Qualitative Study of Geometric Constraints

H. Lamure, D. Michelucci

Modeling by geometric constraints is a promising method in the field of CAD/CAM. However, this
process, closely related to computer programming, i1s also error prone. A geometric constraints
based modeler should help the end user to find his mistakes, or, better, not to commit ones by
watching the building process. The well known main cause of errors with these methods is the
specification of redundant constraints, and sometimes conflicting constraints. It’s also important to
detect under-constrained parts of the system involving indecisiveness. This chapter alludes to some
numerical and probabilistic tools that could be used for this goal. There’s also a decomposition
method of constraints systems using tools of the graph theory. Since these two approaches have
their own advantages it’s worth combining them. All these methods will be studied first for systems
of equations and then extended to the more specific case, but also more interesting for modeling,
of systems of geometric constraints.

Introduction

In CAD-systems, Geometric Modeling by Constraints, also called Variational Modeling, enables de-
signers to describe shapes by interactively editing a sketch and specifying geometric or engineering
constraints: see R. Anderl & R. Mendgen for a survey [AM95].

Engineering constraints typically involve material properties or manufacturing parameters, and
are best expressed by equations. Geometric constraints fundamentally involve points, lines, circles:
typical ones specify the distance between two geometric elements (two points, a point and a line,
two parallel lines), the angle or the parallelism between two lines, the tangency between a line and
a circle or between two circles, the incidence between a point and a line or a circle, etc. Actually,
any algebraic equation involving coordinates is a possible constraint, as far as it is independent of
the used coordinates system.

The usual geometric constraints can be represented either by algebraic equations, or by predi-
cates. The predicates formulation has the disadvantage to restrict the set of expressible geometric
constraints, and to prevent the merging of geometric constraints and of engineering ones, but it
seemed more suited to rule-based approaches than the equational formulation. Up to now, all
rule-based or qualitative approaches (as opposed to numerical methods) [Bri86, VSR92] rely on
the predicates formulation. In contrast, this chapter will show that the equational formulation also

permits a qualitative study as well.

Solving Systems of Constraints

Constraints-based modelers have to solve in some way the set of constraints by one of the following
approaches: symbolic, numerical or decomposition methods.

Symbolic methods resort to tools from Computer Algebra, like resultants or Grobner Bases
[AM95]. Due to their exponential running-time, they can be used only for small systems.

Numerical methods typically improve the initial and rough guess interactively provided by the
user during the sketching stage, by using some Newton iterations [AM95], or the homotopy method
[LM96] which has a more intuitive convergence.

Decomposition methods reduce constraint systems into basic problems, the solutions of which
are then stuck back together (to quote a few: [Owe91, VSR92, BFHT 95, But79]). In 2D basic
problems are triangles: the relative location of their 3 vertices are determined by 3 constraints (e.g.
either 3 distances or 2 distances + 1 angle or 1 distance + 2 angles); quadrilaterals or parallelograms
[VSRI2]; or other systems soluble by ‘ruler and compass’ like Appolonius’s problem. The idea is
that the basic problems can be solved by applying a simple mathematical formula, and the merging
stage only needs some displacement. The decomposition may be performed either implicitly, by
the matching process of some inference engine, firing rules [But79, VSR92, DMS97] or Prolog
predicates [Brii85, Brii88], or explicitly, by searches in the graph of constraints [BFHT95, Owe91].
Up to now, this method is often restricted to 2D or QD% applications. Moreover the graph-
based approach often assumes that the graph of constraints verifies some strong assumptions, for
instance being biconnected [Owe91], or hierarchically reducible into triangles [BFHT95], or that all
geometric elements have exactly 2 degrees of freedom (ie the radius of all circles must be known),
or that each constraint involves exactly 2 geometric elements. The graph-based approach proposed
in this chapter overcomes these limitations. Another graph-based approach is presented in another
chapter, it uses degrees of freedom analysis in Kramer’s wake [Kra91].

The Need for a Qualitative Study

Specifying constraints is a rather abstract task and so a very error-prone process, like programming.
To be truly user-friendly, 1t 1s crucial for geometric modelers by constraints to help their users to
debug and tune their systems of constraints: It is not enough that the resolution stage detects some
problem and informs the user that “there is a problem somewhere in his system of 100 equations
and 100 unknowns”; the user wants a precise diagnosis like: “Among these 100 equations, these
3 are redundant and you can remove anyone of them; on the other hand these 3 unknowns are
under-constrained: one equation is missing”. As an aside, it is the reason why we are a little
reluctant about using an optimization scheme to solve constraints: there is always a solution! and
it 1s much more difficult for the user —and for the modeler— to find why the solution i1s not the

expected one and where the mistake 1s.

Moreover some qualitative studies of systems of equations permit to decompose systems of
constraints into simpler ones. Not only does it speed up the resolution, but it can also make it
possible to solve a problem that would not be solved otherwise: for instance symbolic methods
apply only to small enough systems. Sometimes, this decomposition can also help the user to
improve his understanding of the properties of his problem.

Systems of Equations versus Systems of Geometric Constraints

A well behaved system of equations 1s supposed to determine n unknowns by n independent equa-
tions.

Systems of constraints met in Geometric Modeling by Constraints are special systems of equa-
tions, since well behaved systems of constraints: distances, angles, tangencies,... between geometri-
cal elements, or engineering equations, are independent of the used system of coordinates (assuming
it is orthonormal), and thus determine unknown coordinates of points only up to a displacement
in space. For instance, in a well behaved system of constraints in 2D, three equations are missing
to completely determine unknown coordinates of points, since a 2D displacement is specified by
three numbers: say a translation relatively to # and y axis and a rotation around the origin. In
3D, six equations are missing, and d(d + 1)/2 in R

To avoid ambiguities, we will use the terms : ”well-constrained”, ”under-constrained” and
”over-constrained” only for systems of equations. We will use the terms: ”rigid”, ”under-rigid”
and ”over-rigid” for systems of geometric constraints.

