
Qualitative Study of Geometric ConstraintsH. Lamure, D. MichelucciModeling by geometric constraints is a promising method in the �eld of CAD/CAM. However, thisprocess, closely related to computer programming, is also error prone. A geometric constraintsbased modeler should help the end user to �nd his mistakes, or, better, not to commit ones bywatching the building process. The well known main cause of errors with these methods is thespeci�cation of redundant constraints, and sometimes conicting constraints. It's also important todetect under-constrained parts of the system involving indecisiveness. This chapter alludes to somenumerical and probabilistic tools that could be used for this goal. There's also a decompositionmethod of constraints systems using tools of the graph theory. Since these two approaches havetheir own advantages it's worth combining them. All these methods will be studied �rst for systemsof equations and then extended to the more speci�c case, but also more interesting for modeling,of systems of geometric constraints.IntroductionIn CAD-systems, Geometric Modeling by Constraints, also called Variational Modeling, enables de-signers to describe shapes by interactively editing a sketch and specifying geometric or engineeringconstraints: see R. Anderl & R. Mendgen for a survey [AM95].Engineering constraints typically involve material properties or manufacturing parameters, andare best expressed by equations. Geometric constraints fundamentally involve points, lines, circles:typical ones specify the distance between two geometric elements (two points, a point and a line,two parallel lines), the angle or the parallelism between two lines, the tangency between a line anda circle or between two circles, the incidence between a point and a line or a circle, etc. Actually,any algebraic equation involving coordinates is a possible constraint, as far as it is independent ofthe used coordinates system.The usual geometric constraints can be represented either by algebraic equations, or by predi-cates. The predicates formulation has the disadvantage to restrict the set of expressible geometricconstraints, and to prevent the merging of geometric constraints and of engineering ones, but itseemed more suited to rule-based approaches than the equational formulation. Up to now, allrule-based or qualitative approaches (as opposed to numerical methods) [Br�u86, VSR92] rely onthe predicates formulation. In contrast, this chapter will show that the equational formulation also1



permits a qualitative study as well.Solving Systems of ConstraintsConstraints-based modelers have to solve in some way the set of constraints by one of the followingapproaches: symbolic, numerical or decomposition methods.Symbolic methods resort to tools from Computer Algebra, like resultants or Grobner Bases[AM95]. Due to their exponential running-time, they can be used only for small systems.Numerical methods typically improve the initial and rough guess interactively provided by theuser during the sketching stage, by using some Newton iterations [AM95], or the homotopy method[LM96] which has a more intuitive convergence.Decomposition methods reduce constraint systems into basic problems, the solutions of whichare then stuck back together (to quote a few: [Owe91, VSR92, BFH+95, But79]). In 2D basicproblems are triangles: the relative location of their 3 vertices are determined by 3 constraints (e.g.either 3 distances or 2 distances + 1 angle or 1 distance + 2 angles); quadrilaterals or parallelograms[VSR92]; or other systems soluble by `ruler and compass' like Appolonius's problem. The idea isthat the basic problems can be solved by applying a simple mathematical formula, and the mergingstage only needs some displacement. The decomposition may be performed either implicitly, bythe matching process of some inference engine, �ring rules [But79, VSR92, DMS97] or Prologpredicates [Br�u85, Br�u88], or explicitly, by searches in the graph of constraints [BFH+95, Owe91].Up to now, this method is often restricted to 2D or 2D 12 applications. Moreover the graph-based approach often assumes that the graph of constraints veri�es some strong assumptions, forinstance being biconnected [Owe91], or hierarchically reducible into triangles [BFH+95], or that allgeometric elements have exactly 2 degrees of freedom (ie the radius of all circles must be known),or that each constraint involves exactly 2 geometric elements. The graph-based approach proposedin this chapter overcomes these limitations. Another graph-based approach is presented in anotherchapter, it uses degrees of freedom analysis in Kramer's wake [Kra91].The Need for a Qualitative StudySpecifying constraints is a rather abstract task and so a very error-prone process, like programming.To be truly user-friendly, it is crucial for geometric modelers by constraints to help their users todebug and tune their systems of constraints: It is not enough that the resolution stage detects someproblem and informs the user that \there is a problem somewhere in his system of 100 equationsand 100 unknowns"; the user wants a precise diagnosis like: \Among these 100 equations, these3 are redundant and you can remove anyone of them; on the other hand these 3 unknowns areunder-constrained: one equation is missing". As an aside, it is the reason why we are a littlereluctant about using an optimization scheme to solve constraints: there is always a solution! andit is much more di�cult for the user {and for the modeler{ to �nd why the solution is not the2



