp-numbers differ by less than a given threshold traditionally called
¢, they are considered to be the same. The test may be made in an absolute manner :
la — b] < €, or in a relative one : |a — b| < € x max(|al,|b|). Some modellers use several
€, say one for lengths, another for areas, another for angles.

This heurism lost the transitivity of the equality : it is easy to find a, b and ¢ such that
a=,b, b=, c, but a #, ¢ where =, means ‘equal for the € heurism’: thus inconsistencies
remain possible.

Moreover, finding the relevant value(s) for €(s) is a very difficult task, depending on the
usual range of numbers (it depends on the applications), and on the format of used fp-
numbers : it is common folklore in the CADCAM communauty that the conversion from
32-bits fp-numbers to 64-bits has needed a not so easy updating of es. Of course the €
heurism may fail, and it does sometimes. In practice, it seems to work not so bad and
to improve the robustness of the geometric modellers, but it is also due to the active
complicity of their users!

3.1.2 Gap arithmetics

The ¢ heurism is based on a right intuition, following Canny’s gap theorem [Can88]:

Canny’s gap theorem : Let xy, z5... 2, be the solutions of an algebraic system of n
equations and n unknowns, having a finite number of solutions, with maximal total degree
d, with relative integers coefficient smaller or equal to M in absolute value. Then, for all
i € [1,n], either x; =0 or |x;| > €. where

1
e = ———
(3Md)"4
This theorem gives a way to numerically prove that a number is null : compute a (guar-
anteed) interval containing it, with width smaller than e.. As soon as the interval does
not contain 0, the number is clearly not 0 and its sign is known. Otherwise, if the interval
contains 0 and has width less than e., the number can only be 0.

Alas, there are several problems. First ¢. is much, much smaller than the epsilon used
in geometric modellers; actually €. is generally much smaller than the smallest positive
fp-number, even in simple examples. So, an extended arithmetic providing big floats is
needed. Secondly, even if such an arithmetic is available, such a computational scheme
will have an exponential cost : an exponential number of digits is needed to prove the
nullity of a number, because of the term nd” in Canny’s theorem. Now, there is no hope
to significantly improve the Canny’s gap in the worst case, because it is already sharp;
it is almost reached in the following simple case : x(Mzy — 1) = 0, May — 27 = 0

..Mz, — 2% | = 0. A possibility will be to find a more convenient ¢ depending on the
system at hand, and not only on d, M and n. I am currently not aware of people using
this kind of techniques.

A variant of this gap arithmetic is possible in the rational case, ie when only rational
numbers and operations are used. The idea is to maintain for each met number = an
upper bound of the number of digits of its denominator: d(x), and another bound for
the number of digits of its numerator: n(x), for a given base, say B = 2. These upper
bounds are known for the input numbers, and they are computed as follow for = 4+ y, 2y,
1/z and —x, without explicitly computing the exact rational form:

n(z +y) =14 maz(n(x) +d(y), n(y) + d(2)), d(x +y) = d(x) + d(y)
%xxw n(z) + %)ﬂxxy) d(z) + d(y)
(=

3

/) = d(x), d(1/x) = n(z)
) = n(z), d(—z) = d(x)

Now, to know if a number x vanishes, it is enough to compute a good enough approxi-
mation z* of x, by using some on-line bigfloat library: the smallest (in absolute value)
non-zero rational number, having denominator with at most d(x) digits in base B, is

3

+e, with ¢, = m. Thus = vanishes iff €] — ¢, ¢,[, or more conveniently when
¢ € [-B~4®) B~4®)]. When a number appears to be 0, its fields n and d, and the ones

of its dependent numbers may be strengthened on the fly.

The previous scheme may be extended for other fields than Q, for instance quadratic
algebraic extensions Q[y/a], where @ > 0 is not a square in Q. The main idea is to maintain
an upper bound of the size of an exact and virtual representation, virtual meaning that
this exact representation is never computed. From this bound for any number z, it
must be possible to effectively deduce a gap ¢, such that z €] —¢,,¢.[= 2z = 0. In the
previous example Q[y/a|, the smallest non vanishing number z = x + y\/a, z,y € Q,

with an upper bound on the size of x and y, is such that - is a convergent to /a

in the continued fraction expansion of y/a, and the classic theory of continued fraction
expansions of quadratic numbers [Bak84] provides an explicit ¢, gap.

3.1.3 Other heurisms

Another more practicable but only probabilistic method is to compute with some big
floats library, and to use the ¢ heurism, with say 1072°°, and hope that life will not be so
bad to provide a counterexample... Some people currently investigate such an approach,
but I don’t know any publication.