What if one wants to specify a constraint depending on the coordinates system, say if one wants
to specify the abscissa of a point A 7 The equation A, = v clearly depends on the coordinates
system... The solution is to explicitly represent the coordinates system Oxzy by three vertices: O,
X, Y, and to specify the three constraints: [|OX|| = 1, ||OY|| = 1 and angle(OX,0Y) = 7. Then
Az = v can be represented by a licit geometric constraint on the (signed) distance between OY

and A: dist(OY, A) = v.

We will impose a last restriction on geometric constraints. To solve possibly bad-constrained
systems: fi=1 n(2) = 0, some people try to minimize or to make vanish the sum of the squares
of the equations:) ., fi(z)? (we think it is not a so good idea, but it is not the concern here).
If the f; = 0 are independent on the coordinates system, so is > ., fi(z)> = 0. However we will
forbid the use of such a trick. Or in other words, our methods are abused by this trick.

Content of the Chapter

This chapter will propose two methods for the qualitative study of systems of equations and for
systems of constraints: the first method is a probabilistic numerical one, the second one stems from
graph theory and does not consider the numeric details of equations, or geometric constraints. So
it can be applied to geometric constraints represented by predicates (in opposition to equations),
say Prolog predicates like in Briderlin’s works [Brii86]. Of course it also applies to equations, or
geometric constraints represented by equations, but only unknown-equation incidences are taken
into account.

The probabilistic and numerical method is presented first. It is first applied to systems of
equations and then extended to systems of geometric constraints. Then this chapter presents the
graph-based approach; similarly it is first applied to systems of equations and then extended to
systems of constraints; a detailed example illustrates the process. This chapter ends with possible
extensions and improvements.

We only consider systems of equations or constraints, and not inequalities, because the qualita-
tive study of such systems is too much difficult: from elimination theory, solving well-constrained
systems of algebraic equations (having a finite number of roots) is simply exponential, whereas
solving systems of equations and inequalities is doubly exponential [HM93]. Moreover, inequalities
are the more often used only to select the wanted solution in the finite but very big solution set of
a system without inequalities: so we can at least diagnose this last system.

The Numerical Probabilistic Method

The Qualitative Study of Systems of Equations

For the qualitative study of systems of equations to be feasible, some “genericity hypothesis” are
needed. The weaker one is always satisfied in our context, where equations are typically algebraic
ones, with real coefficients: exactly n independent equations are needed to determine n unknowns
in C". Actually, since we are interested only by real solutions and though it is a bit cavalier, we
will assume a little stronger hypothesis and replace C" by R" | in spite of some algebraic singular
systems like for instance z? + y? = 0 which has a finite number of real solutions though there is
only 1 equation for 2 unknowns. More generally, we assume that the trick of taking the sum of the
squares of some equations will not be used. Some of the methods presented below need stronger
genericity hypothesis; given later.

By the genericity hypothesis, a system in n unknowns and n equations: FE(X) = 0 where
X = (#1...2y) and E = (e1...ep), is incorrect iff the jacobian |E’| = |(g%) is identically
null. Mathematically speaking, things are simple. However, the symbolic computation of the
determinant of the jacobian is impracticable, even for little values of n like 10: the determinant
has an exponential number of terms.

A solution is to use the probabilistic scheme [Mar71, Sch80]: the value of the jacobian is
computed at some random sampling points (three or four points is enough). If each time it vanishes,
then there’s a probability very close to 1 that the jacobian is identically zero (see previous references
to have the probability of errors). Otherwise —and obviously!- it is not identically zero.

To avoid inaccuracy problems, this test can be performed for integer points and modulo some
prime integer, big enough (say about 10° or 10°) to decrease the risk of unlucky reductions: there
is an unlucky reduction when the value of the determinant is a non-null multiple of the used
prime. For relevance, real coefficients must be represented in an exact way, for instance v/2 must
be represented by an auxiliary unknown « and an equation o? — 2 = 0.

We can even do better and compute (always probabilistically, for some random sample points)
the rank or even a base of the jacobian. Before we detail this, let us get a more intuitive insight
on their meaning: we consider the unknowns X = (z;...2,) as a function of the time, ¢; deriving
E(X(t)) = 0 relatively to time, we obtain XE' = 0, where X is the vector of Veloc1t1es of X,
compatible with E. If F is correct, ie if all equations e; are independent so £’ has maximal rank
n, then the only solution for X is 0: it is impossible to move the unknowns and to keep F(X) = 0.
More generally, the solution for XF' = () form a vectorial space: the kernel of £’ which is dual to
the space spanned by the equations e;. The rank of the vectorial space X is the number of missing
determinations. The number of equations minus the rank of F’ gives the number of excessive
equations in .

It i1s worth computing a base of X and E’. It can be done in O(3) time by standard techniques
of linear algebra. An unknown w is fixed by the system F iff 2 is zero for all the vectors in the
base of X; otherwise the number of vectors with a non zero component & in the base for X gives
the number of remaining degrees of freedom for . Of course, the numerical values of vectors, for
bases of X and E’, depend on the random sampling points, but the structure of E’ and X (rank,
corank, fixed and not fixed unknowns) does not.

As an example, let us consider this little system:

2249y’ —1=0

2 2
_ y+z22—-2=0
E= 2 —2241=0

w4+2w+1=0

whose jacobian E’ is computed at random point: p = (123 4) :

2z 0 2x 0 2 0 2 0

o — 2y 2y 0 0 1 4 4 0 O
o 0 2z -2z 0 ~ 10 6 -6 0

0 0 0 2w-+2 0 0 0 10

E'(p) has rank 3 and a base of its kernel is: (# § 2 w) = (6 —3 2 0). Thus #, y and z are not
determined, but w is, since w = 0 for all vectors in the kernel base.

