
Some Lemmas to Hopefully Enable Search

Methods to Find Short and Human Readable

Proofs for Incidence Theorems of Projective

Geometry

Dominique Michelucci

LE2I, UMR CNRS 5158, 9 av Alain Savary, BP 47870, 21078 Dijon cedex, France
Dominique.Michelucci@u-bourgogne.fr

Abstract. Search methods provide short and human readable proofs,
i.e. with few algebra, of most of the theorems of the Euclidean plane.
They are less succesful and convincing for incidence theorems of projec-
tive geometry, which has received less attention up to now. This is due to
the fact that basic notions, like angles and distances, which are relevant
for Euclidean geometry, are no more relevant for projective geometry.
This article suggests that search methods can also provide short and hu-
man readable proofs of incidence theorems of projective geometry with
well chosen notions, rules or lemmas. This article proposes such lemmas,
and show that they indeed permit to find by hand short proofs of some
theorems of projective geometry.

1 Introduction

What is a proof? In a first acceptation, a proof is a guarantee, a certificate
that some theorem holds; these proofs are very detailed and rigorous, e.g. they
account for degenerate cases. These proofs are not intended to be read or under-
stood by a human: they can be tedious computations, resorting to some algo-
rithms in Computer Algebra (Wu-Ritt method, Gröbner bases); the guarantee
is due to the correctness of the Computer Algebra program. Such proofs provide
certitudes, but do not always bring understanding or enlightenment. In a sec-
ond acceptation, a proof brings us (i.e. human beings) explanation, knowledge,
understanding, and even enlightenment: e.g. these proofs may suggest general-
izations, or apply to more general theorems. They must be easy to read and
understand. The shorter the proof, the better. Visual proofs are extreme ex-
amples of such proofs. Details such as degeneracies must not occlude the main
arguments of these proofs.

This paper considers the possibility for search methods to produce short and
human readable proofs (i.e. with as few algebra as possible) for theorems of
projective geometry, mainly for the projective plane. The hypothesis and the
conclusion of these theorems are point-line or point-conic incidences. An avenue
to compute short proofs is to apply powerful lemmas, in contrast to proofs of
the first kind which relies on long and tedious algebraic computations.



Previous works: search methods [7, 8, 6, 2, 3, 5, 17] give human readable proofs
in Euclidean geometry with very few algebra. Many consider a typical figure to
prune the search combinatorial space and discard irrelevant degenerate cases in
the wake of 1959 Gelertner’s pioneering work [7, 8, 6]. However the ruleset of cur-
rent search methods is not well suited to prove incidence theorems of projective
geometry; for example angles, distances, similitudes, isometries are relevant for
Euclidean geometry, but not for projective geometry. Raymond Pouzergues [13]
(unfortunately in French only) proves by hand 2 dozens of incidence theorems in
the projective plane, relying on a variant of Pascal’s Mystical Hexagram theorem
as a main lemma, which he calls the hexamys theorem. Michelucci and Schreck
[11] automatize the search of hexamys. But they do not rely on a typical fig-
ure to prune the combinatorial space and to discard irrelevant degenerate cases,
and (with hindsight) their ruleset is not powerful as it could be; for instance
they do not use brianchons (hexamys duals, defined below). Richter-Gebert et
al proposed combinatorial-algebraic proofs [1, 14] called binomial proofs.

This article proposes lemmas and rules which could make search methods able
to provide short and human readable proofs of incidence theorems of projective
geometry.

Only some of the proofs given below have been found after a computer search
(with an ad-hoc program). The proofs given below must be considered as an
empirical evidence that the rules or lemmas which are proposed indeed permit
to find short and human readable proofs of incidence geometry. This article does
not focus on the algorithmic part of combinatorial search methods. I will only
mention that a feature of theorems in projective geometry, and an issue (or an
opportunity?), is their big number of symmetries.