expected one and where the mistake is.Moreover some qualitative studies of systems of equations permit to decompose systems ofconstraints into simpler ones. Not only does it speed up the resolution, but it can also make itpossible to solve a problem that would not be solved otherwise: for instance symbolic methodsapply only to small enough systems. Sometimes, this decomposition can also help the user toimprove his understanding of the properties of his problem.Systems of Equations versus Systems of Geometric ConstraintsA well behaved system of equations is supposed to determine n unknowns by n independent equa-tions.Systems of constraints met in Geometric Modeling by Constraints are special systems of equa-tions, since well behaved systems of constraints: distances, angles, tangencies,... between geometri-cal elements, or engineering equations, are independent of the used system of coordinates (assumingit is orthonormal), and thus determine unknown coordinates of points only up to a displacementin space. For instance, in a well behaved system of constraints in 2D, three equations are missingto completely determine unknown coordinates of points, since a 2D displacement is speci�ed bythree numbers: say a translation relatively to x and y axis and a rotation around the origin. In3D, six equations are missing, and d(d+ 1)=2 in Rd.To avoid ambiguities, we will use the terms : "well-constrained", "under-constrained" and"over-constrained" only for systems of equations. We will use the terms: "rigid", "under-rigid"and "over-rigid" for systems of geometric constraints.What if one wants to specify a constraint depending on the coordinates system, say if one wantsto specify the abscissa of a point A ? The equation Ax = v clearly depends on the coordinatessystem... The solution is to explicitly represent the coordinates system Oxy by three vertices: O,X, Y , and to specify the three constraints: jjOXjj = 1, jjOY jj = 1 and angle(OX;OY ) = �2 . ThenAx = v can be represented by a licit geometric constraint on the (signed) distance between OYand A: dist(OY;A) = v.We will impose a last restriction on geometric constraints. To solve possibly bad-constrainedsystems: fi=1::n(x) = 0, some people try to minimize or to make vanish the sum of the squaresof the equations: Pni=1 fi(x)2 (we think it is not a so good idea, but it is not the concern here).If the fi = 0 are independent on the coordinates system, so is Pni=1 fi(x)2 = 0. However we willforbid the use of such a trick. Or in other words, our methods are abused by this trick.3



Content of the ChapterThis chapter will propose two methods for the qualitative study of systems of equations and forsystems of constraints: the �rst method is a probabilistic numerical one, the second one stems fromgraph theory and does not consider the numeric details of equations, or geometric constraints. Soit can be applied to geometric constraints represented by predicates (in opposition to equations),say Prolog predicates like in Br�uderlin's works [Br�u86]. Of course it also applies to equations, orgeometric constraints represented by equations, but only unknown-equation incidences are takeninto account.The probabilistic and numerical method is presented �rst. It is �rst applied to systems ofequations and then extended to systems of geometric constraints. Then this chapter presents thegraph-based approach; similarly it is �rst applied to systems of equations and then extended tosystems of constraints; a detailed example illustrates the process. This chapter ends with possibleextensions and improvements.We only consider systems of equations or constraints, and not inequalities, because the qualita-tive study of such systems is too much di�cult: from elimination theory, solving well-constrainedsystems of algebraic equations (having a �nite number of roots) is simply exponential, whereassolving systems of equations and inequalities is doubly exponential [HM93]. Moreover, inequalitiesare the more often used only to select the wanted solution in the �nite but very big solution set ofa system without inequalities: so we can at least diagnose this last system.The Numerical Probabilistic MethodThe Qualitative Study of Systems of EquationsFor the qualitative study of systems of equations to be feasible, some \genericity hypothesis" areneeded. The weaker one is always satis�ed in our context, where equations are typically algebraicones, with real coe�cients: exactly n independent equations are needed to determine n unknownsin C n. Actually, since we are interested only by real solutions and though it is a bit cavalier, wewill assume a little stronger hypothesis and replace C n by Rn, in spite of some algebraic singularsystems like for instance x2 + y2 = 0 which has a �nite number of real solutions though there isonly 1 equation for 2 unknowns. More generally, we assume that the trick of taking the sum of thesquares of some equations will not be used. Some of the methods presented below need strongergenericity hypothesis, given later.By the genericity hypothesis, a system in n unknowns and n equations: E(X) = 0 whereX = (x1 : : :xn) and E = (e1 : : : en), is incorrect i� the jacobian jE0j = j( @ei@xj )j is identicallynull. Mathematically speaking, things are simple. However, the symbolic computation of thedeterminant of the jacobian is impracticable, even for little values of n like 10: the determinanthas an exponential number of terms. 4



A solution is to use the probabilistic scheme [Mar71, Sch80]: the value of the jacobian iscomputed at some random sampling points (three or four points is enough). If each time it vanishes,then there's a probability very close to 1 that the jacobian is identically zero (see previous referencesto have the probability of errors). Otherwise {and obviously!{ it is not identically zero.To avoid inaccuracy problems, this test can be performed for integer points and modulo someprime integer, big enough (say about 106 or 109) to decrease the risk of unlucky reductions: thereis an unlucky reduction when the value of the determinant is a non-null multiple of the usedprime. For relevance, real coe�cients must be represented in an exact way, for instance p2 mustbe represented by an auxiliary unknown � and an equation �2 � 2 = 0.We can even do better and compute (always probabilistically, for some random sample points)the rank or even a base of the jacobian. Before we detail this, let us get a more intuitive insighton their meaning: we consider the unknowns X = (x1 : : :xn) as a function of the time, t; derivingE(X(t)) = 0 relatively to time, we obtain _XE0 = _0, where _X is the vector of velocities of X,compatible with E. If E is correct, ie if all equations ei are independent so E0 has maximal rankn, then the only solution for _X is _0: it is impossible to move the unknowns and to keep E(X) = 0.More generally, the solution for _XE0 = _0 form a vectorial space: the kernel of E0 which is dual tothe space spanned by the equations ei. The rank of the vectorial space _X is the number of missingdeterminations. The number of equations minus the rank of E0 gives the number of excessiveequations in E.It is worth computing a base of _X and E0. It can be done in O(n3) time by standard techniquesof linear algebra. An unknown xk is �xed by the system E i� _xk is zero for all the vectors in thebase of _X ; otherwise the number of vectors with a non zero component _xk in the base for _X givesthe number of remaining degrees of freedom for xk. Of course, the numerical values of vectors, forbases of _X and E0, depend on the random sampling points, but the structure of E0 and _X (rank,corank, �xed and not �xed unknowns) does not.As an example, let us consider this little system:E = 8>><>>: x2 + y2 � 1 = 0y2 + z2 � 2 = 0x2 � z2 + 1 = 0w2 + 2w + 1 = 0whose jacobian E0 is computed at random point: p = (1 2 3 4) :E0 = 0BB@ 2x 0 2x 02y 2y 0 00 2z �2z 00 0 0 2w+ 2 1CCA = 0BB@ 2 0 2 04 4 0 00 6 �6 00 0 0 10 1CCAE0(p) has rank 3 and a base of its kernel is: ( _x _y _z _w) = (6 � 3 2 0). Thus x, y and z are notdetermined, but w is, since _w = 0 for all vectors in the kernel base.Last but not least, this approach (probabilistically computing ranks or bases for _X and E0)5