Last but not least, this approach (probabilistically computing ranks or bases for X and E"

can also be used when the number of equations is not equal to the number of unknowns. Thus
it can also be performed on-line: in an interactive context, equations are likely introduced once
at a time. The following interactive protocol may be convenient: the software maintains an
independent set of equations E: ”independent” means: rank(FE’)=cardinality(F) where the rank
is computed with the probabilistic method. When the user proposes a new equation e, the software
computes if E’U{e'} is dependent or not: for instance, ¢’ is decomposed into ¢’ = ¢4 +¢; by Gram-
Schmidt’s orthogonalization procedure, where ey is the projection of €’ in the range of E' and ¢;
is the orthogonal part. Again, these computations can be performed modulo some big prime (in
particular, no square root is needed). If {e¢’} U E’ is independent (e; # 0), e is inserted in F;
otherwise the software asks the user which equation to remove in the minimal dependent set in
EU{e}: to find the latter, just remove from E’ each element such that remaining ones and ¢’ are
still dependent. The set of compatible velocities X is also maintainable on-line.

The probabilistic numerical method is simple and very easy to implement. It may use the
sparseness of the system at hand in order to speed up computations. Anyway it cannot be slower
than the numerical resolution method. It can distinguish between dependent and independent
subsets of equations on one part, and between fixed and unfixed unknowns on the other part.

The Qualitative Study of Systems of Geometric Constraints
From Equations to Geometric Constraints

Since the well behaved systems of constraints are under-constrained systems of equations (as al-
ready explained), it may seem this method does not directly apply to systems of geometric con-
straints.

A first straightforward way to overcome this limitation 1s to add some ad-hoc equations. If for
instance in 2D, specify for some couple of points A and B that A, = A, =0 and B, = 0. In 3D
specify for some triplet of points A, B and C that A, = Ay = A, =0, By = B, =0 and C, = 0.
Then all the numerical probabilistic approach directly applies: 1t is possible to know the fixed and
not fixed unknowns, and to detect dependent subsets of equations.

A second way 18 not to add ad-hoc equations, but to remember that a rigid system must have
exactly 3 (respectively 6) remaining degrees of freedom in 2D (respectively 3D), ie the vectorial
space of compatible velocities X must have rank 3 (respectively 6). In }Rd, it must have rank

d(d+1)/2.

An Example

Let us study the 2D system in Fig. 1 (the same example is also studied with the graph-based
method in Fig. 7). Edges represent constraints of distance between points. It is intuitively obvious
that, though there is the good number of constraints (6 points, 2 x 6 — 3 = 9 constraints) for the

graph to be rigid, the subset P PoPs Py 1s over-rigid and the subset Py P3PsPs 1s under-rigid.

P6 P3
P5 P2
P4 PL

Figure 1: A simple 2D system of geometric constraints. Each edge represents a constraint of
distance between its two vertices.

Distance constraints are in this order:
E=(PP. PPy PPy PyPs PyPs P Ps PyPs PsPs PsPs)

The vector of unknowns is X = (21 y1 22 ¥2...%6 ys). Thus the jacobian is (after division by 2)
B =

xy —xg x] — x4 0 0 0 zy — xy 0 0 0
Y1 — Y2 Y1 — va 0 0 0 ¥l — Y5 0 o o
Ty —xq 0 xg —xy Ty — Ty 0 0 xg — x3 0 0
y2 — Y1 0 Y2 — Y4 Y2 — s 0 0 Y2 — Y3 0 0

0 0 0 0 0 0 x3 —xg x3 — xg 0

0 0 0 0 0 0 Y3 — Y2 Y3 — ve o

0 Ty —xy Ty — To 0 Ty — xy 0 0 0 0

0 Y4 — Y1 Y4 — y2 0 ¥4 — Y5 0 o o 0

0 0 0 Ty — g Ty — Ty Ty — L] 0 0 x5 — xg

0 0 0 Y5 — Y2 Ys — Y4 Y5 — Y1 0 0 Y5 — Y6

0 0 0 0 0 0 0 rg —x3 xg — Ty

0 0 0 0 0 0 0

Y6 — ¥3 Y6 — Y5

A possible base for compatible velocities X is:

- an x-translation: (10101010101 0)

- an y-translation: (010101010101)

- a rotation around the origin, for instance: (—y; #1 —y2 2...—Ys ¥s)

- the last vector is for the possible motion of Ps and Ps around P, and Ps respectively. Any
non-null vector (000 0 #5 y3 0000 #s ys) such that

r3 — I9 r3 — Tg 0
S Ys— Yo Y3 —Ys 0 _
(23 ¥ 26 Ys) 0 R (000)

0 Ys— Y3 Ys—¥s
1s suitable.

For short, we don’t give symbolic values for this last vector, nor details of probabilistic compu-
tations. Anyway, the computed rank of X 1s four: three are due to normal 2D rigid body motions,
the fourth is due to the remaining degree of freedom in part Ps P3PsPs. Similarly, the computed
rank of E’ is 8, whereas F has 9 equations: redundancy is detected. Adding three ad-hoc equations

like 1 = y1 = #2 = 0, and computing X will show that Py, Py, Py, Ps cannot move, but Ps and
Ps have still one degree of freedom.

Remark: systems like in this example, where all constraints specify distances between points,
form a special class of problems, which is called the rigidity graph problem, and which has been
studied by graph-theorists or combinatorists, and by structural engineers who want to guarantee the
stability of frameworks in buildings. These communities call the jacobian the "rigidity matrix”.
They proved the correctness of the probabilistic method for the rigidity graph problem, in all
dimension, just assuming weak genericity hypothesis : it is Gluck’s theorem. They also found a
graph-characterization for 2D rigid graphs : it is Laman’s theorem. They proposed graph-based or
matroid-based methods for testing rigidity in 2. Up to now, a graph-characterization for rigidity
is still unknown in B3 and beyond. See [Hen92a, LP86, Rec86].