Another probabilistic trick stems from modular arithmetic. The idea is to perform all
computations modulo one (or several) finite field I, (for instance Z/nZ where n is a prime
integer, about say 2 x 10?). Clearly, if @ mod F,, does not vanish, a cannot be 0, even
when «* is very small: we have to precise a* in some way to reliably find its sign, for
instance using some bigfloat library or some on-line arithmetic. On the other hand, if a*

is small, and if @ mod F,, vanishes, one can take the risk to assume @ = 0. This scheme
is straightforward to implement when only rational operations (+, —, X, :) and numbers
are used, because each rational number has only one homomorphic element in the finite
field. The only difficulty arises when a division by 0 occurs in the finite field, which is very
unlikely. Such a scheme has been investigated by A. Agrawal and A. Requicha [AA94],
and by M. Benouamer and his colleagues [BJMM94] (see below section 3.4.3 about hash
coding lazy numbers). However this approach becomes more problematic when algebraic
non rational operations and numbers are involved: for instance each quadratic number
have two homomorphic images in the finite field (or in its cloture) and it is impossible
to discriminate them, for example to distinguish a positive and a negative square root in
F,. Thus to know if an algebraic number vanishes, all its homomorphic images in F, or
its cloture must be tested. As far as [know, this scheme has never be investigated in the
algebraic non rational case, for geometric computations.

3.2 Careful programming

Some computer scientists prefer to avoid the € heurism and have settled a set of tricks,
say :

o Check first in the data structures before computing; for instance, before computing the
power of a vertex relatively to some line, verify first if the line is topologically incident
to the vertex from the data structures at hand. This avoid the inconsistency 2.5.1.

e Handle in a special way some particular cases, for instance the intersection point be-
tween a vertical line and an oblique one : in this case, assign the abscissa with the abscissa
of the vertical line, not with the expression Az/A. This avoid the inconsistency 2.5.3.

e Do not use several distinct formulas for the same value (though it seems to contradict
the previous rule...). This avoid the inconsistency 2.5.4.

e The computation of abN cd, abN de, ba N ed, ba N de (they are, say, segments in 2D)
generally give slightly different results. Before computing an intersection, it is worth
systematically orienting segments at hand, so that ¢ <z b and ¢ <7 d and so on, by
exchanging vertices, so that we will indeed have : abMed = abNde = ba N ed = ba N de.

M. Iri and K. Sugihara [IS89] used this kind of approach for computing Voronoi’s dia-
grams. They ensure that their program will never crash because of inaccuracy, that the
resulting graph is correct when there is no numerical difficulty, and otherwise that the
graph is connected with all vertices having degree 3, like a correct Voronoi’s diagram.
It is impressive, but there is no guaranty that another program, mathematically correct,
and using this Voronoi’s diagram as an input, will not crash !

To conclude, all these stratagems are sometimes clever but they can only avoid the more
obvious inconsistencies. But avoiding more convoluted ones (for instance the non respect
of Pappus’s theorem, see 2.5.5) seems an impossible task: the next section explains why.

3.3 Respecting Consistency: the Quest

The aim of careful programming, of Iri and Sugihara’s work [IS89], and of some V.
Milenkovic’s work [Mil88], can be paraphrased as:

In Numerical Analysis, it is possible to find an approximation of the solution of the
problem at hand which is the exact solution of another but close problem of the same
kind. It is even possible to measure in some way these distances. We would like to do
the same in geometric algorithms, ie to find an approximation of the solution that is the
exact solution of another close problem.

It means that, at least, the found solution must be ‘geometrically realizable’. To take an
example, let us turn back to the problem in section 2.5.6: let P, P, ... P, be n points in
the plane. We want to compute with fp-arithmetic any of the |ABC|; we accept that some
triple-sign to be wrong (relatively to exact arithmetic), but we want to get a consistent
signs set, which is the signs set of another set of points @1, Q2 ...Q,, closeto P, P... P,.

This algorithm will be something like this: all triple signs ABC (yes, there are O(n?)
such triples, but here our problem is not to obtain an efficient algorithm, but a robust
one!) are computed straigthforwardly with fp-arithmetic, by the devoted formula, and
with an error bound. The value of the majority of signs will be clearly positive, or clearly
negative. For remaining ambiguous signs, we want to resort to some oracle who will give
us a set of missing signs that is geometrically realizable.

The question now becomes: is it possible to decide if a partial signs system implies such
other missing sign, or equivalently, if a given sign system is consistent (geometrically
realizable) or not?

This problem is not only a ‘toy problem’, because a lot of methods (convex hull com-
putations, intersection between polygons, for example) proposed by Computational Ge-
ometry in 2D can be reformulated so that they will only use triple-sign in geometric
tests. For instance, two segments pg and rs intersect each others (with no degeneracy)
iff [pgr| x |pgs| = —1 and |rsp| x |rsq| = —1. Thus, for applications where all geometric
tests can be reformulated only with triple-sign test, the robustness problem will be the-
oretically solved. It is worth remarking that this approach can be extended to 3D and
beyond.