can also be used when the number of equations is not equal to the number of unknowns. Thusit can also be performed on-line: in an interactive context, equations are likely introduced onceat a time. The following interactive protocol may be convenient: the software maintains anindependent set of equations E: "independent" means: rank(E0)=cardinality(E) where the rankis computed with the probabilistic method. When the user proposes a new equation e, the softwarecomputes if E0[fe0g is dependent or not: for instance, e0 is decomposed into e0 = ed+ei by Gram-Schmidt's orthogonalization procedure, where ed is the projection of e0 in the range of E0 and eiis the orthogonal part. Again, these computations can be performed modulo some big prime (inparticular, no square root is needed). If fe0g [ E0 is independent (ei 6= 0), e is inserted in E;otherwise the software asks the user which equation to remove in the minimal dependent set inE [ feg: to �nd the latter, just remove from E0 each element such that remaining ones and e0 arestill dependent. The set of compatible velocities _X is also maintainable on-line.The probabilistic numerical method is simple and very easy to implement. It may use thesparseness of the system at hand in order to speed up computations. Anyway it cannot be slowerthan the numerical resolution method. It can distinguish between dependent and independentsubsets of equations on one part, and between �xed and un�xed unknowns on the other part.The Qualitative Study of Systems of Geometric ConstraintsFrom Equations to Geometric ConstraintsSince the well behaved systems of constraints are under-constrained systems of equations (as al-ready explained), it may seem this method does not directly apply to systems of geometric con-straints.A �rst straightforward way to overcome this limitation is to add some ad-hoc equations. If forinstance in 2D, specify for some couple of points A and B that Ax = Ay = 0 and By = 0. In 3Dspecify for some triplet of points A, B and C that Ax = Ay = Az = 0, By = Bz = 0 and Cz = 0.Then all the numerical probabilistic approach directly applies: it is possible to know the �xed andnot �xed unknowns, and to detect dependent subsets of equations.A second way is not to add ad-hoc equations, but to remember that a rigid system must haveexactly 3 (respectively 6) remaining degrees of freedom in 2D (respectively 3D), ie the vectorialspace of compatible velocities _X must have rank 3 (respectively 6). In Rd, it must have rankd(d+ 1)=2.An ExampleLet us study the 2D system in Fig. 1 (the same example is also studied with the graph-basedmethod in Fig. 7). Edges represent constraints of distance between points. It is intuitively obviousthat, though there is the good number of constraints (6 points, 2� 6� 3 = 9 constraints) for the6



graph to be rigid, the subset P1P2P5P4 is over-rigid and the subset P2P3P6P5 is under-rigid.
P2

P1P4

P5

P3P6Figure 1: A simple 2D system of geometric constraints. Each edge represents a constraint ofdistance between its two vertices.Distance constraints are in this order:E = (P1P2 P1P4 P2P4 P2P5 P4P5 P1P5 P2P3 P3P6 P5P6)The vector of unknowns is X = (x1 y1 x2 y2 : : : x6 y6). Thus the jacobian is (after division by 2)E0 = 0BBBBBBBBBBBBBBBBB@ x1 � x2 x1 � x4 0 0 0 x1 � x5 0 0 0y1 � y2 y1 � y4 0 0 0 y1 � y5 0 0 0x2 � x1 0 x2 � x4 x2 � x5 0 0 x2 � x3 0 0y2 � y1 0 y2 � y4 y2 � y5 0 0 y2 � y3 0 00 0 0 0 0 0 x3 � x2 x3 � x6 00 0 0 0 0 0 y3 � y2 y3 � y6 00 x4 � x1 x4 � x2 0 x4 � x5 0 0 0 00 y4 � y1 y4 � y2 0 y4 � y5 0 0 0 00 0 0 x5 � x2 x5 � x4 x5 � x1 0 0 x5 � x60 0 0 y5 � y2 y5 � y4 y5 � y1 0 0 y5 � y60 0 0 0 0 0 0 x6 � x3 x6 � x50 0 0 0 0 0 0 y6 � y3 y6 � y5 1CCCCCCCCCCCCCCCCCAA possible base for compatible velocities _X is:- an x-translation: (1 0 1 0 1 0 1 0 1 0 1 0)- an y-translation: (0 1 0 1 0 1 0 1 0 1 0 1)- a rotation around the origin, for instance: (�y1 x1 �y2 x2 : : :�y6 x6)- the last vector is for the possible motion of P3 and P6 around P2 and P5 respectively. Anynon-null vector (0 0 0 0 _x3 _y3 0 0 0 0 _x6 _y6) such that( _x3 _y3 _x6 _y6)0BB@ x3 � x2 x3 � x6 0y3 � y2 y3 � y6 00 x6 � x3 x6 � x50 y6 � y3 y6 � y5 1CCA = (0 0 0)is suitable.For short, we don't give symbolic values for this last vector, nor details of probabilistic compu-tations. Anyway, the computed rank of _X is four: three are due to normal 2D rigid body motions,the fourth is due to the remaining degree of freedom in part P2P3P6P5. Similarly, the computedrank of E0 is 8, whereas E has 9 equations: redundancy is detected. Adding three ad-hoc equations7