Ergonomic Issues

The ergonomic issues are not our concern here, but in passing we propose the following visual
protocol for helping the user to see which part of his sketch is still under-determined. Let X3
be the current solution of the set of constraints F(X) = 0. If some part of the sketch is under-
constrained, then there is some velocity vector Xy such that X; E/(X;) = 0. The idea is to smoothly
deform the sketch from its state X to a state X3, X3, etc but keeping E(X;) = 0 for all i. X,
i1s computed from X; + €X;, with some correction by some Newton-Raphson’s iterations or some
gradient descent. Idem for X3 from X5, and so on. It is also easy to allow the user to specify
the 2 motionless points A and B in 2: so he will see which part remains motionless relatively to
AB, ie the maximal rigid part containing AB. The same holds in 3D for 3 motionless points. Of
course, the modeler can also automatically deduce the maximal rigid parts, in the same way.

Limitations of the Numerical Probabilistic Method

The numerical probabilistic approach has limitations:

1. Tt cannot distinguish between fixed but well-constrained unknowns, and fixed but over-
constrained ones; this notion 1s relevant only for sparse systems: for instance in the system z +
y+ 2z =2x+ 2y + 2z =0, unknowns z, y and z are in the same time over-constrained (since they
are involved by redundant equations) and under-constrained (since compatible velocities &, § and
%z are not zero). But the graph-based method (next section) will solve this problem. The next two
limitations are actually a reformulation of the genericity hypothesis:

2. Another limitation of the probabilistic numerical method, and a fortior: of the graph-based
one, and in fact of all polynomial-time methods is that ”subtle dependencies” (defined below)
between equations cannot be detected. Assuming all equations to be polynomials, these methods
cannot detect that one of the polynomials is in the ideal or in the radical of the others, or, in more
intuitive words, that one equation is a consequence of the others. Mathematically, fy is in the

ideal generated by f;=1. , iff there exist polynomials h; such that fo = h1f1 + hafo +.. . h, fn, and
in its radical iff there exist some integer & > 1 such that f(’? is in the ideal generated by fi=1 .
In such cases, clearly, fi = fo = ... f, = 0 implies fy = 0. Moreover, the associated jacobian of
fo=fi =...fn =0 has non-maximal rank at the common roots of fy = f1 = ... f, = 0, but
it can have maximal rank elsewhere. A simple example is: fi = 22, fo = y+ 1, fo = 2f1 + yfa;

though the jacobian ‘%‘ = —223 vanishes when f; = f, = 0, it is non identically zero.

3. In the same way, polynomial-time methods cannot detect that one of the polynomial equa-
tion, fp, contradicts the others, ie that there exist polynomials &;, an integer & > 1 and a non-null

constant ¢ such that f5 = ¢+ hifi + hafs + ... hyfa. In such cases, clearly, fi = fo = ... f, =
0 = fo = ¢ # 0. Here again, the associated jacobian of fo = f1 = ... f, = 0 has non-maximal
rank at the common roots of f; = fo = ... f, =0, but it can have elsewhere.

For example, consider the system with 4 points O, A, B, C' and 5 constraints: O is the middle
of AB, distance OC equals distance OA, AC is orthogonal to C'B (this constraint is a consequence
of the previous ones), and distance AB is given. This system is not rigid since C' can freely rotate
around circle with diameter AB. Equations are:

e1=2x0 —24 —xp =0

€2 =2yo —ya —yp =0

es = (zc —20)* + (e —v0)* — (xa —20)* — (ya — y0)* =0
ea = (xc —za)(xc —2B) + (Yo — ya)(yc —yp) =0

es = (wa—xp)?*+ (ya —yp)* —d4p =0

Unknowns are: (2o yo 4 Ya B Yy ¢ yYc). The jacobian is:

2 0 Ql‘A - Ql‘c 0 0
0 2 2ya — 2yc 0 0
-1 0 2l‘o—2l‘A rp — ¢ Ql‘A—Ql‘B

| U —1 2Zyo—2ya yp — yc 2ya — 2yn
-1 0 0 A — o Ql‘B—Ql‘A
0 -1 0 ya — yc 2yp — 2ya
0 0 2l‘c—2l‘o Ql‘c—l‘A—l‘B 0
0 0 Z2yc—2y0 2yc—ya—ys 0

Term (’?;é = 2x¢c — x4 — xp 1s equal to 2z — 220 = gx%, due to equation e;. Similarly,
dey __ Oes

due to equation e;. These equalities don’t hold for generic (ie random) values of o,

dyc — Odyc .
Ta, LB, Tc, Yo - . -Yo thus the compatible velocity X = (000000 yo —yc 2¢—xo) is missed
by the probabilistic method, which wrongly finds this system is rigid.

Subtle dependencies give us a trick to change all geometric theorems into non-generic constraints
systems which mislead the numerical probabilistic method. Just note that, when you don’t know
the trick, such systems are unlikely to occur, and the probabilistic method is still interesting.

Moreover no method in polynomial time can detect subtle dependencies: one has to resort to
some symbolic computation machinery, like Grobner bases, which are exponential in time, and
sometimes doubly exponential. As a consequence, such symbolic methods can be used only for
very small systems or subsystems (less than 10 non linear algebraic equations); the graph-based
method in the next section just gives a fast way to find smallest subsystems in large sparse systems
of equations.

The Bipartite Graph-Based Method

An alternative approach, stemming from graph theory, exploits the sparseness of systems of equa-
tions or geometric constraints. The idea is to consider the bipartite graph associated to a given
system of equations or geometric constraints: each unknown 1s associated to an unknown-vertex,
each equation is associated to an equation-vertex, and an edge join an unknown-vertex and an
equation-vertex iff the corresponding unknown appears in the corresponding equation (Fig. 2).
This graph is bipartite because there is no edge between any two unknown-vertices, and be-
tween any two equation-vertices. In the following we will be drawing equation-vertices above
the unknown-vertices.

We first apply this method to systems of equations, then extend it to systems of geometric
constraints.

el e2 el e2 e3

x1 X2 x1 X2 x3

Figure 2: A is well-constrained in generic case : it has a perfect matching. B is always singular :
it has no perfect matching.