The plane of this article is as follows: §2 presents the main lemmas usable
in short proofs. Then §3 proves Desargue’s theorem, §4 proves Desargue’s the-
orem in the Cevian case, §5 proves the 3 chords theorem and a generalization,
§6 explicits the dual of this theorem, §7 proves the 3 circles theorem and its
generlization, §8 proves the 4 circles theorem and a generalization. §9 gives some
algorithmics to compute automatically this kind of proofs. §10 concludes.

2 Chasles, Pascal, Brianchon

Powerful lemmas enable short proofs. A main lemma which seems able to prove
a significant number of theorems involves cubic curves; it was first proved by
Michel Chasles and later generalized to curves of higher degree by Cayley and
Bacharach.

Lemma 1. In the projective complex plane, all cubic curves C which pass through
8 of the 9 (distinct) intersection points of 2 other cubic curves C1 and C2 (with-
out common component) also pass through the 9th point.

This theorem solves an apparent contradiction. On one hand, a cubic curve
is defined by 9 different points, under some genericity conditions (for instance,
no 4 of the points lie on a common line, and no 7 of the points lie on a common



conic). On the second hand, after Bézout theorem, two cubic curves (without
common component) C1 and C2 in the complex projective plane intersect in
exactly 9 different points (in the generic case); but these 9 intersection points
do not define an unique cubic curve, because the two cubic curves C1 and C2

(and all linear combinations C(x, y, h) = tC1(x, y, h) + (1 − t)C2(x, y, h) where
Ci(x, y, h) = 0 is the homogeneous equation of the curve Ci) are different and
pass through the 9 points. The solution to this apparent dilemma is to realize
than the 9 intersection points are not independent. Actually they have rank 8,
in a sense precised in the following proof of Chasles’ theorem:

Proof. Assume points have homogeneous coordinates (x, y, h) in C3 \ (0, 0, 0).
Define φ : C3 → C10,

φ(x, y, h) = (x3, y3, h3, x2y, x2h, y2h, xy2, xh2, yh2, xyh)

Then every cubic curve has equation Q · φ(x, y, h) = 0, where · denotes the
Hermitian scalar product, and Q is a non zero vector in C10. Each cubic curve
is represented with an hyperplane in C10. Hyperplanes in C10 have rank 9. The
intersection of 2 hyperplanes (representing the intersection of 2 cubic curves)
has rank 8. Now, after Bézout’ theorem, two cubic curves intersect in 9 differ-
ent points in generic case. Thus the 9 intersection points φ(p1), φ(p2), . . . φ(p9)
between the 2 cubics have rank 8: only 8 of the 9 points are independent, and
the 9th lies in the vector space spanned by the 8 others.

Remark 1. Rank 10 matroids capture Chasles’ theorem. A method to prove inci-
dence theorems searches the matroids compatible with the hypothesis incidences
[11].

Fig. 1. From left to right: Pascal’, Pappus’, Brianchon’s theorems.

Chasles’ theorem permit to prove the Pascal mystical hexagram theorem
(Fig.1):

Theorem 1 (Pascal’s mystical hexagram). The opposite sides of an hexagon
inscribed in a conic curve meet in 3 colinear points.



Proof (with Chasles theorem). Let p0, p1, . . . p5 the 6 points on a conic. The 3
intersection points of opposite sides are i0 = p0p1 ∩ p3p4, i1 = p1p2 ∩ p4p5 and
i2 = p2p3 ∩ p5p0. Call C1 the cubic curve which is the union of the 3 lines p0p1,
p2p3 and p4p5. Call C2 the cubic curve which is the union of the 3 lines p1p2,
p3p4 and p5p0. C1 and C2 meet at the 9 intersection points p0, . . . p5, i0, i1, i2.
The cubic curve C is the union of the conic curve through the pis and of the
line i0i1. C passes through 8 of the 9 points (namely the pis and i0 and i1).
Thus after Chasles’ theorem, C also passes through the 9th point i2. Admitting
i2 does not lie on the conic (an example, i.e. a figure –also called a witness– is a
visual proof sufficient and very convenient for a human), i2 must lie on the line
i0i1.

