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1 Introduction

This extended abstract presents an exact real quadratic arithmetic which also handles infinitely small
numbers. The quadratic arithmetic provides the same operations than an exact rational one, plus square
root of non negative numbers. It computes in the real quadratic closure of @, noted here: Q. As for an
example, such an arithmetic can be used to compute the 2D arrangement of a set of circles and lines, or
the 3D arrangement of a set of spheres and planes. The quadratic arithmetic is classic and presented in
section 2. The new part is the way infinitely small numbers are managed in the quadratic framework.

In Computational Geometry, infinitely small numbers are typically used to symbolically perturb input
parameters [2, 11, 10, 3, 7]: this infinitesimal perturbation removes accidental dependencies between
data, and thus eliminates geometric degeneracy (alignment of more than two points, cocircularity of
more than three points, etc) so that programmers have to handle only the few generic cases. The
more often, people put forward efficiency arguments to restrict used perturbation schemes: most of the
time, the perturbation is valid only for a single geometric predicate (say the InCircle predicate), and
infinitesimals are not explicitly represented inside the computer. As a consequence, geometric predicates
must concern input parameters only, and not derived values; moreover the user has poor control, if
any, on the perturbation, typically seen as a black box. In opposition, the arithmetic in this extended
abstract enables the user to compute with infinitesimals like if they were ordinary numbers in Q. Thus
this arithmetic can manage in a straightforward way all proposed perturbation schemes (assuming the
quadratic framework is sufficient, of course). Here are some of them:

- In Yap’s perturbation [11, 10, 7], each input parameter z; is perturbed into #; + ¢;. Thus f(z +

&= %eo‘f(o‘)(x) by Taylor’s formula. A consistent ordering between all power products e* =

€7tey? ... sorts derivatives in decreasing magnitude: the sign of f(z + ¢) is the one of the first non

vanishing term in that sequence. Actually, es are only implicit in Yap’s perturbation.

- Each input parameter z; is perturbed into z; + g;¢, where g; describe a generic situation, in Emiris
and Canny’s work [3]. Then x; + g;¢ is a generic configuration: a single ¢ is sufficient.

- Each input parameter z; is perturbed into x; + a;¢, where a; is random. The idea is that random
a; are very probably generic [3]. That is a probabilist perturbation scheme.

- See quoted references for other perturbation schemes.

This quadratic arithmetic cannot guarantee that the used perturbation scheme 1s valid, e really removes
all degeneracy: that obviously remains the responsibility of the CGer. But it detects persistent degeneracy
at run time.



2 A Quadratic Arithmetic

2.1 Towers of extensions

The material in this section is not new [6], it is here only for completeness. In Fortune’s method [4],

one has to compare numbers of the form a+c_\/6’ where a, b, ¢ are integers. It is possible to use repeated
squaring, for this restricted case. This section presents a more general real quadratic arithmetic, which
provides exact comparisons and operations: +, —, =, x and \/ on non negative numbers, starting from
Q. This arithmetic is an alternative to Yap and Dubé’s one [1, 9]. Lack of space does not permit a
comparison.

The idea is to compute in a tower of Real quadratic extensions Ko = Q, ... K; = Ki_l(\/E) where K;
is an algebraic (and quadratic) extension over K;_;, and «;_1 € K;_; is Real and positive and has no
square roots in K;_1. It means K; = Ki_l(\/E) 1s the set of the numbers u + v/, with v and v
two elements in K;_1: in other words, numbers in K; are represented by a vector of two components: u,
v € K;_1, and K; is represented by a;_; € K;_;1 (which we already know how to represent, by induction)
and by some reference to K;_1. Operations in K; straightforwardly reduce to operations in K;_y:

(u+vy/aisr) + (W + ' aish) = (utu) + (v + )iy

(u+vy/ao1) x (W40 x Ja—1) = (ux v +vx v xaisg)+ (ux v +u xv) /a1
~(ut oy/@T) = (—u) + (—o)/aT

U o/aT) = (/[ — iy x 0%]) — (o[ — ai_y x 0*])y/@TT

Computing the sign of w = u 4+ v /a;_7 € K; also boils down to computations in K;_:

u="0orv=0: trivial
u>0andv>0=w>0

u>0and v < 0= sign(w) = sign(u® — v?a;_1)
u < 0 = sign(w) = —sign(—w)

and in the end Ky = Q, where we know how to compute a sign, so the recursion eventually stops.