The combinatoric properties of the sign systems of triples of points in 2D have been
studied. They are partly characterized, notably by D. Knuth’s CC (CounterClockwise)
axioms (see Fig. 6), or equivalently by uniform acyclic oriented matroids of rank 3: see
[Knu92] for details. Though illuminating, this axiomatic system and the corresponding
combinatorial structure are too poor to capture all properties of the ‘true’ geometry: for
instance, Pappus’s theorem is not a consequence of Knuth’s axioms, and one can find
some sign systems that though verifying Knuth’s axioms are not geometrically realizable.

Up to now a complete combinatoric characterization is not known, and perhaps there can
be no finite set of purely combinatoric axioms (in Knuth’s style, ie not using continuity,
or coordinalization by some continuous fields like C or R and so on) that characterizes

Axiom 1 (cyclic symmetry). pgr = qrp

Axiom 2 (antisymmetry). pgr = —prq

Axiom 3 (nondegeneracy). pgr V prq

Axiom 4 (interiority). tqr A ptr A pgt = pqr

Axiom 5 (transitivity). tsp A tsq A tsr Atpg A tqr = tpr

Figure 6: The five Knuth’s axioms, to explore the combinatoric properties of the generic
sign systems of triple of points. pqr means: |pgr| =1 and —pqr means |pqr| = —1.

geometrically realizable systems: see [Knu92] pp 96 for more. Another very bad new is
that the decision problem (is this given set of triple-signs consistent?) for Knuth’s sign
systems is NP-complete.

Actually, it seems that the problem is even more complicated. D. Knuth only consid-
ers generic situations, where the triples have sign +1 or —1, but never 0. Now some
degenerate configurations are realizable in some fields (say the algebraic real field) but
not in others, like @. Such a configuration is given in B. Griinbaum’s book [Gri67] and
illustrated in Fig. 7: Place nine points A, B, C, D, E, F', G, H, I so that the following
subsets of points, and only these subsets, are colinear: ABEF, ADG, AHI, BCH, BGI,
CFI, DEI, DFH, and obviously of couples of points. There are 2 solutions, needing
regular pentagons, thus this configuration is not realizable in Q?, but it is in R%, actually

in Q[v/5]2.

A(F) E(A) F(B) B(EYy
G H(C)
C(q) D(

Figure 7: This above configuration is not realizable in Q*, bul it is in B2,

In conclusion, the approach of ‘Computing with fp-arithmetic but respecting geometric
consistency’ is not so easy to achieve.

3.4 Exact arithmetics

An obvious solution against inaccuracy is the use an exact arithmetic. Alas, even when
an exact arithmetic on big integers or big rational is sufficient, a straigthforward imple-
mentation is much too slow. From an experiment of M. Karasick, D. Lieber and L.R.
Nackmann [KLN91], the Voronoi’s triangulation of 10 random points in 2D needed 0.1

second; that of 10 random points with rational coordinates (2 digits for the numerator,
3 for the denominator, with radix 2'¢) needed 1200 seconds with a standard rational
library and generated intermediate values up to 81 digits long. Of course computers are
now faster, but the order of magnitude of the ratio between the two running times is still
correct. It is easy to understand why exact arithmetic are so seldom used in geometric
modellers.

In some cases, the machine numbers are sufficient to achieve exact computations, with
some tricks. Section 3.4.1 presents this fast but limited solution.

When this solution does not apply, one can envisage to exploit the fact that the fp-
arithmetic (or some interval arithmetic to have an upper bound of errors) is very often
sufficient to decide the sign of an expression, and to use an exact arithmetic only when
the fp-arithmetic is not reliable. In practice, this idea is implemented in several way,
this paper only presents the LN library due to S. Fortune and C. Van Wyk [FVW93]
in section 3.4.2, and the lazy exact arithmetic due to M. O. Benouamer, P. Jaillon, J-
M. Moreau and the author [BJMM93, MM96] in section 3.4.3. Due to lack of space,
other approaches in the same tendency cannot be detailed but are worth mentionning:

[OTC87, KLN91, Yam87, GT91, NSTY93].

3.4.1 The poor man’s exact arithmetic

In some restricted cases, it is possible to use an exact arithmetic which is as fast as the
fp one. This section describes the various tricks I have used in 1982-1983 to implement
such an arithmetic, for a 2D graphic editor [GM84, Mic87, GHPT89]: Probably other
people confronted with inaccuracy problems have used similar tricks at this time, but
very few of them were published —if any— because the latters were considered shameful in
the Computational Geometry field and inaccuracy was not considered as a relevant issue
at this time.