Chasles’ theorem permits to prove Pappus’ theorem (Fig.1):

Theorem 2 (Pappus). 3 points p0, p2, p4 lie on a first line, and 3 points
p1, p3, p5 lie on a second line. Then the 3 intersection points i0 = p0p1∩p3p4, i1 =
p1p2 ∩ p4p5, i2 = p2p3 ∩ p5p0 are colinear.

Proof (with Chasles theorem). Define C1 and C2 as before: C1 is the cubic curve
which is the union of the 3 lines p0p1, p2p3 and p4p5. C2 is the cubic curve
which is the union of the 3 lines p1p2, p3p4 and p5p0. C1 and C2 meet at the 9
intersection points p0, . . . p5, i0, i1, i2. The cubic curve C is the union of the line
p0p2p4, the line p1p2p3, and the line i0i1. C passes through 8 of the 9 points,
thus it passes through the 9th point which is i2. Admitting i2 does not lie on
the lines p0p2p4 nor p1p3p5 (an example, i.e. a figure, is sufficient), i2 must lie
on the line i0i1.

Remark 2. This line of thought was introduced by Chasles. It has been somewhat
forgotten for the benefit of Bourbaki style. It is today revisited, for instance in
Richter-Gebert’s book [15].

Pouzergues reformulates Pascal’ theorem as follows:

Definition 1. An hexamys is an hexagon p0p1p2p3p4p5 such that opposite sides
meet in 3 colinear points (either 3 distinct colinear point, or 2 distinct points)
i0 = p0p1 ∩ p3p4, i1 = p1p2 ∩ p4p5 and i2 = p2p3 ∩ p5p0.

Theorem 3 (Hexamys). All permutations of an hexamys are hexamys.

Proof. Trivially, the 6 points of an hexamys lie on a conic, whatever the permu-
tation of the 6 points.

Pouzergues [13], then Michelucci and Schreck [11], use hexamys to prove in-
cidence theorems in the projective plane: a colinearity between 3 points i0, i1, i2
(together with 6 lines: d0, d

′

0 through i0, d1, d
′

1 through i1, d2, d
′

2 through i2) gen-
erates an hexamys, every permutation of which imply new colinearities. Hexamys
also permit to prove concurrences of 3 lines.

Instead or together with hexamys, it is possible to use Brianchons, from Bri-
anchon’s theorem. Brianchons permits to prove concurrence of lines. Brianchon’s
theorem (Fig.1) states that



Theorem 4 (Brianchon). If a conic is inscribed in an hexagon with vertices
p0p1p2p3p4p5 (i.e. the 6 lines p0p1, . . . p4p5, p5p0 of the hexagon are tangent to
the conic) then the 3 diagonal lines of the hexagon, namely p0p3, p1p4, p2p5, are
concurrent.

Proof. with Chasles. Omitted for conciseness.

It is possible to cancel all references to conics in Brianchon’s theorem, as we
do for Pascal’s.

Definition 2 (brianchon). A brianchon is an hexagon with lines d0d1d2d3d4d5

and vertices pi = di ∩ d(i+1)mod 6 and such that the 3 diagonal lines p0p3, p1p4,
p2p5 are concurrent.

Brianchon’s theorem can be restated as:

Theorem 5. Every permutation of the lines of a brianchon is a brianchon.

Fig. 2. Brianchon’s theorem: if p0, p1, p2, p3, p4, p5 is a brianchon, then p0, a = p0p1 ∩

p2p3, p2, b = p1p2 ∩ p3p4, p4, p5 is a brianchon as well.

It suffices to prove this theorem for a transposition (an exchange), since
transpositions generate the group of permutations (Fig.2).