The last required operation is the square root in K;. Assume w = u+v,/a;_1 € K; is positive. The first
thing 1s to test if w is a square in K;, say the square of z € K; with z = 2+ y,/a;_1 > 0 with z,y € K;_1.
We suppose u and v do not vanish, because this case trivially reduces to the same problem in K;_;.

w=u+v/a_1 = (r+y/u_1)°
su=zl4a;_1 x v° and v =2 xx Xy

1
@xzzi{ui uz—ai_lxvz} and v =2 xx Xy

Thus w € K; is a square in K; iff u? — o;_1 x v? is a square in K;_; and if % {u 4+ /u? — o X vz} or

% {u —uz—a;_ % vz} is a square in K;_; (Note that they cannot be both squares in K;_; because

their product: is not a square in K;_1).
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Thus testing if w € K; is a square in K; reduces to computations in K;_1: in the end, testing if
w € Ky = Q is a square in Q is trivial. If w is a square in K;, the method also gives its positive square
root & + y,/ai_1. When w € K; is not a square in K;, we have to define the quadratic extension of K;
which contains the square root of w: call this extension K;1; = K;(y/w). In particular, the coordinates
of Vwin K;yq are: (0 € K;,1 € K;).



2.2 Using dags

Using a single tower of quadratic extensions to perform all computations results in very poor performance,
since the first required operation is to express all met numbers (even integers or rationals) in the higher
field. Thus the time required for a new computation increases with the number of previously performed
computations, even when they are independent. It is clearly unacceptable. A possible solution is as
follows.

Numbers are first represented by expressions, or dags (Directed Acyclic Graphs), like in the lazy rational
arithmetic [8] or Dubé and Yap’s arithmetic. A dag may be: a usual rational number, the sum or the
product of two other dags, the opposite, the reciprocal or the square root of another dag. Each dag is
associated with an enclosing interval, computed with arithmetic interval. When the interval becomes
insufficient, the dag at hand is evaluated in an exact way, starting from an empty tower, 1ie a tower
containing only Q. This way, the time needed to exactly evaluate a dag depends only on the complexity
of the dag itself (and of its subdags of course, but not on previously evaluated dags). Moreover, only
inevitable exact computations are performed.

This optimization exploits the fact that CG typically deals with a lot of little computation trees, instead
of a big one or a few big ones like in Symbolic Computing. Actually, the depth of computation trees met
in classical non re-entrant CG methods (Convex Hulls, say) can even be known a priori: it is a constant
for CG methods working in 2D or 3D, and a linear function of the underlying space dimension for CG
methods working in B” (actually Q" or Q").

2.3 Computing characteristic polynomials

If need be, the characteristic polynomial of z € Q can be computed by the following method. Assume
the characteristic polynomial of z is known in some extension K(a = v/A): it is f(z) = Zg:O fizt =0,
with f; = a; + b;a, where a; and b; are in K. Then the equation of z in K is obtained with:

g(z) = [Z a; 7 szzll =0

1=0 =0

2
—A

and has degree twice f degree. Now an initial characteristic polynomial of z is easily computed in the
highest extension of the tower: the polynomial of z = & + y/A is (z —2)? —y?A=0.

Another possible method gives a companion matrix, the characteristic polynomial of which is the one of
z. Then interpolation methods (e.g. Lagrange) can be used to recover the characteristic polynomial of
the matrix. Let z = # 4+ yo € K(a = /A), with 2,y € K. Multiplication of any number a 4 ba € K(a)
and z can be seen as a linear transformation of vector (a b) by the companion matrix:

wer= (0 V)

More generally, each number z € K(«) can be represented by M(z). In particular, the characteristic
equation of M (z) is the one of z. Recursive replacements of M (z) entries by other matrices eventually
reaches a matrix with rational coefficients. For instance, let z = z+yv/3 with ¢ = a+bv/2 and y = c+d/2.
Then z is represented by companion matrix

( a b ) c d a b ¢ d
_ r oy \ _ 2b a 2d ¢ _ 26 a 2d ¢
M(Z)_<3y x)_ s ¢ d a b | 3¢ 3d a b

2d ¢ 2b a 6d 3¢ 2b a



3 Computing with infinitely small numbers

Let G be a computable real quadratic field. Initially G = Q, which the previous section has shown to
be computable, ie we can perform additions, multiplications, opposites, reciprocals, comparisons, square
roots of non negative numbers in G. We introduce a new and infinitely small number, namely €, which is
smaller than all positive numbers in G. This section shows that G(e) is also a computable real quadratic
field. Then G(e) can itself be used as a new background field for another non standard extension, with
another new infinitely small number, namely €', which is smaller than all positive numbers in G(e). This
way 1t 18 possible to compute in a tower of non standard extensions: that may be useful when the CG
problem at hand does not admit a perturbation scheme with a single €. Recall if g = (g1,92...9n) is a
generic input of the same problem, whose input parameters are: p = (p1,pa...pn), then p+ eg is generic;
but it may be a difficult realizability question to find such a generic configuration for some problem, like
for instance finding a polytope with a prescribed topology.