The 2D graphic editor used the Bentley and Ottman’s method to compute the intersection
points between the data segments. First the coordinates of the initial vertices were
rounded on integers in the range 0 to G = 30, 000: it was not a trouble for the application.
Thus the straight lines equations could also be stored in 3 int (machine integer): («, 3, 7)
such that |a| < G, |8] < G and |y| < 2G?, a trivial consequence of formula 1 in section
Az _ Ay

y = 5¥) could be represented

2.1. The intersection points between segments (z = 5, N
Az

(assuming w.l.o.g. that A > 0) by an int tuple (z. = [F], 2, = Az mod A,y. =
L%J?yr = Ay mod A, A): it is easy to see that 0 < z.,y. < G, and that 0 < 2,,y, <
A < 2G%. Some temporarily needed values, such Az or Ay, could exceed the maximum
int value, but these computations were exactly performed using double numbers. A final
trick was used to compare and sort these coordinates: the comparision of the two rational

numbers ¥ and <, with 0 < a < b and 0 < ¢ < d, cannot reduce to the comparision of ac

b 4’
and bd, since in some cases, these values were too large to be exactly represented by int,

or even by the mantissa of double numbers. Using a simultaneous continuous fraction

expansion of 7 and g, it is possible to say that ([Mic87] pp 38):

order(%, 2) = Order(g7 é) = Order(LgJ + M7 LEJ 4 m)

c a C C a a

If [4] # 2], then: b
)

a c d
order(g, 8) = order(LZJ, LE
otherwise:

a c dmodc¢ bmoda

order(g, 8) = order(\)
c a

Since ¢ < d and a < b, the recursion eventually terminates. For instance,

2 3 10 7 1 1 11
order(?, E) = order(?, 5) = order(3 + P 3+ 5) = order(g, 5)
2 3 0 0
- order(? I) = order(2 + T 3+ I) = order(2,3) = smaller

Remark: Obviously, the same trick can be used to compute the sign of the determinant

® ©|: this idea has since be used and extended to 3 by 3 determinants with integer

b d |
entries [ABD*95] by F. Avnaim, J-D. Boissonnat, O. Devillers, F.P. Preparata and M.

Yvinec.

Despite its interests, the limitations of such tricks are obvious. It cannot work in 3D or
beyond because the computation depth increases, so involved numbers become too big to
be exactly representable by machine numbers. For the same reason, algorithms cannot
be reentrant.

3.4.2 The LN library

S. Fortune and C. van Wyk proceed in two stages: First the program is pre-compiled
and the minimum number of digits needed for the exact arithmetic (the longest integer
generated by the algorithm, knowing the data range and the arithmetic expressions in
the program) is determined. For each test in the program, they automatically generate
C++ code:

1. to compute the test in standard fp-arithmetic, using references to original data only:;
2. to test if the fp-value is greater than the maximum possible error for the expression;
3. finally, to call the exact, long integer library to evaluate the expression.

The program is then compiled and linked with the exact library. Note that every test
must be made with reference to original data. This permits a static (ie before running-
time) computation of the maximum possible error for each expression when evaluated in

fp-arithmetic; so the error bound has not to be computed at run time with intervals or
whatever method. It speeds up execution, but it is not always very convenient for the
user [CM93]; it forbids on-line and reentrant algorithms, where the depth of computation
is not a priori known.

3.4.3 The lazy arithmetic

The lazy arithmetic computes with lazy rational numbers. A lazy rational number is
first represented by an interval of two fp-numbers, guaranteed to bracket the rational
number, be it known (exactly evaluated) or not; and then by a symbolic definition, to
permit recovering the exact value of the underlying rational number, if needed. The
definition is either a standard representation of a rational number (for example 2 arrays
or lists of digits in some basis, for the numerator and the denominator), or the sum or
the product of two other lazy numbers, or the reciprocal or the opposite of another lazy
number. Thus each lazy number is the root of a tree, whose nodes are binary (sum or
product) or unary (opposite or reciprocal) operators, and whose leaves are usual rational
numbers; actually, lazy numbers form a directed acyclic graph rather than a tree, since
any node or leaf may be shared. Each operation is generally performed in constant time
and space : a new cell is allocated for the number, its interval is computed from the
intervals of the operand(s), and the definition field is filled (operation type, and pointers
to the operand(s)). Intervals are the more often sufficient during computations; the
only cases when they become unsufficient, and when the definition has to be ‘evaluated’
(ie with rational arithmetic) are : when one wants to compare two lazy numbers the
intervals of which overlap, when one wants the sign or the reciprocal of a lazy number
whose interval contains (. The evaluation method is the natural and recursive one. To
summarize, rational computations are postponed until they become either unavoidable :
they are done, or useless in the majority of the cases : thus they will never be done if
they are useless. Using such a lazy library is transparent: classical geometric methods
need not to be modified.