like x1 = y1 = x2 = 0, and computing _X will show that P1, P2, P4, P5 cannot move, but P3 andP6 have still one degree of freedom.Remark: systems like in this example, where all constraints specify distances between points,form a special class of problems, which is called the rigidity graph problem, and which has beenstudied by graph-theorists or combinatorists, and by structural engineers who want to guarantee thestability of frameworks in buildings. These communities call the jacobian the "rigidity matrix".They proved the correctness of the probabilistic method for the rigidity graph problem, in alldimension, just assuming weak genericity hypothesis : it is Gluck's theorem. They also found agraph-characterization for 2D rigid graphs : it is Laman's theorem. They proposed graph-based ormatroid-based methods for testing rigidity in 2D. Up to now, a graph-characterization for rigidityis still unknown in R3 and beyond. See [Hen92a, LP86, Rec86].Ergonomic IssuesThe ergonomic issues are not our concern here, but in passing we propose the following visualprotocol for helping the user to see which part of his sketch is still under-determined. Let X1be the current solution of the set of constraints E(X) = 0. If some part of the sketch is under-constrained, then there is some velocity vector _X1 such that _X1E0(X1) = 0. The idea is to smoothlydeform the sketch from its state X1 to a state X2, X3, etc but keeping E(Xi) = 0 for all i. X2is computed from X1 + � _X1, with some correction by some Newton-Raphson's iterations or somegradient descent. Idem for X3 from X2, and so on. It is also easy to allow the user to specifythe 2 motionless points A and B in 2D: so he will see which part remains motionless relatively toAB, ie the maximal rigid part containing AB. The same holds in 3D for 3 motionless points. Ofcourse, the modeler can also automatically deduce the maximal rigid parts, in the same way.Limitations of the Numerical Probabilistic MethodThe numerical probabilistic approach has limitations:1. It cannot distinguish between �xed but well-constrained unknowns, and �xed but over-constrained ones; this notion is relevant only for sparse systems: for instance in the system x +y + z = 2x+ 2y + 2z = 0, unknowns x, y and z are in the same time over-constrained (since theyare involved by redundant equations) and under-constrained (since compatible velocities _x, _y and_z are not zero). But the graph-based method (next section) will solve this problem. The next twolimitations are actually a reformulation of the genericity hypothesis:2. Another limitation of the probabilistic numerical method, and a fortiori of the graph-basedone, and in fact of all polynomial-time methods is that "subtle dependencies" (de�ned below)between equations cannot be detected. Assuming all equations to be polynomials, these methodscannot detect that one of the polynomials is in the ideal or in the radical of the others, or, in moreintuitive words, that one equation is a consequence of the others. Mathematically, f0 is in the8



ideal generated by fi=1::n i� there exist polynomials hi such that f0 = h1f1+ h2f2 + : : :hnfn, andin its radical i� there exist some integer k � 1 such that fk0 is in the ideal generated by fi=1::n.In such cases, clearly, f1 = f2 = : : : fn = 0 implies f0 = 0. Moreover, the associated jacobian off0 = f1 = : : : fn = 0 has non-maximal rank at the common roots of f0 = f1 = : : : fn = 0, butit can have maximal rank elsewhere. A simple example is: f1 = x2, f2 = y + 1, f0 = zf1 + yf2;though the jacobian ���@f@x ��� = �2x3 vanishes when f1 = f2 = 0, it is non identically zero.3. In the same way, polynomial-time methods cannot detect that one of the polynomial equa-tion, f0, contradicts the others, ie that there exist polynomials hi, an integer k � 1 and a non-nullconstant c such that fk0 = c + h1f1 + h2f2 + : : :hnfn. In such cases, clearly, f1 = f2 = : : : fn =0 ) f0 = c 6= 0. Here again, the associated jacobian of f0 = f1 = : : : fn = 0 has non-maximalrank at the common roots of f1 = f2 = : : : fn = 0, but it can have elsewhere.For example, consider the system with 4 points O, A, B, C and 5 constraints: O is the middleof AB, distance OC equals distance OA, AC is orthogonal to CB (this constraint is a consequenceof the previous ones), and distance AB is given. This system is not rigid since C can freely rotatearound circle with diameter AB. Equations are:8>>>><>>>>: e1 = 2xO � xA � xB = 0e2 = 2yO � yA � yB = 0e3 = (xC � xO)2 + (yC � yO)2 � (xA � xO)2 � (yA � yO)2 = 0e4 = (xC � xA)(xC � xB) + (yC � yA)(yC � yB) = 0e5 = (xA � xB)2 + (yA � yB)2 � d2AB = 0Unknowns are: (xO yO xA yA xB yB xC yC ). The jacobian is:E0 = 0BBBBBBBBBB@ 2 0 2xA � 2xC 0 00 2 2yA � 2yC 0 0�1 0 2xO � 2xA xB � xC 2xA � 2xB0 �1 2yO � 2yA yB � yC 2yA � 2yB�1 0 0 xA � xC 2xB � 2xA0 �1 0 yA � yC 2yB � 2yA0 0 2xC � 2xO 2xC � xA � xB 00 0 2yC � 2yO 2yC � yA � yB 0 1CCCCCCCCCCATerm @e4@xC = 2xC � xA � xB is equal to 2xC � 2xO = @e3@xC , due to equation e1. Similarly,@e4@yC = @e3@yC due to equation e2. These equalities don't hold for generic (ie random) values of xO,xA, xB , xC, yO : : : yC thus the compatible velocity _X = (0 0 0 0 0 0 yO �yC xC�xO) is missedby the probabilistic method, which wrongly �nds this system is rigid.Subtle dependencies give us a trick to change all geometric theorems into non-generic constraintssystems which mislead the numerical probabilistic method. Just note that, when you don't knowthe trick, such systems are unlikely to occur, and the probabilistic method is still interesting.9