3.1 The non quadratic case

In the simplest case, square roots and divisions are not used. Numbers reachable from G and ¢ are thus
polynomialsin e: P(e) = ag + a1€ + ... + an€”, where a; € G. The sign of P(e) is clearly the coefficient
sign of its first non vanishing term. The naive method computes all coefficients of polynomials, using
standard symbolic computations. A more clever method represents polynomials with (not inevitably
minimal) dags, in the now usual way, and exploits laziness and Taylor’s formula:
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P() = P(0) + P'(0) + 5 P"(0) + ...

The sign of P(¢) is the one of the first non vanishing term in the sequence: P(0), P’(0), P”(0) ... P{D(0),

where d is P degree (or an upper bound). When all coefficients vanish, P(e) is identically zero and the

sign is zero. When polynomial P is represented by some dag, it is easy to generate on-the-fly a dag for its

derivative P’ (and then for P”, P’ etc), using standard derivation rules. Successive derivations of a dag

eventually reach a dag without occurrence of ¢, possibly at the cost of some supplementary derivation.

For instance the dag: do(€) = (¢ — €) is a non minimal dag representing the null polynomial. Tt vanishes

in € = 0; it has derivative: d; = (1 — 1) which also vanishes in 0. Since d; contains no more occurrence
of ¢, d; and dy are proven to be identically zero.

To summarize: if a dag f(e) does not contain ¢, its sign is trivially computed in G. Otherwise, when f(0)
does not vanish, its sign gives the sign of f(¢). Otherwise the sign of f(e) is the one of f'(€). This process
always ends. Note dags are evaluated in ¢ = 0, thus no really symbolic computations (like polynomial
ged or resultants) are performed on polynomials, except dag derivation and construction.

This method can be seen as an extension of Yap’s perturbation, whose limitations are overcome: the user
has full control on the perturbation (recall Yap’s perturbation systematically and implicitly perturbs
the ith input parameter p; into p; + ¢;): it is easy to choose the sign of the perturbation or to force a
perturbed point to stay on a given half straight line for instance. Moreover the programmer is relieved
of the burden of expressing all tests with input parameters only: dag handling does the job. It is true
that towers of non standard extensions: (@(6)) (¢')... implicitly sort the set of power products in ¢, ...
with reverse lexicographic order, ie :

I>>e>>>> . .. >>d >>ed >>d >> ... >>?>>ed? >> P >> 3. >0

though the user may prefer another consistent ordering (also called: compatible ordering), say for instance
total degree ordering. But the user can easily obtain any other compatible order [7], for instance using:
a = ¢ and o/ = €€/, he gets a and o/ power products sorted in total then reverse lexicographic order, ie :

I>>a>>a' >>a?>>ad >>a?>>a>>a%d >>ad?>>a?... >0



3.2 Quadratic case

Unfortunately, the previous solution doesn’t extend with divisions and square roots: some derivatives can
be undefined in 0, like F(¢) = /¢ the derivative of which is F’(¢) = 2%/? Moreover, successive derivations

may never reach an expression without occurrence of €. The proposed solution uses series in e.

3.2.1 Using series in ¢

Each element of G(e) is first represented by a dag: a dag can be a constant in G, ¢, the sum or the product
of two other dags, the opposite or the reciprocal or the square root of another dag. Moreover, each dag
is associated with a series S(e), represented by a factor k € N, an algebraic degree d € N (defined below),
a shift power p € N, and the lazy (potentially infinite) list or array a; of its coefficients in G:

a0+a15+a2(52—|—...

(5:6(2%) , S(e) = 5

The dag makes possible the computation of coefficient a; when needed. The factor & is needed because
of expressions like \/e. Tt is easy to convert a series to another one with a greater factor, thus we can
suppose w.l.o.g. that series to be added or multiplied have the same factor. The shift power p typically
equals 0, it 1s only used to avoid negative exponents, like in % = ¢~ 1. It is ignored from now on. We give
formulas for coefficients of sum, product, inverse and square root:

(ap+a1d+..)+(bo+bd+...) =2g+ 210+ ... where z = a + by,
(ap+a1d+..)bo+ 018+ ...) =20+ 210+ ... where u :Zig a;by_;

k .
=zxg+ 210+ ... where g = al—u, T = —% Y ioq @ik, assuming ag # 0

1

ap+ai1d+...
=k —1 .