Proof. with Pappus. A brianchon has vertices p0, p1, p2, p3, p4, p5 and lines
d0 = p0p1, . . . d5 = p5p0. Let us exchange lines d1 and d2, and prove that the
hexagon with lines d0, d2, d1, d3, d4, d5, and with vertices p0, p1, a = d0 ∩ d2 =
p0p1 ∩ p2p3, p2, b = d1 ∩ d3 = p1p2 ∩ p3p4, p4, p5 is a brianchon. So we need
to prove that the 3 diagonal lines p0b, ap4, p2p5 are concurrent. By hypothesis,
p0p3, p1p4, p2p5 concur in some point o. Apply Pappus’ theorem on the 3 colinear
points: p0, p1, a and on the 3 colinear points p4, p3, b; it implies that the 3 points:



Fig. 3. The 2 triangles in perspective of Desargue’s theorem; the first hexamys with
points o, b′, b colinear by hypothesis; the second hexamys which proves that b′′, a′′, c′′

are colinear.

p0p3∩p1p4 = o, p1b∩ap3 = p2, ap4∩p0b = x are colinear. Thus the point x lies on
ap4, on p0b and on op2 = p5p2. Thus the hexagon with vertices p0, a, p2, b, p4, p5

is a brianchon.

Proof. by hexamys. Omitted for conciseness.

Proof. by Chasles. In the previous proof by Pappus’ theorem, replace Pappus’
theorem with its proof by Chasles.

Remark 3. A combinatorial search for brianchons (find 3 concurrent lines, and
2 points on each line) in a specified configuration permits to deduce new brian-
chons, and thus new triples of concurrent lines. It also permits to prove colin-
earities.

Another short proof of Brianchon’s theorem is

Proof. By duality: Brianchon’s theorem is the dual of Pascal’s theorem.

Indeed duality is another powerful lemma which yields short proofs. Duality
exchanges the roles of points and lines, preserving incidences. Gergonne [4] real-
ized first that all the theorems in the projective plane can be dualized. Duality
exchanges circles (conics, cubics) with dual circles (conics, cubics). A dual circle
(conic, cubic) is a set of lines tangent to a circle (conic, cubic). Duality is used
in §6.

3 Desargue’s theorem

Desargue’s theorem (Fig. 3) is a combinatorial property of 5 planes in 3D, which
still holds after projection on any plane:

Theorem 6 (Desargue theorem.). Let a, b, c and a′, b′, c′ be 2 triangles in
perspective, i.e. the 3 lines aa′, bb′, cc′ concur in a point o. Then the 3 inter-
section points between homologous sides: c′′ = ab ∩ a′b′, a′′ = bc ∩ b′c′, and
b′′ = ca ∩ c′a′ are colinear.



Fig. 4. Left to right: the 2 triangles in perspective in the Cevian case (a′ lies on bc, etc);
c, a′′, u, a, c′′, v is an hexamys because opposite sides cross in 3 points b, b′, o colinear
by hypothesis; thus c, a, u, a′′, c′′, v is also an hexamys; thus b′′, a′, c′ are colinear.

Proof (with dimension lifting). Assume the triangles abc and a′b′c′ lie in 2 dis-
tinct planes, in 3D, and are still in perspective when viewed from point o. Points
a, b, a′, b′ are coplanar (since lines aa′ and bb′ cross at o). Thus lines ab and a′b′

are coplanar and intersect at some point c′′ (possibly at infinity). Now, line ab

lies on plane abc, line a′b′ lies on plane a′b′c′, thus these 2 lines must intersect
somewhere along the intersection line l of planes abc and a′b′c′. The same holds
for a′′ and b′′: they lie on l (here we use symmetry to factorize and shorten the
proof). Thus a′′, b′′, c′′ are colinear.

Remark 4. This proof is captured by rank 4 matroids. This kind of proof is used
in [9] (in [16]).