The Qualitative Study of Systems of Equations

Dulmage-Mendelsohn’s Decomposition

In the generic case (we will come back later to this point), the study of this bipartite graph first
permits to decompose the system into its well-, over- and under-constrained parts [LP86]. This

10

abo al\bc/|d f al\b d f
cdO| =adf-bcf

or
Oef

Figure 3: A graph and its perfect matchings. Note the correspondence between each perfect
matching and each term of the determinant.

vaam

Figure 4: To find a maximum matching, start with an initial matching (possibly empty), and
improve its cardinality while possible, as follows. Built the corresponding directed graph in the
middle: edges in the matching are oriented in both directions, while others are oriented downward.
Then find a shortest path (here: A, 3, 6, 1, 5, B) from a non-saturated Above vertex to a non-
saturated Below one. Finally invert all status (ie belonging or not to the matching) of edges (here

36, 61, 15) along the found path.

decomposition is due to Dulmage and Mendelsohn. Though it was not initially developed with the
study of systems of equations in mind, it appears to be relevant for this problem. We will need
the following definitions:

A matching of a graph is a subset of its edges, such that any two distinct edges of the matching
never have a common vertex. A matching is mazzmum iff it is maximal in cardinality. A vertex
is saturated by a matching iff it is a vertex of one edge of this matching. A matching saturating
all vertices of a graph is called perfect: see Fig. 3. From an algorithmic point of view, polynomial
algorithms to compute a maximum matching for bipartite graphs are known, for instance Hopcroft

and Karp’s method [HK73, AHU83], see Fig. 4.

The Dulmage-Mendelsohn’s decomposition is illustrated Fig. 5. The main properties are, in
a jumble: there is no edge between Dy and C5, between D, and € and between Dy and Ds.
Gy = C; U (5 has a perfect matching, so |Cy| = |C3|. Dy and Dy are respectively the set of
equation- and unknown-vertices which are not saturated by at least a maximum matching. As

(respectively Ap) is the set of the neighbors of Dy (respectively Da). Vertices of Ay and A; are
all saturated by all maximum matchings. Edges between C7 and As, between Cs and Aj, between
Aj and As, actually edges between distint G, never belong to a maximum matching.

G2 Gl G3
_ [svorgy || sengy
Connected Connected
Components Components
Strongly
Connected /
Components Sinks

Figure 5: The Dulmage-Mendelsohn’s decomposition of a graph G, with a maximum matching,
and the structure of the induced directed graph G.

The important thing for us is that G = C7 U Cs is the well-constrained part of the system,
Go = D1 U A, its over-constrained part, Gs = A; U Dy its under-constrained part. Only the Gy
part has a perfect matching (Fig. 3).

To give a fast method for computing the Dulmage-Mendelsohn’s decomposition, we need the
following definitions: a directed graph is said to be strongly connected iff for any pair # and y
of vertices there exists a directed path from x to y and from y to x#. The strongly connected
components of a graph are its maximal strongly connected subgraphs, they partition its vertices.
Strongly connected components must not be confused with connected components: the latter does
not take into account the orientation of edges.

Let M be any maximum matching of the bipartite graph G. G’ is the directed graph obtained
from G by replacing each edge (#,y) in M by two arcs xy and yx, and by orienting all other edges
from equation-vertices to unknown vertices. The strongly connected components of G' are included
either in (i1, or in G, or in (G3. Moreover if there are non saturated equation-vertices, then they
are the sources of GG5. Symmetrically, if there are non saturated unknown-vertices, then they are
sinks of G'3. Thus G’ has the structure shown in Fig. 5. An algorithm to compute the Dulmage-
Mendelsohn’s decomposition follows: Find a maximum matching M of (; build the directed graph
G' from G; G5 is the set of all descendants of sources of G’; symmetrically G35 is the set of all
ancestors of sinks of /; finally G; = G’ — G5 — (3. Of course, this decomposition is unique and
does not depend on the initial maximum matching. Finding a maximum matching can be done
in O(e\/v), where ¢ is the number of edges of G and v its number of vertices, by using Hopcroft
and Karp’s method [HK73, AHU83]. The other steps can be done in O(e +v): the computation of
ancestors and descendants is made by a classical depth first or breadth first search in linear time.
Clearly e = O(v?). In practice, e is the more often proportional to v. Anyway, we have a fast
method to diagnose a system of equations.

12

Finding the Irreducible Subsystems

Secondly, for well-constrained systems, the study of the associated bipartite graph permits to find
its irreducible subsystems and the dependencies between them. This reduction greatly speeds up
the resolution process, whatever the resolution method used, numerical or symbolic. Moreover, if
the use of this decomposition is visible for the user, it allows him to follow the resolution process
step by step, ie irreducible after irreducible: the decomposition gives the running trace of the
resolution process and makes it more self explanatory.

2

Figure 6: Graph G’, and its reduced graph.

Let G the graph of a well-constrained system, thus G = G, G2 = G5 = (§ and G has a
perfect matching (in passing, it is Konig-Hall’s theorem). An irreducible subgraph of G is a
minimal subset of & equation-vertices and all their k adjacent unknown-vertices: it corresponds to
a minimal subsystem of & equations involving & unknowns, which can be solved independently. Fig.
6 shows an example of a well-constrained graph GG with an irreducible subgraph Hy; G'— H; has an
irreducible subgraph Hs; The remaining graph G — H; — Hs 1s itself irreducible. On this example
(see Fig. 6), one can see that Hy, Hy and Hs = G — H; — Hy are just the strongly connected
components of the oriented graph G’, obtained from G in the same way than in the previous
section. Actually, it is a general property [LP86], which gives us a fast method to compute the
irreducible subsystems of a given system: a perfect matching M of (G is first computed; the directed
graph G’ is built as before; the strongly connected components of G’ are computed, say by Tarjan’s
linear-time method [Tar72, AHUS83]: they are the searched subsystems, and they do not depend
on the initial perfect matching. To obtain the dependencies between the irreducible subsystems,
build the reduced graph R from G’ by contracting each strongly connected component in a vertex
(Fig. 6): each remaining arc in R, say from s; to so, means that subsystem s; uses some unknowns
of s5, thus ss has to be solved before s1. Of course R is acyclic and defines a partial order between
the subsystems. A compatible total order between subsystems can be obtained by any topological
sorting of R, or as a byproduct of Tarjan’s method: it is the order in which the strongly connected
components are obtained. All steps are linear, except the determination of a starting matching, in
O(e+/v). In practice, the time for the decomposition is always negligible in front of the resolution
time. For reducible systems, speed up factors of 10 or more are usual [AAJM93].