The lazy library also provides hashing of lazy numbers. Hashing techniques typically per-
mit to recover topologic data from numerical ones, for instance vertices from coordinates.
Obviously this technique needs to compute hash codes from numbers. Here we face a
difficulty since the exact value of lazy numbers is unknown, and approximations are not
relevant for reliably computing hash keys. The solution stems from modular arithmetic

[BJMM94, MM96).

Contrarily to LN, the lazy library is fully dynamic and so equally applies to on-line
and reentrant algorithms : the computation depth needs not to be known a priori. In
compensation, LN when usable should be a little faster than the lazy library.

3.4.4 Open problems

These two arithmetics have serious limitations : they apply only when a rational arith-
metic is sufficient; but geometric problems met in the real world involve for instance

intersection between algebraic curves or surfaces. Rotations by kr with & € Q also in-
troduce algebraic numbers. Or lengths of some squares. . .it is an old story ! For the
moment, no lazy algebraic arithmetic has been proposed.

3.5 Interval Confining

The € heurism lost the transitivity of ordering (it is possible to have a =, b, b =, ¢ and
a #. ¢), so inconsistencies remain possible. In such a case, a solution is to abandon the
distinction between a, b and ¢, and to merge them into another larger entity, actually an
interval. Computations are performed with an interval arithmetic or another equivalent
method providing error bounds; as soon as two entities overlap, they are merged in a third
larger entity that contains the two previous ones. One can remark that two close but non
overlapping entities have to be merged when is introduced a third entity that overlap the
two first ones: one may deplore this loss of information (the distinction between the first
two entities is lost, whereas they are not modified), but it is the spirit of this approach,
the principle that ensures its consistency. The example of figure 5 will become something

like figure 8. This approach has been investigated by M. Segal [Seg90] and by D. Jackson

Figure 8: Three lines with their halos, incident to a fuzzy point (the circle).

[Jac95] in solid modelling. In 3D, geometric elements (vertices, edges or arcs, surfaces)
are surrounded by a thin halo of imprecision; two distinct and not adjacent elements must
have not overlapping halos. During say the computation of some boolean set operation
(intersection or union or difference between two ‘solid” geometric objects), two elements
the halos of which are found to overlap must be cut or merged to restore the consistency
of the data structures. In 1995, D. Jackson has implemented this way a robust algorithm
to compute boolean set operations between 3D geometric objects with curved surfaces.

The main advantages of this approach are that it applies not only to ‘linear’ problems
but also to algebraic ones, and that it does not rely on an exact arithmetic; so it is
fast. Moreover, it is intuitive. Finally, it can handle in a natural way inaccurate data:
either these data are obtained from some sensors and thus are known only up to some
precision, or on the other hand, the modelling stage has taken into account the fact that
mechanical objects can be manufactured only within some tolerance. Up to now, it is the
only approach that can represent fuzzy data.

Its drawbacks are that all algorithms must be modified. Moreover it is also not clear
for the moment that this approach really solves the inaccuracy issue. For instance, the
distance between two geometric elements can be computed in several but algebraically
equivalent ways; with a first formula, and in fp-arithmetic, one may find that two elements
do not overlap, but they will with another formula: so contradictions remain possible.

3.6 Bypassing the inaccuracy problem

3.6.1 The CSG representation

You can always try to bypass problems you do not know how to solve: in the CADCAM
communauty (by opposition to the more theoretician communauty of Computational
Geometry), this tendency emerges since the conference CSG94 and CSG96 [csg94]: It
considers that algorithms or data structures that do not withstand inaccuracy are say
paranoiac and must be avoided. First, this tendency wants to get rid of methods from
Computational Geometry: to achieve a good complexity, these last methods rely on
geometric consistencies and are made much more sensitive to inaccuracy than ‘brute force’
methods. Second, this tendancy rejects topology based data structures, like the Boundary
Representations (BRep for short). In a nutshell, BReps explicitly handles representations
for vertices, edges and surface patches, and all the topologic incidency relations between
them; they are very explicit but their redundancy (does this vertex numerically lies on
this surface though it topologically does?) exposes them to inconsistencies. In particular,
it is known that robustness is exceedingly difficult to achieve when performing boolean set
operations between geometric objects represented by Breps. The new tendency prefers
CSG representations.

CSG representations (Constructive Solid Geometry) describe objects in only an implicit
way, by CSG trees. A leaf of a CSG tree carries a primitive object, described by some
(typically algebraic) inequation f(x,y,z) < 0, for instance a quadric or a torus. A
node is either the union or the intersection or the difference between other CSG trees.
Mathematically speaking, a CSG is a semi algebraic set, modulo some regularization
problems (is it f(x,y,z) <0 or f(x,y,z) <0 7?) which are not relevant here.