Moreover no method in polynomial time can detect subtle dependencies: one has to resort tosome symbolic computation machinery, like Grobner bases, which are exponential in time, andsometimes doubly exponential. As a consequence, such symbolic methods can be used only forvery small systems or subsystems (less than 10 non linear algebraic equations); the graph-basedmethod in the next section just gives a fast way to �nd smallest subsystems in large sparse systemsof equations.The Bipartite Graph-Based MethodAn alternative approach, stemming from graph theory, exploits the sparseness of systems of equa-tions or geometric constraints. The idea is to consider the bipartite graph associated to a givensystem of equations or geometric constraints: each unknown is associated to an unknown-vertex,each equation is associated to an equation-vertex, and an edge join an unknown-vertex and anequation-vertex i� the corresponding unknown appears in the corresponding equation (Fig. 2).This graph is bipartite because there is no edge between any two unknown-vertices, and be-tween any two equation-vertices. In the following we will be drawing equation-vertices abovethe unknown-vertices.We �rst apply this method to systems of equations, then extend it to systems of geometricconstraints.
e1 e2 e1 e2 e3

x1 x2 x1 x2 x3

A BFigure 2: A is well-constrained in generic case : it has a perfect matching. B is always singular :it has no perfect matching.The Qualitative Study of Systems of EquationsDulmage-Mendelsohn's DecompositionIn the generic case (we will come back later to this point), the study of this bipartite graph �rstpermits to decompose the system into its well-, over- and under-constrained parts [LP86]. This10
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BFigure 4: To �nd a maximum matching, start with an initial matching (possibly empty), andimprove its cardinality while possible, as follows. Built the corresponding directed graph in themiddle: edges in the matching are oriented in both directions, while others are oriented downward.Then �nd a shortest path (here: A, 3, 6, 1, 5, B) from a non-saturated Above vertex to a non-saturated Below one. Finally invert all status (ie belonging or not to the matching) of edges (here36, 61, 15) along the found path.decomposition is due to Dulmage and Mendelsohn. Though it was not initially developed with thestudy of systems of equations in mind, it appears to be relevant for this problem. We will needthe following de�nitions:A matching of a graph is a subset of its edges, such that any two distinct edges of the matchingnever have a common vertex. A matching is maximum i� it is maximal in cardinality. A vertexis saturated by a matching i� it is a vertex of one edge of this matching. A matching saturatingall vertices of a graph is called perfect: see Fig. 3. From an algorithmic point of view, polynomialalgorithms to compute a maximummatching for bipartite graphs are known, for instance Hopcroftand Karp's method [HK73, AHU83], see Fig. 4.The Dulmage-Mendelsohn's decomposition is illustrated Fig. 5. The main properties are, ina jumble: there is no edge between D1 and C2, between D2 and C1 and between D1 and D2.G1 = C1 [ C2 has a perfect matching, so jC1j = jC2j. D1 and D2 are respectively the set ofequation- and unknown-vertices which are not saturated by at least a maximum matching. A211



(respectively A1) is the set of the neighbors of D1 (respectively D2). Vertices of A2 and A1 areall saturated by all maximummatchings. Edges between C1 and A2, between C2 and A1, betweenA1 and A2, actually edges between distint Gi, never belong to a maximum matching.
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ComponentsFigure 5: The Dulmage-Mendelsohn's decomposition of a graph G, with a maximum matching,and the structure of the induced directed graph G0.The important thing for us is that G1 = C1 [ C2 is the well-constrained part of the system,G2 = D1 [ A2 its over-constrained part, G3 = A1 [D2 its under-constrained part. Only the G1part has a perfect matching (Fig. 3).To give a fast method for computing the Dulmage-Mendelsohn's decomposition, we need thefollowing de�nitions: a directed graph is said to be strongly connected i� for any pair x and yof vertices there exists a directed path from x to y and from y to x. The strongly connectedcomponents of a graph are its maximal strongly connected subgraphs, they partition its vertices.Strongly connected components must not be confused with connected components: the latter doesnot take into account the orientation of edges.Let M be any maximummatching of the bipartite graph G. G0 is the directed graph obtainedfrom G by replacing each edge (x; y) in M by two arcs xy and yx, and by orienting all other edgesfrom equation-vertices to unknown vertices. The strongly connected components of G0 are includedeither in G1, or in G2, or in G3. Moreover if there are non saturated equation-vertices, then theyare the sources of G2. Symmetrically, if there are non saturated unknown-vertices, then they aresinks of G3. Thus G0 has the structure shown in Fig. 5. An algorithm to compute the Dulmage-Mendelsohn's decomposition follows: Find a maximummatchingM of G; build the directed graphG0 from G; G2 is the set of all descendants of sources of G0; symmetrically G3 is the set of allancestors of sinks of G0; �nally G1 = G0 � G2 � G3. Of course, this decomposition is unique anddoes not depend on the initial maximum matching. Finding a maximum matching can be donein O(epv), where e is the number of edges of G and v its number of vertices, by using Hopcroftand Karp's method [HK73, AHU83]. The other steps can be done in O(e+v): the computation ofancestors and descendants is made by a classical depth �rst or breadth �rst search in linear time.Clearly e = O(v2). In practice, e is the more often proportional to v. Anyway, we have a fastmethod to diagnose a system of equations. 12