13

Genericity Hypothesis

The graph-based approach uses only the structure of the system and forgets all numerical informa-
tions. Thus it assumes stronger genericity hypothesis than the numerical probabilistic approach.
For instance the graph A in Fig. 2 is associated to singular systems, in degenerate cases (like:
z+y =2, 22 4+ 2y = 4 which has an infinity of solutions or like z + y = 2, 22 4+ 2y = 3 which has
no solution at all), and also to well-constrained systems, in the generic case. The probabilistic ap-
proach can discriminate (up to limitations, as already seen) between the non-generic and generic
cases when the graph-based approach obviously cannot. Note that the nullity of the jacobian in
degenerate cases has nothing to do with the structure of the system, and that it suffices to ran-
domly and infinitesimally perturb the coefficients of such degenerate systems (without changing
their structure) to recover the generic situation; or, in other words, degenerate cases occur with
probability 0 [LP86]. On the other hand, when the graph-based approach states that a system
is not well-constrained, then it is not (see graph B in Fig. 2) and no matter the values of the
coefficients are. Mathematically speaking, a sufficient condition for a system to be generic is that
its coefficients are algebraically independent (of course it is a very unrealistic assumption, since
coefficients are integers or floating point numbers, ie rational numbers ...) so that they do not
verify any parasitic condition, and the rank of the jacobian is then strictly equal to the cardinality
of the maximum matching of the corresponding bipartite graph. Degeneracies can only decrease
the rank.

The Qualitative Study of Systems of Geometric Constraints

P6 P3 P6 P3
1(2 314
G ° G e
e
Ps P2 PS P2
P1P2 P1P4 P1P5 el e2 e3 P2P4 P2P5 e4 P3P6 PAPS PSP6
P4 PL P4 PL

Figure 7: This graph G is incorrect, ze non rigid. However, adding some three ad-hoc equations
(the quadrupled edge: e) gives a graph G, whose associated bipartite graph Bip(Ge) is well-
constrained. The perfect matching of Bip(G.) is drawn directly on G by orienting its edges.

The extension from system of equations to systems of geometric constraints is not simple for the
bipartite graph-based approach. There are cases where adding some ad-hoc equations produces
a bipartite graph having a perfect matching, ze indicating that the system is rigid, though it is
not. Such a case is illustrated in 2D in Fig. 7: the vertices of this graph of constraints represent,
say, points with unknown vertices, and edges represent constraints of distance. In Fig. 7, one of
the original constraints has been quadrupled: we pin the corresponding edge e on the plane. Call

14

(i the resulting graph. The bipartite graph Bip(G.) has a perfect matching, though the initial
system of constraints is obviously incorrect: the square with its two diagonals is over-rigid, the
other square is under-rigid.

The perfect matching has been displayed in a very compact way, directly on the graph as an
orientation of its edges: an edge (a,b) in a graph of constraints G. is oriented from a to b iff,
in Bip(G.), the edge (ab, az) or (ab, ay,) belongs to the matching. The fact that the matching is
perfect implies that each vertex in G receives exactly 2 arcs.

However, pinning another edge of the graph in Fig. 7 permits to detect that this graph is
over-rigid in one part and under-rigid in the other part. We just have to pin each and every of its
edge. We now see a general formulation of the method.

Hypothesis

For the sake of simplicity, we assume that the system of constraints involves n unknown 2D
points, the coordinates (z;,y;) of which depend on the coordinates system, and k unknowns wu;
... ug which are independent of the coordinates system: they can be (possibly signed) distances,
(possibly signed) areas, scalar products, angles, radii of circles. . .or non geometric unknowns.

Moreover, all constraints must be independent of the coordinates system: if (z;,y:, u;) is a
solution, so is (z; + T, ¥, u;) for any value T, (a translation in z has been applied), so is (z;, y; +
Ty, u;) for any value T, (a translation in y has been applied), and so is (x; cos§ —y; sin 8, ; sin 6 +
yi cos B, u;) for any value of # (a rotation around the origin has been applied). Such a constraint
either involves no points, or involves at least 2 points, but never a single point. Note that we
accept constraints involving more than two points: these systems are more general than the graph
of constraints illustrated by Fig. 7 or 8, where constraints must involve exactly 2 geometric elements
(since an edge has 2 vertices). According to this criteria the bipartite graph-based approach has a
larger expressive power than the one relying on graphs of constraints [Owe91, BFH*95].

Such a system of constraints has P(n,k) = 2n + k — 3 degrees of freedom when n > 2 and
P(n,k) = k degrees when n = 0. To fix without redundancy the 2n + k unknowns up to a dis-
placement in the plane, in other words to be rigid, the system must have exactly P(n, k) equations
(which is trivial to check) and all its subsystems with n’ points and &’ other unknowns must have
at most P(n’, k') equations: if one has more than P(n’, k') equations, it is over-rigid. For short,
we will say that a rigid system must have the P property.

We assume that the system at hand has P(n, k) equations, and that its Dulmage-Mendelsohn’s
decomposition has an empty part G3 (the over-constrained part): in other words, all equations
are covered by a maximal matching. Now, by slightly extending a method due to Hendrickson
[Hen92b], it is possible to verify that the system fulfills P, ie that there is no over-determined
points:

15

Decomposition Algorithm

For each constraint e involving at least one point (and so, at least two points as we have just seen)
in the system G, consider the bipartite graph Bip(G.) where G, is obtained from G by adding
three ad-hoc equations involving the same unknowns than e: intuitively speaking, we “pin” two
points appearing in e on the plane. Verify that Bip(G.) has a perfect matching: if not, the system
G 18 incorrect and the Dulmage-Mendelsohn’s decomposition gives an over-constrained part in G,
and so an over-rigid part in the initial system of constraints G. Hendrickson has proved [Hen92b]
that the system G fulfills P iff all the bipartite graphs G have a perfect matching: the proof is
not difficult but a bit lengthy and must be omitted for conciseness.