Proof (By hexamys (thus by Chasles)). Define u = a′b′ ∩ bc and v = ab ∩ b′c′.
(a, a′, u, c, c′, v) is an hexamys because its opposite sides meet in points o, b′, b,
aligned by hypothesis. Thus (a, c, u, a′, c′, v) is another hexamys, the opposite
sides of which meet in 3 aligned points: b′′, a′′, c′′.

4 Desargue’s in Cevian case

In the cevian case of Desargue’s theorem (Fig.4), the two triangles are still in
perspective, but the vertices of one triangle lie on the edges of the second triangle.

Theorem 7 (Desargue in Cevian case). Again, 2 triangles abc and a′b′c′

are in perspective viewed from point o. Moreover each of the vertices a′, b′, c′ lies
on the corresponding side bc, ca, ab. As in the generic case, homologous sides
intersect at colinear points a′′ = bc ∩ b′c′, b′′ = ca ∩ c′a′, c′′ = ab ∩ a′b′.

Proof (with hexamys). The following proof (see Fig.4) needs only one hexamys
and is much simpler than the proof in [11]. It was found with a computer search.
Points a, b, c, o are given. As usual define a′ = oa ∩ bc, b′ = ob ∩ ac, c′ = oc ∩ ab.
Then define a′′ = bc ∩ b′c′, c′′ = ab ∩ a′b′, and here comes the unusual thing:
b′′ = a′′c′′ ∩ ac; thus a′′, b′′, c′′ are colinear but we have now to prove that b′′

indeed lies on a′c′. Pose u = oa ∩ b′c′, and v = oc ∩ a′b′. Then c, a′′, u, a, c′′, v is



Fig. 5. Left: The 3 pairwise common chords concur. Right: the dual theorem: The 3
homothety centres of pairwise circles are colinear. For readibility, only 3 centres and 1
line are displayed. Actually there are 6 centres, forming 4 lines.

an hexamys because its opposite sides intersect in b, b′, o colinear by hypothesis;
thus after permutation, c, a, u, a′′, c′′, v is also an hexamys; its opposite sides
intersect at points b′′, a′, c′, thus b′′ indeed lies on line a′c′.

5 The 3 chords theorem

Theorem 8 (The 3 chords theorem). Let A, B, C be 3 intersecting circles.
Apart cyclic points, A and B meet in points c, c′, A and C meet in points b, b′,
B and C meet in points a, a′. Then the 3 chord lines aa′, bb′, cc′ concur.

Remark 5. Circles are objects living in the Euclidean plane, not in the projective
plane. But we will replace circles by conic in a moment.

Proof. By Chasles. The cubic curve A′ is the union of circle A and line aa′.
The cubic curve B′ is the union of circle B and line bb′. The cubic curve C ′ is
the union of circle C and line cc′. The 2 cubic curves A′ and B′ intersect in 9
points: a, b, c, a′, b′, c′, I, J, aa′ ∩ cc′ = o, where I and J are the two cyclic points
(they have homogeneous coordinates (1,±

√
−1, 0) and belong to all circles). The

cubic curve C ′ passes through the first 8 of these points. By Chasles’ theorem,
C ′ = C ∪ (cc′) passes also through the 9th point aa′ ∩ cc′ = o. Since o′ does not
lie on C (a witness, i.e. a figure, is a sufficient visual proof for a human), o′ lies
on line cc′. Thus the 3 chords are concurrent.