Finding the Irreducible SubsystemsSecondly, for well-constrained systems, the study of the associated bipartite graph permits to �ndits irreducible subsystems and the dependencies between them. This reduction greatly speeds upthe resolution process, whatever the resolution method used, numerical or symbolic. Moreover, ifthe use of this decomposition is visible for the user, it allows him to follow the resolution processstep by step, ie irreducible after irreducible: the decomposition gives the running trace of theresolution process and makes it more self explanatory.
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H H H
3

H H H
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Genericity HypothesisThe graph-based approach uses only the structure of the system and forgets all numerical informa-tions. Thus it assumes stronger genericity hypothesis than the numerical probabilistic approach.For instance the graph A in Fig. 2 is associated to singular systems, in degenerate cases (like:x+ y = 2; 2x+ 2y = 4 which has an in�nity of solutions or like x+ y = 2; 2x+ 2y = 3 which hasno solution at all), and also to well-constrained systems, in the generic case. The probabilistic ap-proach can discriminate (up to limitations, as already seen) between the non-generic and genericcases when the graph-based approach obviously cannot. Note that the nullity of the jacobian indegenerate cases has nothing to do with the structure of the system, and that it su�ces to ran-domly and in�nitesimally perturb the coe�cients of such degenerate systems (without changingtheir structure) to recover the generic situation; or, in other words, degenerate cases occur withprobability 0 [LP86]. On the other hand, when the graph-based approach states that a systemis not well-constrained, then it is not (see graph B in Fig. 2) and no matter the values of thecoe�cients are. Mathematically speaking, a su�cient condition for a system to be generic is thatits coe�cients are algebraically independent (of course it is a very unrealistic assumption, sincecoe�cients are integers or oating point numbers, ie rational numbers . . . ) so that they do notverify any parasitic condition, and the rank of the jacobian is then strictly equal to the cardinalityof the maximum matching of the corresponding bipartite graph. Degeneracies can only decreasethe rank.The Qualitative Study of Systems of Geometric Constraints
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1 3 42Figure 7: This graph G is incorrect, ie non rigid. However, adding some three ad-hoc equations(the quadrupled edge: e) gives a graph Ge, whose associated bipartite graph Bip(Ge) is well-constrained. The perfect matching of Bip(Ge) is drawn directly on Ge by orienting its edges.The extension from system of equations to systems of geometric constraints is not simple for thebipartite graph-based approach. There are cases where adding some ad-hoc equations producesa bipartite graph having a perfect matching, ie indicating that the system is rigid, though it isnot. Such a case is illustrated in 2D in Fig. 7: the vertices of this graph of constraints represent,say, points with unknown vertices, and edges represent constraints of distance. In Fig. 7, one ofthe original constraints has been quadrupled: we pin the corresponding edge e on the plane. Call14



Ge the resulting graph. The bipartite graph Bip(Ge) has a perfect matching, though the initialsystem of constraints is obviously incorrect: the square with its two diagonals is over-rigid, theother square is under-rigid.The perfect matching has been displayed in a very compact way, directly on the graph as anorientation of its edges: an edge (a; b) in a graph of constraints Ge is oriented from a to b i�,in Bip(Ge), the edge (ab; ax) or (ab; ay) belongs to the matching. The fact that the matching isperfect implies that each vertex in Ge receives exactly 2 arcs.However, pinning another edge of the graph in Fig. 7 permits to detect that this graph isover-rigid in one part and under-rigid in the other part. We just have to pin each and every of itsedge. We now see a general formulation of the method.HypothesisFor the sake of simplicity, we assume that the system of constraints involves n unknown 2Dpoints, the coordinates (xi; yi) of which depend on the coordinates system, and k unknowns u1. . .uk which are independent of the coordinates system: they can be (possibly signed) distances,(possibly signed) areas, scalar products, angles, radii of circles. . . or non geometric unknowns.Moreover, all constraints must be independent of the coordinates system: if (xi; yi; uj) is asolution, so is (xi+ Tx; yi; uj) for any value Tx (a translation in x has been applied), so is (xi; yi+Ty; uj) for any value Ty (a translation in y has been applied), and so is (xi cos ��yi sin �; xi sin �+yi cos �; uj) for any value of � (a rotation around the origin has been applied). Such a constrainteither involves no points, or involves at least 2 points, but never a single point. Note that weaccept constraints involving more than two points: these systems are more general than the graphof constraints illustrated by Fig. 7 or 8, where constraints must involve exactly 2 geometric elements(since an edge has 2 vertices). According to this criteria the bipartite graph-based approach has alarger expressive power than the one relying on graphs of constraints [Owe91, BFH+95].Such a system of constraints has P (n; k) = 2n + k � 3 degrees of freedom when n � 2 andP (n; k) = k degrees when n = 0. To �x without redundancy the 2n + k unknowns up to a dis-placement in the plane, in other words to be rigid, the system must have exactly P (n; k) equations(which is trivial to check) and all its subsystems with n0 points and k0 other unknowns must haveat most P (n0; k0) equations: if one has more than P (n0; k0) equations, it is over-rigid. For short,we will say that a rigid system must have the P property.We assume that the system at hand has P (n; k) equations, and that its Dulmage-Mendelsohn'sdecomposition has an empty part G3 (the over-constrained part): in other words, all equationsare covered by a maximal matching. Now, by slightly extending a method due to Hendrickson[Hen92b], it is possible to verify that the system ful�lls P , ie that there is no over-determinedpoints: 15