Only the first maximum matching has to be computed from scratch: the others can be obtained
more quickly, in linear time, by updating the previous one (see Fig. 4). For this reason, this method
may be used on-line, when constraints are added or removed one at a time, but this point is not
detailed due to lack of space. Assuming that & = O(n), and that each constraint involves O(1)
unknowns (which is generally the case), then the first step could be done in O(n?), and each of the
n other steps could be done in O(n), so this method will work in O(n?), whereas the probabilistic
numerical method is in O(n?).

Figure 8: A graph of constraints.

Moreover, at each step (ie for each G.), it is possible to compute the decomposition into ir-
reducible parts: each irreducible part — it contains the particularized constraint — gives a rigid
subsystem, assuming the system is correct. For instance, for the system of constraints in Fig. 8,
when pinning edge-constraint (1, 3), subsystems {1,3}, {1,2,3} and {1, 3,4} are found. When pin-
ning edge-constraint (5, 6) or (6, 7) or (5,7), subsystem {5, 6,7} is found (and the trivial subsystem
equal to the pinned edge itself, of course). Thus all rigid subsystems are found this way. If the
subrigid parts are ”small” (ie involve only a number of other subrigids independent of n) then we
can use this decomposition in order to speed up the resolution process. Indeed it’s possible to
solve each of the small systems in constant time: by applying a resolution scheme in simple cases
(for example when only 3 equations are involved), by rewriting equations, or by formal resolution

[DMS97].

We have used the obvious fact that a rigid system must have the P property; when the con-
straints are solely distances between vertices, G. Laman [Lam70] has been able to prove the con-

16

verse: a system verifying the P property is rigid, so the P property i1s a full characterization of
these rigid graphs. But as far as we know, this converse has not been extended up to now for any
kind of 2D constraints.

As already seen, and for the same reasons, it is worth combining the graph-based approach and
the numerical probabilistic one.

A

(i :

O

c2

Figure 9: A 2D system of geometric constraints.

An Example
This section presents a simple and complete 2D example: see Fig. 9. The constraints are:

e a? —2 =0 which yields eg(a) = 0

o ||AC|| = 4 which yields €1 (A4,C,a) =0

o ||AB]|| = 3« which yields e3(A, B,a) =0

e ||BC|| = 2a which yields e3(B,C, o) =0

o the circle Cy with center B and radius R is tangent to the line (AC) which yields e4(A, B, C, Ry) =

0

e ||CD]|| = 4 which yields e5(D,C) =0

e ||CE|| = 3 which yields es(F,C) =0

e ||DE|| = 2 which yields ez(D, E) =0

o the circle C'y with center D and radius Rj is tangent to the line (C'E') which yields es(C, D, E, R2) =

0

17

e Circles C and (' are tangent each other: eq(B, D, Ry, Rz) =0

The method detects that the system is rigid and its rigid subsystems are: Sy = {eg} which
determines «, S; = SgU{ey, €2, e3} which determines the triangle (A, B, C), S2 = {es, eq, €7} which
determines the triangle (C, D, F), S = S U {e4} which determines the radius Ry, Sy = S2 U {es}
which determines the radius R, S = S3U Ss U {eg} which permits to assemble the 2 parts of the
figure. For simplicity we have omitted the trivial subsystems {ei}, {e2}, {es}, {es}, {es}, {e7}.

Possible Extensions

Combining Numerical and Graph Methods

It is worth combining the two approaches. The graph-based approach gives a decomposition
into over-, under- or well-constrained parts, or into irreducible well-constrained parts, which the
probabilistic and numerical method cannot produce. However these parts cannot be studied further
by the graph-based approach.

Inside each irreducible and well-constrained part, the numerical probabilistic method may then
be used, to detect redundancies between equations or not fixed unknown(s) (probably caused by
some mistakes from the user) that could not be detected by the graph-based approach. Recall the
graph-based approach can be abused by non generic systems which will not abuse the probabilistic
and numerical method which uses a weaker genericity hypothesis.

The fact that the graph-based approach is more easily abused than the probabilistic one must
not be thought as a defect of the former: on the contrary, the fact that a system is found well-
constrained for the former approach, and bad-constrained for the latter one is very informative,
when debugging a set of constraints.

The 3D Case

We have not investigated the use of bipartite graphs for 3D systems of constraints so far. The
function P(n, k) becomesin 3D: P(0,k) =k, P(2,k) = 14+k and P(n, k) = 3n—6+k when n > 3.
A system with n 3D points and k other unknowns must have exactly P(n, k) equations (which is
trivial to check) and all its subsystems with n’ points and &’ other unknowns must have at most
P(n’, k') equations: if one has more than P(n/, k') equations, it is over-determined. Hendrickson’s
method has to be modified in this way: for each couple of constraints involving at least a common
point, we must add 6 constraints, say 3 copies of each or: A, = Ay = A, = By, = B, =, =0,
in order to “pin” in the space 3 of the points involved by the couple of constraints, and then we
verify that the associated bipartite graph has a perfect matching. We have this time to consider
couples of constraints, because we have to pin 3 points and a single constraint may involve only

18

Figure 10: Here is the classical counterexample of G. Laman’s proposition in 3D. This graph
fulfills the P property, but it is not rigid. On one hand, there is no reason for the height of the left
half to be equal to the height of the right half, and on the other hand, the two halves can freely
rotate around the vertical axis of symmetry.

two points. The main idea is that an over-rigid subsystem, having n’ points, & unknowns and
more than P(n’, k') constraints, contains at least such a couple of constraints; after copying each
of them 3 times, we will obtain a partly over-constrained system of equations, which has not a
perfect matching. Conversely, if the system fulfills P, then all bipartite graphs will have a perfect
matching.