Thus the contour of the object represented by a CSG tree is not explicitly described,
and it is not obvious that a CSG tree does not describe only the empty set, contrarily
to BReps. But there exist very robust methods to display objects defined by CSG trees,
say by ray-casting methods, and to approximately triangulate them by the so-called
marching-methods. We briefly present the principles of these techniques in the following
sections, to show they are insensitive to inaccuracy.

For people standing up for the CSG approach, the latter solves all problems, not only the
inaccuracy one, but also say difficulties met when blending surfaces with Breps. On the
other hand, all commercial CADCAM softwares rely on BReps, and perhaps not only by
chance ! It is too early to conclude.

3.6.2 Ray-casting methods

Pictures are described in Computer Graphics by 2D arrays of points, the so called ‘pixels’,
a shortcut for ‘picture element’. To compute such a picture of an object described by a
CS@ tree, the ray-casting method computes which object is seen in each pixel: the eye
location and the point to be computed define a half straight line: the ray, whose inter-
section with the scene has to be computed. When the object is a primitive f(x,y, z) < 0,
where f is typically a polynomial in x, y, z, this problem boils down to the resolution of
an algebraic equation in ¢: just replace z, y, z in f(x,y,z) =0 by @ = z.+al, y = y.+ bt,
z = z.+ct, where (2., y., z.) is the eye location and («, b, ¢) the support vector of the ray.
The numeric resolution yields the intersection, a set of intervals [tg, 1], [t2,t3] .. .along
the ray, where 0 < t5 < t; < t3 < t3.... When the object is a boolean combination,
say AN B for instance, it suffices to recursively compute the intersection of the ray with
subtrees A and B, which give two resulting sets of intervals Ay and Bp, and then to
calculate Ay N Bp: a trivial merge.

It is rather easy to protect this method against inaccuracy, since, if a difficulty occurs,
it is always possible to cheat and slightly perturb the ray: after all, each pixel stands
for a little square area in the picture and not only a point! In the worst cases, some
intersection intervals [t;,,11] between the ray and an object F'() < 0 may be forgotten,
or added, but this only occurs in two cases: first for exceedingly thin objects which only
occur when I decided to make fail the software (see Fig. 9) and secondly, when the ray
is almost tangent to the surface of the object: this last situation often happens but it is
immaterial for the final picture. Moreover, even when such errors are made, they are not
propagated to the other pixels, and the program never crashes.

Figure 9: Two ray-traced ellipsoids, with radius 1, and thickness 107° for the left one,
10=7 for the right one. The latter is so thin that some intersections are missed.

3.6.3 Marching-methods

To approximately triangulate objects defined by CSG trees within a given tolerance i (see
[PA94] in [csg94]), the space B? is first partitioned with a regular cubic lattice, with side
(; each cube is then partitioned into tetrahedra; for all vertices v = (&, y, z) of the lattice,
the value of the CSG tree at v is computed: for a primitive described by an inequation
flz,y,2) <0, it is f(v); for nodes AN B and AU B, it is respectively max(A(v), B(v))
and min(A(v), B(v)) where A(v) and B(v) recursively stand for the value of CSG trees A

and B at the point v. The surface of the object cut a given tetrahedron when the values
at the 4 vertices have opposite signs. These 4 values define, by linear interpolation, a
unique linear map {(x,y, z) from RB? to R, and the plane I(z,y, 2) = 0 is considered as a
good enough approximation of the contour of the object inside the tetrahedron: it gives
a triangle or a quadrilateral. The same is done for all tetrahedra. This technique is
illustrated in 2D in Fig. 10.

Marching-methods are not sensitive to inaccuracy: in the worst cases, a vertex value is
close to 0, and fp evaluations may yield a wrong sign for the value, but the only and
immaterial consequence will be to move a little the approximation surface.

N\

Figure 10: A 2D curve and its piecewise linear approximation. The topology may be dif-
ferent, and some small components of the real curve may be forgotten. But this technique
is perfectly robust.

Of course, 1t is better to use some optimizations to not consider all cells of the lattice,
like some computation by intervals [dFS95, Tau93], or like exploiting the continuity: once
a starting tetrahedron crossed by the surface is known, the sides by which the contour
surface leaves the tetrahedron are easily computed and the contour surface is then followed
in the neighbouring tetrahedron. These optimizations are beyond the scope of this paper,
but the reliability of the marching-methods is preserved.

Thus a BRep (and all its precious informations) can be obtained from a CSG tree, without
having to perform boolean set operations on BReps, a very unreliable process. But it
is possible to go farther and to question the need for a BRep: why not stop at the
discretization stage?, as the next section argues.

3.6.4 Discretization

Boundary representations are basically used to approximately ‘evaluate’ a CSG object.
However they are not the only possible way, only the usual one, due to the history of the
CADCAM field. Discretization is another solution: the space is represented by a 3D array
of points, the so called ‘voxels’, a shortcut for ‘volume element’. This discrete represen-
tation makes trivial the most frequent geometric problems (estimating mass properties,
interference detection, boolean operation, etc) and it virtually removes the inaccuracy
problem.