The usual proof is as follows: first the power of a point p relatively to a circle
C is defined; let l an arbitrary line through p which cuts C in points c and c′.
Then the power of p relatively to C is the product (c̄ − p̄)(c̄′ − p̄) where c̄, c̄′, p̄

are abscissas of points c, c′, p along the line. Then it is proved that the power is
independent on the line l, and that the line of the common chord of two circles
is the locus of points with equal power relatively to the 2 circles. Finally, if o

lies on the common chords of circle A and B, and of A and C, then o has equal
power relatively to circles A, B and C, thus o lies on the third common chord of



B and C. The proof is partly algebraic, but short enough to be human readable.
But it is hard to generalize this theorem. The proof by Chasles proves more than
this theorem. Actually, the proof by Chasles’ theorem proves the more general
theorem:

Theorem 9. Let A, B, C be 3 conics. All 3 conics pass through 2 common
distinct points (called I and J in the initial 3 chords theorem). A and B also
intersect in c and c′, B and C also intersect in a, a′, and A and C intersect in
b, b′. Then after the previous Chasles’ proof, the lines aa′, bb′ and cc′ concur.

We mention yet another proof of the 3 chords theorem: Chasles’ theorem lifts
in dimension 10, but dimension 3 is sufficient (and more intuitive):

Proof. Dimension lifting. Lift the Euclidean plane on the parabolic sheet z =
x2 + y2: L(x, y) = (x, y, z = x2 + y2). Cocyclic points in the plane become
coplanar points after lifting. The common chord of 2 circles A and B is the
projection on the plane Oxy of the intersection line between the 2 planes L(A),
L(B) of the lifted circles. Now, the 3 planes of L(A), L(B), L(C) in 3D intersect
in one common point.

6 The dual of 3 chords theorem

Duality is illustrated with the dual of the 3 chords theorem, in Fig 5. Both
theorems and their proofs can be dualized.

Theorem 10 (Dual of the 3 chords theorem.). Let A, B, C be 3 circles.
Lines a, a′ are common tangents to B and C, Lines b, b′ are common tangents
to A and C. Lines c, c′ are common tangents to A and B. Then the 3 intersection
points a ∩ a′, b ∩ b′, c ∩ c′ are colinear.

Proof (Usual proof). a ∩ a′, etc is the centre of the scaling (homothety, or ho-
mothecy, a non-rotating dilation) which maps circle B to C. This scaling is equal
to the composition of the scaling which maps circles B to A (with centre c∩ c′),
and the scaling which maps circles A to C (with centre b ∩ b′). These 2 scalings
leave globally invariant the line joining their centres c∩ c′ and b∩ b′. Thus c∩ c′

lies on this line, using the lemma: lines globally invariant through a scaling all
pass through the centre of the scaling.

For conciseness, the dualization of other theorems (Chasles’, theorem 9, etc)
and their proofs are left to the reader.

7 The 3 circles theorem

Theorem 11. The 3 circles theorem. Let a, b, c be the 3 vertices of a triangle.
Let a′ be any point on line bc, let b′ be any point on line ac, and c′ any point
on line ab. Let A be the circle through points a, b′, c′, let B be the circle through
points b, a′, c′, and C be the circle through points c, a′, b′. Then the 3 circles
A, B, C have another common point ω.



Fig. 6. Left: Three circles theorem: the 3 circles share a common point (other than the
2 cyclic points). Right: the 4 circles theorem, the four circles share a common point.

Proof. by Chasles. See Fig.6. Let A′ be the cubic which is the union of circle
A and line a′bc, B′ the cubic which is the union of circle B and line ab′c, and
C ′ the cubic which is the union of circle C and line abc′. The 2 cubic curves A′

and B′ meet in 9 different points a, b, c, a′, b′, c′, I, J, ω where I, J are the 2 cyclic
points common to all circles, and ω is the intersection point of A ∩ B which is
not c′. The third cubic C ′ passes through the first 8 of these 9 points. Thus after
Chasles’ theorem, it also passes through the 9th point ω. Thus the 3 circles share
a common point, ω.