Unfortunately, the P property is not strong enough in 3D: some graphs fulfill the P property
but are not rigid and G. Laman’s theorem does not extend to 3D and beyond. Fig. 10 shows
the classical counterexample seen in [Hen92b, LP86] and others. To not be abused by such con-
figurations, a solution is to also verify (apart the P property) that each time a subset of points is
determined by two subsets of constraints A and B, then it 1s determined by A N B: here the two
”pole vertices” are fixed by the left and by the right halves of constraints, the intersection of which
is empty. We are not presumptuous enough to think this condition is always sufficient.

In 3D the graph-based approach may seem less attractive, relatively to the numerical proba-
bilistic one which always works, in time O(n?®), for any dimension, and which is straightforward
to implement. However, the graph-based approach will give in a natural way the subrigid parts
contrarily to the numerical probabilistic approach and deserves further study.

Choosing the Best Solution Amongst Many

After the work of C. Hoffmann, R. Paige and their students [BFHT95], identifying the good solution
of a system is now considered as an important issue of this modeling scheme. There are several
approaches.

With the numerical methods, the initial guess is supposed to indicate the hoped solution, at
least theoretically.

Otherwise, one idea is to choose the solution that keeps better the relative location of geometric

19

elements in the initial guess (for instance the clockwise or anti-clockwise orientation of triplets of
construction points). If this heuristic method fails, the decomposition of the set of constraints into
basic problems permits [BFHT95] to interactively browse the set of all solutions, considered as a
tree of choices: for instance, an equation of degree 2 has two sons, one with the positive square
root, the other with the negative square root.

The last possible method is to add inequalities which reject all but the wanted solution. Un-
fortunately inequalities are difficult to debug.

Conclusion

This chapter has presented two techniques for the qualitative study of systems of constraints: the
first, the numerical and probabilistic one, is easy to implement and very general: it works in any
dimension. The second stems from graph theory, and generalizes and simplifies previous decom-
position approaches. In 2D, it is easy to implement, faster than the first approach, and moreover
it gives all rigid subparts of the sketch, which permit to speed up the resolution step. Anyway, it
is worth combining the two approaches: the graph-based method gives a first decomposition, each
part of which may then be studied further with the numerical and probabilistic technique. Further
work 1s needed for the graph-based approach in 3D, which has not been implemented and tested
so far.

References

[AAJMO3] S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduction of constraint sys-
tems. In Compugraphic, pages 83-92, Alvor, Portugal, 1993. Also available at
hitp://www.emse. fr/ “micheluc/.

[AHUS83] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley
Publishing Company, Reading, Mass., 1983.

[AMO95] R. Anderl and R. Mendgen. Parametric design ands its impact on solid modeling
applications. In Proceedings of the Symposium on Solid Modeling Foundations and
CAD/CAM Applications, pages 1-12, 1995.

[BFH195] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. Geometric constraint solver.
Computer-Aided Design, 27(6):487-501, 1995.

[Brii85] B. Briiderlin. Using prolog for constructing geometric objects defined by constraints.
In European Conference on Computer Algebra, pages 448-459, 1985.

[Briig86] B. Briiderlin. Constructing three-dimensional geometric objects defined by constraints.
In Interactive 3D Graphics, pages 111-129, October 1986.

20

[Briiss]

[But79]

[DMS97]

[Hen92a]

[Hen92b)

[FK73]

[FIM93]

[Kra91]

[Lam70]

[LM96]

[L.P86]
[Mar71]

[Owed1]

[Rec86]

[Sch80]

[Tar72]

B. Bruderlin. Automatizing geometric proofs and constructions. In Springer Verlag
Lectures Notes in Computer Science, 333, editor, Computational Geometry and its
Applications, pages 233-252, 1988.

M. Buthion. Un programme qui résout formellement des problémes de constructions

géométriques. RAIRO Informatique, 3(4):353-387, oct 1979.

J.F. Dufourd, P. Mathis, and P. Schreck. Formal resolution of geometrical constraint
systems by assembling. In Christoph Hoffmann and Wim Bronsvort, editors, Fourth
Symposium on Solid Modeling and Applications, pages 271-284. ACM press, 1997.

B. Hendrickson. Conditions for unique realizations. STAM J. Computing, 21(1):65-84,
feb 1992.

B. Hendrickson. Conditions for unique realizations. STAM J. Computing, 21(1):65-84,
feb 1992.

J.E. Hoperoft and R.M. Karp. An n®/? algorithm for maximum matching in bipartite
graphs. STAM J. Computing, 2(4):225-231, 1973.

Joos Heintz and Jacques Morgenstern. On the intrinsic complexity of elimination the-

ory. Technical Report 1923, INRIA, 1993.

G.A. Kramer. Using degrees of freedom analysis to solve geometric constraint systems.
In Proceedings of the Symposium on Solid Modeling Foundations and CAD/CAM Ap-
plications, pages 371-378, 1991.

G. Laman. On graphs rigidity of plane skeletal structures. J. Engineering Math.,
4(4):331-340, Oct. 1970.

H. Lamure and D. Michelucci. Solving geometric constraints by homotopy. IEEE Trans.
Visualization and Comp. Graphics, 2(1):28-34, 1996.

L. Lovasz and M.D. Plummer. Matching Theory. North-Holland, 1986.

W.A. Martin. Determining the equivalence of algebraic expressions by hash coding. J.

ACM, 18(4):549-558, 1971.

J.C. Owen. Algebraic solution for geometry from dimensional constraints. In Proceed-
ings of the Symposium on Solid Modeling Foundations and CAD/CAM Applications,
pages 397-407, 1991.

A. Recski. Matroid theory and its applications. Springer Verlag, 1986.

J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.

ACM, (27):701-717, 1980.

R.E. Tarjan. Depth first search and linear graph algorithms. STAM J. Computing, 1,
2:146-160, 1972.

21

VSR92 A. Verroust, F. Schonek, and D. Roller. Rule oriented method for parametrized com-
[: : P
puter aided design. Computer Aided Design, 24(3):531-540, Oct 1992.

22