Today, Computer Tomography and Magnetic Resonance Imaging make it possible to
acquire such image data in 3D. On the other side, from such a voxel-based representation,
Rapid Prototyping [SBE95] can produce real tactile plastic prototypes for manufacturers,
chemists or biologists by ‘printing in 301, using stereolithography: the stereolithography
apparatus builts the prototype slice by slice, by laying down a thin layer (between 0.1 and
0.5 millimeters) of liquid resin on the previous slice, instantly curing it into solid plastic,
and starting again. Moreover, at this level of precision, almost the molecular level, the
voxel-based representation is also the most precise one: this is in contrast with the not
so old reluctancy of some theorists for this discrete representation, which they considered
as a trivial and very rough approximation of ‘exact’ CSG models. Last, the voxel-based
representation is always the simplest one, obviously.

It is worth comparing the history of the representation of the space with the one of
pictures: In the beginning of Computer Graphics and CADCAM, more than twenty
years ago, pictures were usually not represented by discrete representations, ie 2D arrays
of pixels, but by boundary representations, because discrete representations were too
cumbersome at this time, and available devices only provide wire frame display, which
boundary representations were best suited for. The related algorithms, for removing
hidden parts for instance, already had troubles with inaccuracy. Nowaday, pictures are
represented by discrete representations, and everybody has forgotten these algorithms
and their inaccuracy problems. One can wonder if, similarly, the time is not comed for
discrete representations of space to supplant boundary representations of solids, and to
remove the inaccuracy problem in geometric computations?

4 Conclusion

This paper has shown how crucial for geometric computations the inaccuracy issue is.
Some examples has shown the specificity of geometric computations, the fact that below
geometry lay deeper combinatorial structures, the non respect of which lead to topological
inconsistencies and running time crashs.

This paper has surveyed the more typical proposed approaches to overcome the inaccu-
racy problem: the arithmetical approach tries to improve the used arithmetic to save
geometric methods and also Computational Geometry itself from inaccuracy. On the
other hand, the Computer Graphics and CADCAM communauties reject data structure

and algorithms considered not robust enough against inaccuracy, typically the boundary
representations and theoretical algorithms from Computational Geometry. They argue
that simpler algorithms, like ray-tracing or marching-methods, and data structures, like
CSG trees, ray-representations or voxel-based representations, are insensitive to inaccu-
racy and potentially solve all problems met by geometric modellers.

It is sure that arithmetic issues are the current crucial challenge for the Computational
Geometry field: as long as the inaccuracy problem will not be solved, Computational
Geometry will not apply to problems in the real world, and its algorithms and data
structures will not be used.

On the other hand, it is not sure that the approach advocated in the Computer Graphics
and CADCAM fields definitively avoid the inaccuracy problem: maybe the latter is only
defered for a moment, but will soon reappear.

References

[AA94] Agrawal A. and Requicha A.G. A paradigm for the robust design of algorithms
for geometric modeling. Computer Graphics Forum (FUROGRAPHICS 94),
13(3):C-33-C-44, 1994.

[ABD*95] F. Avnaim, J-D. Boissonnat, O. Devillers, F.P. Preparata, and M. Yvinec.
Evaluation of a new method to compute signs of determinants. In Proceedings
of the 11th Symposium on Compututational Geometry, pages C16-C17. ACM
Press, 1995.

[Bak84] A. Baker. A concise introduction to the theory of numbers. Cambridge Uni-
versity Press, 1984.

[BJIMM93] M.O. Benouamer, P. Jaillon, D. Michelucci, and J-M. Moreau. A lazy arith-
metic library. In Proceedings of the IEEE 11th Symposium on Computer
Arithmetie, Windsor, Ontario, June 30-July 2, 1993.

[BJIMM94] M.O Benouamer, P. Jaillon, D. Michelucci, and J.M. Moreau. Hashing lazy
numbers. Computing, 53(3-4):205-217, 1994.

[Can88| J. Canny. The complexity of robot motion planning. M.I1.'T. Press, Cambridge,
Mass., 1988.

[CM93] J.D. Chang and V. Milenkovic. An experiment using In for exact geometry
computations. In Proceedings of the 5th Canadian Conference on Computa-
tional Geometry, pages 67-72, Waterloo, Canada, August 5-9, 1993.

[csg94] Set Theoretic Solid Modelling Techniques and Applications. Information Ge-
ometers Ltd, 47 Stockers Avenue, Winchester, 5022 5LB, UK, 1994. Pro-
ceedings of the CSG 94 Conference, Winchester, UK, 13-15 april 1994.