Remark 6. Again, the proof by Chasles’ theorem proves more than the 3 circles
theorem, because the cyclic points I and J can be replaced with any generic
points. It proves the following theorem:

Theorem 12 (A triangle and 3 conics). Let a, b, c be 3 points, let a′, b′, c′

be 3 points with a′ ∈ bc, b′ ∈ ac, c′ ∈ ab. Let I, J be 2 generic distinct points
which do not lie on lines ab, ac, bc. Let A be the conic curve through 5 points
a, b′, c′, I, J , let B′ be the conic curve through 5 points b, a′, c′, I, J , let C ′ be
the conic curve through 5 points c, a′, b′, I, J . Then the 3 conics share another
intersection point ω.

8 The 4 circles theorem

Theorem 13 (The 4 circles theorem.). Let a, b, c, d be 4 points in generic
position. Let f = ab ∩ cd, and f ′ = ac ∩ bd. Let Cab be the circle through a, b, f ;
let Ccd be the circle through a, b, f ; let Cbc be the circle through b, c, f ′; let Cad

be the circle through a, d, f ′. Then the 4 circles Cab, Ccd, Cbc, Cad share another
common point, which is not a cyclic point.

Proof (by Chasles). See Fig.6. Let C ′

ab
be the cubic curve which is the union of

Cab and line cdf ′; let C ′

cd
be the cubic curve which is the union of Ccd and line

abf ′; let C ′

bc
be the cubic curve which is the union of Cbc and line adf ; let C ′

ad



be the cubic curve which is the union of Cad and line bcf ; then the 2 cubics C ′

ab

and C ′

cd
intersect in 9 distinct points a, b, c, d, f, f ′, I, J, ω, where I, J are the two

cyclic points common to all circles, and ω is the other intersection point of circles
Cab and Ccd (the 3 other intersection points are f and I, J). The cubic curve
C ′

bc
passes through the 8 first of these 9 points, so after Chasles’ theorem, it also

passes through the 9th point, ω. Since ω does not lie on the line adf , component
of the cubic curve C ′

bc
(a figure or witness is a sufficient visual proof), it means

that ω lies on the other component of C ′

bc
, the circle Cbc. Similarly for the cubic

C ′

ad
, which is left to the reader (A symmetry argument, in fact a permutation,

can also be used).

Remark 7. Again, Chasles’ proof proves more: I and J can be generalized to
any (generic) points.

Theorem 14. Let a, b, c, d, i, j be any generic points and f = ad ∩ bc, f ′ =
ab ∩ cd. Points i and j generalize previous cyclic points I and J , they are any
point (i generic position). The 4 conics Cab, Ccd, Cbc, Cad share points i and j.
Moreover the conic Cab passes through a, b, f , the conic Ccd passes through c, d, f ,
the conic Cbc passes through b, c, f ′, the conic Cad passes through a, d, f ′. Then
the 4 conics share another common point ω.

Proof. In the previous proof by Chasles, replace I with i, and replace J with j.

9 Automatization

All previous proofs share the same combinatorial flavor and resort to the same
lemmas arguments (Pascal’, Chasles’, Brianchon’s theorems), which suggests
that the search of such proofs can be automatized with search methods [11]. It
will extend the naive algorithm in [11]: it also considers brianchons, and it relies
on a witness, i.e. it considers a typical figure to prune the combinatorial search
space and discard irrelevant degenerate cases.

In a nutshell, users provide (possibly interactively) the hypothesis and the
conclusion of a conjecture. Hypothesis and conclusion involve only incidences.
All incidences (point-circle incidences, point-conic incidences, point cubic inci-
dences) are internally reducible to point-line incidences: a circle is just a conic
passing through two constant points (the cyclic points), 6 points on the same
conic are an hexamys, and a cubic is the union of 3 distinct lines, or of a line
and a proper conic.

Users also provide a witness. A witness is a figure, which illustrates the con-
jecture to be proved, and where vertices (and possibly lines and conics) have
numerical coordinates (either rational, floating-point, interval), and names. H.
Gelernter is the first to rely on a witness to discover and prove geometric theo-
rems in 1959 [7, 8, 6, 5]. More recently, witnesses are used to detect dependences
in systems of geometric constraints, and to decompose and solve systems of
geometric constraints [10, 12].