Decomposition AlgorithmFor each constraint e involving at least one point (and so, at least two points as we have just seen)in the system G, consider the bipartite graph Bip(Ge) where Ge is obtained from G by addingthree ad-hoc equations involving the same unknowns than e: intuitively speaking, we \pin" twopoints appearing in e on the plane. Verify that Bip(Ge) has a perfect matching: if not, the systemGe is incorrect and the Dulmage-Mendelsohn's decomposition gives an over-constrained part in Ge,and so an over-rigid part in the initial system of constraints G. Hendrickson has proved [Hen92b]that the system G ful�lls P i� all the bipartite graphs Ge have a perfect matching: the proof isnot di�cult but a bit lengthy and must be omitted for conciseness.Only the �rst maximummatching has to be computed from scratch: the others can be obtainedmore quickly, in linear time, by updating the previous one (see Fig. 4). For this reason, this methodmay be used on-line, when constraints are added or removed one at a time, but this point is notdetailed due to lack of space. Assuming that k = O(n), and that each constraint involves O(1)unknowns (which is generally the case), then the �rst step could be done in O(n2), and each of then other steps could be done in O(n), so this method will work in O(n2), whereas the probabilisticnumerical method is in O(n3).
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3Figure 8: A graph of constraints.Moreover, at each step (ie for each Ge), it is possible to compute the decomposition into ir-reducible parts: each irreducible part { it contains the particularized constraint { gives a rigidsubsystem, assuming the system is correct. For instance, for the system of constraints in Fig. 8,when pinning edge-constraint (1; 3), subsystems f1; 3g, f1; 2; 3g and f1; 3; 4g are found. When pin-ning edge-constraint (5; 6) or (6; 7) or (5; 7), subsystem f5; 6; 7g is found (and the trivial subsystemequal to the pinned edge itself, of course). Thus all rigid subsystems are found this way. If thesubrigid parts are "small" (ie involve only a number of other subrigids independent of n) then wecan use this decomposition in order to speed up the resolution process. Indeed it's possible tosolve each of the small systems in constant time: by applying a resolution scheme in simple cases(for example when only 3 equations are involved), by rewriting equations, or by formal resolution[DMS97].We have used the obvious fact that a rigid system must have the P property; when the con-straints are solely distances between vertices, G. Laman [Lam70] has been able to prove the con-16



verse: a system verifying the P property is rigid, so the P property is a full characterization ofthese rigid graphs. But as far as we know, this converse has not been extended up to now for anykind of 2D constraints.As already seen, and for the same reasons, it is worth combining the graph-based approach andthe numerical probabilistic one.
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Figure 9: A 2D system of geometric constraints.An ExampleThis section presents a simple and complete 2D example: see Fig. 9. The constraints are:� �2 � 2 = 0 which yields e0(�) = 0� jjACjj = 4� which yields e1(A;C; �) = 0� jjABjj = 3� which yields e2(A;B; �) = 0� jjBCjj = 2� which yields e3(B;C; �) = 0� the circle C1 with center B and radius R1 is tangent to the line (AC) which yields e4(A;B;C;R1) =0� jjCDjj = 4 which yields e5(D;C) = 0� jjCEjj = 3 which yields e6(E;C) = 0� jjDEjj = 2 which yields e7(D;E) = 0� the circle C2 with centerD and radius R2 is tangent to the line (CE) which yields e8(C;D;E;R2) =0 17