[dFS95]

[EC92]

[EMO0]

[FVW93]

[GHPTS9]

[GM384]

[Grii67]
[GT91]

1589

[Jac95]

[Jus92]

[KLNO1]

[Knu92]

L.H. de Figueiredo and J. Stolfi. Adaptive enumeration of implicit surfaces
with affine arithmetic. In Proceedings Furographics Workshop on Implicit
Surfaces, pages 161-170. INRIA, 1995.

[. Emiris and J. Canny. An efficient approach to removing geometric degen-
eracies. In Proc. 8th ACM Symp. on Comp. Geometry, pages 74-82, Berlin,
Germany, 1992.

H. Edelsbrunner and E.P. Miicke. Simulation of simplicity: a technique to
cope with degenerate cases in geometric algorithms. ACM Trans. Graph,

9:66-104, 1990.

S. Fortune and C. Van Wyk. Efficient exact arithmetic for computational
geometry. In Proceedings of the 9th ACM Symposium on Computational Ge-
ometry, pages 163-172, San Diego, May 1993.

M. Gangnet, J.C. Hervé, T. Pudet, and J.M. Van Thong. Incremental
computation of planar maps. ACM Computer Graphics (SIGGRAPH 89),
23(3):345-354, July 1989.

M. Gangnet and D. Michelucci. Un outil graphique interactif. In Proceedings
of MICAD 84, pages 95-110. Hermes, Feb.-Mar 1984.

B. Grunbaum. Convez polytopes. London Interscience, 1967.

M. Gangnet and J.M. Van Thong. Robust boolean operations on 2d paths. In
Proceedings of COMPUGRAPHICS91, volume 2, pages 434443, Sesimbra,
Portugal, 1991.

M. Iri and K. Sugihara. Construction of the Voronoi diagram for one million
generators in single-precision arithmetic. In Proceedings of the 1st Canadian
Conference on Computational Geometry, Montréal, 1989.

D. Jackson. Boundary representation modelling with local tolerances. In
Proceedings of the Symposium on Solid Modeling Foundations and CAD/CAM
Applications, pages 247-253, 1995.

N.P. Juster. Modelling and representation of dimensions and tolerances: a

survey. CAD, 24(1):3-17, jan 1992.

M. Karasick, D. Lieber, and L.R. Nackmann. Efficient delaunay triangulation
using rational arithmetic. ACM Transactions on Graphics, 10:71-91, Jan.
1991.

D.E. Knuth. Azioms and hulls. Lecture Notes in Computer Science (606),
Springer-Verlag, 1992.

[Mic87]

[Mic95]

[Mil8§]

[MMO96]

[NSTY93]

[0TC87)

[PAY4]

[SBE95]

[Seg90]

[Tau93]

[Yam387]

D. Michelucci. Les représentations par les frontieres : quelques constructions;
difficultés rencontrées (in french). PhD thesis, Ecole Nationale Supérieure
des Mines de Saint-Etienne, 1987.

D. Michelucci. An epsilon-arithmetic for removing degeneracies. In Pro-
ceedings of the IEEFE 12th Symposium on Computer Arithmetic, Windsor,
Ontario, July 1995.

V.J. Milenkovic. Verifiable Implementations of Geometric Algorithms Using
Finite Precision Arithmetic. PhD thesis, Carnegie-Mellon, 1988.

D. Michelucci and J-M. Moreau. Lazy arithmetic. to be published in IEFEFE

Transactions on Computers, 1996.

J. Nakagawa, H. Sato, K. Toshimitsu, and F. Yamagushi. An adaptive error-
free computation based on the 4x4 determinant. The Visual Computer, 9:173—
181, 1993.

G. Ottmann, G. Thiemt, and Ullrich C. Numerical stability of geometric
algorithms. In Proceedings of the 3rd ACM Symposium on Computational
Geometry, pages 119-125, 1987.

R.M. Persiano and A. Apolinario. Boundary evaluation of csg models by
adaptative triangulation. In CSG 94 : Set Theoretic Solid Modelling Tech-
niques and Applications, Information Geometers Ltd, april 1994.

P. Stucki, J. Bresenham, and R. Earnshaw. Computer graphics in rapid
prototyping technology. IEEE Computer Graphics and Applications (special
issue on Rapid Prototyping), 15(6):17-19, Nov. 1995.

M. Segal. Using tolerances to guarantee valid polyhedral modeling results.
Computer Graphics (SIGGRAPH 90 Proceedings), 24(4):105-114, August
1990.

G. Taubin. An accurate algorithm for rasterizing algebraic curves. In Second
Symposium on Solid Modeling and Applications, ACM/IEEE, pages 221-230,
May 1993.

F. Yamagushi. Theoretical foundations for the 4x4 determinant approach in
computer graphics and geometrical modeling. The Visual Computer, 3:88-97,
1987.