The witness first permits to check that the user makes no mistake when spec-
ifying the hypothesis and the conclusion: the witness must satisfy the conjecture
(otherwise the conjecture has a counterexample, or more likely, the user makes
some mistake when specifying the problem). Also, when completing the figure
with (typically) intersection points between lines, the witness is used to check
that created intersection points are indeed new (different from the vertices) and
all distinct. Note that when two intersecting points, or a vertex and an inter-
section point are equal in the witness, it provides a conjecture, which the user
may try to prove, but not a fact. Conversely, when two intersecting points, or
a vertex and an intersection point, are numerically different1, this is considered
as a fact, and the witness is considered as a proof. In passing, we tried to prove
non colinearities and non concurrences with logic and some matroid rules, but
the computations are slow and the obtained proofs are long, tedious and boring;
the visual proof provided by the witness is the best in all aspects.

The proof searcher (”proof assistant” would be confusing) provides several
tools. One tool is a combinatorial and straightforward search of hexamys (as in
[11]) and brianchons which prove the conjecture. It is also possible to search to
apply Pappus’ or Desargue’s theorems.

When this search fails, users have two non exclusive possibilities: first, they
can ask the proof searcher to complete the figure with intersection points be-
tween two lines (or conics) of the figure, or with lines joining two vertices; we
already underlined the essential role played by the witness during the comple-
tion (the previous method [11] used no witness, which is its main weakness:
degeneracies could not be handled). Second they can ask the prover to search
for other conjectures, i.e. other colinearities of 3 points or concurrences of 3
lines, which are not specified in the hypothesis, but which are (numerically, and
approximately) fulfiled in the witness. The proof searcher and users then inter-
actively try to recursively prove these conjectures. Proved conjectures are added
to the hypothesis. The proof searcher then checks if these enriched hypothe-
sis contain an hexamys or a brianchon which proves the initial conjecture. Of
course, many tactics (backward chaining / forward chaining) can be imagined
and implemented, in the wake of search methods [5]. Also, several classes of in-
ner representations can be considered; for instance one may imagine to rely on
matroids [11, 9], or a combination of several matroids (rank 3 for lines, rank 6 for
conics, rank 10 for cubics, plus some transition rules). These questions deserve
further study.

10 Conclusion

In the hope to enable current search methods [5] to find short and human
readable proofs of incidence theorems in projective geometry, this article pro-
poses some rules, i.e. lemmas: Chasles, Pappus, Pascal and Brianchon’s theo-
rems which may be powerful enough. For conciseness, some relevant concepts

1 far enough from each other, say one pixel, to account for the numerical inaccuracy;
this heuristic is used in Cabri, Cindarella, and other dynamic geometry softwares



Fig. 7. Left: let l1, l2, l3 be three given concurrent lines; let p1, p2, p3 be 3 given points.
Find 3 points x1 ∈ l1, x2 ∈ l2, x3 ∈ l3 such that the line x1x2 passes through p12, the
line x2x3 passes through p23, and the line x1x3 passes through p13. Right: a construction
with ruler only, which relies on Desargue’ theorem.

could not be mentioned: projectivities, perspectivities, colineations, homogra-
phies, involutions, cross ratios, etc, though Coxeter [4] relies only on them to
prove our lemmas, i.e. basic theorems of projective geometry: Pappus’, Pascal’,
Brianchon’s theorems, etc. Proofs à la Coxeter should also be considered and
computed, and compared with proofs proposed in this article.

Finally, short and human readable proofs should permit to automatically
extract, and prove geometric constructions with ruler and compass, or with ruler
alone, for incidence problems like: solving the problem in Fig. 7, constructing
the intersection points of a given line and a conic given by 5 points, constructing
with the ruler only the second intersection point when the first is known, etc
(see Cabri web pages for solutions).
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