Vag+aid+ ... =z +x1d+ ... where g = \Jag, xp = i (ak -y xixk_i) assuming ag > 0.

If ag < 0 there is no square root. If ag = 0, let 85 = /8, then \/S(e) = (52\/a1 + @262 + asés ...

3.2.2 A gap theorem for sign computation

The sign of a non identically null series is the sign of its first non vanishing coefficient. When the
perturbation scheme really removes all degeneracy, series identically null cannot occur. However their
detection is useful. Tt is made with the following gap theorem: a series y = S(e) is identically zero when
all its coefficients in terms a;e’ with ¢ < d are zero, where d is the algebraic degree, or an upper bound,
of the series.

Let y = f(e), where f(e) is a dag in the variable €, and let S(¢) be the corresponding series. € and y
fulfill a polynomial condition: F(e,y) = 0. In other words, the point (¢, y) lies on an algebraic curve.
The degree of the dag f, and of the corresponding series, is the total degree of the polynomial F' in ¢
and y: for instance, if y = f(e) = /1 +¢, then F(e,y) = y*> — (1 4+ ¢) = 0 has degree 2. Same degree for
y = f(e) = (14 €)% d, the degree or an upper bound, is recursively computed like that: if the dag is €
or a constant in G, then its degree is 1. If the dag is the sum or product of two other dags a and b, its
degree is the product of the degrees for a and b. The degree of —a and 1/a is the degree of dag a. The
degree for \/a is twice the degree of dag a.

We sketch now the proof of the gap theorem. Assume for simplicity that the factor of the series i1s 0, ze
the series is y = S(€) = ag+ a1e +aze? + .. .. The coefficients for negative exponents are zero (otherwise,
the series is clearly not 0!). The degree of the dag y = f(¢) is at most d. Now, ag = a1... = a4 = 0.
Thus the curve branch y = s(€) = ag + a1e + aze? + ... cuts the straight line y = 0 at the origin, with
multiplicity d 4+ 1. But this branch is part of an algebraic curve F(e, y) = 0 with degree not greater than
d. Thus the curve branch y = f(e) is the straight line y = 0, and the series S(e) is identically 0.



This argument extends as follows when the series factor is greater than 0. The dag y = f(¢) has always

algebraic degree d but the corresponding series is now: S(¢) = ag + a1[€2+€]1 + a2[€2+€]2 + ... Let
§= e =062 and T(0) = ap + a8t +az8? +.... The dag y = ¢(d) = f(é(zk)) has algebraic degree
d x 2%, From the previous gap theorem, when all coefficients for exponents 0,1...,d x 2% of T/(§) vanish,

then the series y = T'(6) = S(e) is identically zero. Conclude.

3.3 Limitations of perturbation methods

Though input parameters are perturbed according some perturbation scheme, computations may still
yield to non generic situations. It is especially true, and annoying, with on-line or reentrant methods,
where computed values may be re-used (for instance an intersection point becomes a vertex of a new
edge). The most trivial example is as follows: the intersection point I between two perturbed segments
AB and C'D (whatever the perturbation) is exactly aligned with A and B, and with C' and D! Alignment
of more than 2 points is a degeneracy!. Note geometric applications in the real world involve edition of
geometric objects, thus they need reentrant methods. These limitations of perturbation have not been
seriously addressed so far.

4 Conclusion

This extended abstract has presented a quadratic arithmetic which also handles infinitely small numbers,
like if they were ordinary numbers. The computation depth has not to be known or bounded a prior:
(contrarily to other CG exact arithmetics, like Fortune and Van Wyk’s one [5]). Perturbations are
handled using lazy series and a gap theorem to achieve termination. Exploiting laziness insures that
only inevitable computations are performed. This arithmetic can be used with all existing perturbation
schemes (compatible with a quadratic arithmetic). Tt detects at run time cases in which the perturbation
scheme does not remove degeneracy. It does not add any overhead (except constant) to the intrinsic
complexity of asked computations. Unfortunately, due to lack of space, this extended abstract couldn’t
compare it with other quadratic or algebraic arithmetics.
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L A solution is here to perturb the intersection point with a new infinitesimal smaller than all already existing ones