� Circles C1 and C2 are tangent each other: e9(B;D;R1; R2) = 0The method detects that the system is rigid and its rigid subsystems are: S0 = fe0g whichdetermines �, S1 = S0[fe1; e2; e3g which determines the triangle (A;B;C), S2 = fe5; e6; e7g whichdetermines the triangle (C;D;E), S3 = S1 [ fe4g which determines the radius R1, S4 = S2 [ fe8gwhich determines the radius R2, S = S3 [ S4 [ fe9g which permits to assemble the 2 parts of the�gure. For simplicity we have omitted the trivial subsystems fe1g, fe2g, fe3g, fe5g, fe6g, fe7g.Possible ExtensionsCombining Numerical and Graph MethodsIt is worth combining the two approaches. The graph-based approach gives a decompositioninto over-, under- or well-constrained parts, or into irreducible well-constrained parts, which theprobabilistic and numerical method cannot produce. However these parts cannot be studied furtherby the graph-based approach.Inside each irreducible and well-constrained part, the numerical probabilistic method may thenbe used, to detect redundancies between equations or not �xed unknown(s) (probably caused bysome mistakes from the user) that could not be detected by the graph-based approach. Recall thegraph-based approach can be abused by non generic systems which will not abuse the probabilisticand numerical method which uses a weaker genericity hypothesis.The fact that the graph-based approach is more easily abused than the probabilistic one mustnot be thought as a defect of the former: on the contrary, the fact that a system is found well-constrained for the former approach, and bad-constrained for the latter one is very informative,when debugging a set of constraints.The 3D CaseWe have not investigated the use of bipartite graphs for 3D systems of constraints so far. Thefunction P (n; k) becomes in 3D: P (0; k) = k, P (2, k) = 1+k and P (n; k) = 3n�6+k when n � 3.A system with n 3D points and k other unknowns must have exactly P (n; k) equations (which istrivial to check) and all its subsystems with n0 points and k0 other unknowns must have at mostP (n0; k0) equations: if one has more than P (n0; k0) equations, it is over-determined. Hendrickson'smethod has to be modi�ed in this way: for each couple of constraints involving at least a commonpoint, we must add 6 constraints, say 3 copies of each or: Ax = Ay = Az = By = Bz = Cz = 0,in order to \pin" in the space 3 of the points involved by the couple of constraints, and then weverify that the associated bipartite graph has a perfect matching. We have this time to considercouples of constraints, because we have to pin 3 points and a single constraint may involve only18



Figure 10: Here is the classical counterexample of G. Laman's proposition in 3D. This graphful�lls the P property, but it is not rigid. On one hand, there is no reason for the height of the lefthalf to be equal to the height of the right half, and on the other hand, the two halves can freelyrotate around the vertical axis of symmetry.two points. The main idea is that an over-rigid subsystem, having n0 points, k0 unknowns andmore than P (n0; k0) constraints, contains at least such a couple of constraints; after copying eachof them 3 times, we will obtain a partly over-constrained system of equations, which has not aperfect matching. Conversely, if the system ful�lls P , then all bipartite graphs will have a perfectmatching.Unfortunately, the P property is not strong enough in 3D: some graphs ful�ll the P propertybut are not rigid and G. Laman's theorem does not extend to 3D and beyond. Fig. 10 showsthe classical counterexample seen in [Hen92b, LP86] and others. To not be abused by such con-�gurations, a solution is to also verify (apart the P property) that each time a subset of points isdetermined by two subsets of constraints A and B, then it is determined by A \B: here the two"pole vertices" are �xed by the left and by the right halves of constraints, the intersection of whichis empty. We are not presumptuous enough to think this condition is always su�cient.In 3D the graph-based approach may seem less attractive, relatively to the numerical proba-bilistic one which always works, in time O(n3), for any dimension, and which is straightforwardto implement. However, the graph-based approach will give in a natural way the subrigid partscontrarily to the numerical probabilistic approach and deserves further study.Choosing the Best Solution Amongst ManyAfter the work of C. Ho�mann, R. Paige and their students [BFH+95], identifying the good solutionof a system is now considered as an important issue of this modeling scheme. There are severalapproaches.With the numerical methods, the initial guess is supposed to indicate the hoped solution, atleast theoretically.Otherwise, one idea is to choose the solution that keeps better the relative location of geometric19



elements in the initial guess (for instance the clockwise or anti-clockwise orientation of triplets ofconstruction points). If this heuristic method fails, the decomposition of the set of constraints intobasic problems permits [BFH+95] to interactively browse the set of all solutions, considered as atree of choices: for instance, an equation of degree 2 has two sons, one with the positive squareroot, the other with the negative square root.The last possible method is to add inequalities which reject all but the wanted solution. Un-fortunately inequalities are di�cult to debug.ConclusionThis chapter has presented two techniques for the qualitative study of systems of constraints: the�rst, the numerical and probabilistic one, is easy to implement and very general: it works in anydimension. The second stems from graph theory, and generalizes and simpli�es previous decom-position approaches. In 2D, it is easy to implement, faster than the �rst approach, and moreoverit gives all rigid subparts of the sketch, which permit to speed up the resolution step. Anyway, itis worth combining the two approaches: the graph-based method gives a �rst decomposition, eachpart of which may then be studied further with the numerical and probabilistic technique. Furtherwork is needed for the graph-based approach in 3D, which has not been implemented and testedso far.References[AAJM93] S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduction of constraint sys-tems. In Compugraphic, pages 83{92, Alvor, Portugal, 1993. Also available athttp://www.emse.fr/~micheluc/.[AHU83] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-WesleyPublishing Company, Reading, Mass., 1983.[AM95] R. Anderl and R. Mendgen. Parametric design ands its impact on solid modelingapplications. In Proceedings of the Symposium on Solid Modeling Foundations andCAD/CAM Applications, pages 1{12, 1995.[BFH+95] W. Bouma, I. Fudos, C. Ho�mann, J. Cai, and R. Paige. Geometric constraint solver.Computer-Aided Design, 27(6):487{501, 1995.[Br�u85] B. Br�uderlin. Using prolog for constructing geometric objects de�ned by constraints.In European Conference on Computer Algebra, pages 448{459, 1985.[Br�u86] B. Br�uderlin. Constructing three-dimensional geometric objects de�ned by constraints.In Interactive 3D Graphics, pages 111{129, October 1986.20
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