
A quadratic non-standard arithmeticDominique Michelucci�Ecole des Mines, F-42023 Saint-�Etienne 02micheluc@emse.fr1 IntroductionThis extended abstract presents an exact real quadratic arithmetic which also handles in�nitely smallnumbers. The quadratic arithmetic provides the same operations than an exact rational one, plus squareroot of non negative numbers. It computes in the real quadratic closure of Q, noted here: �Q. As for anexample, such an arithmetic can be used to compute the 2D arrangement of a set of circles and lines, orthe 3D arrangement of a set of spheres and planes. The quadratic arithmetic is classic and presented insection 2. The new part is the way in�nitely small numbers are managed in the quadratic framework.In Computational Geometry, in�nitely small numbers are typically used to symbolically perturb inputparameters [2, 11, 10, 3, 7]: this in�nitesimal perturbation removes accidental dependencies betweendata, and thus eliminates geometric degeneracy (alignment of more than two points, cocircularity ofmore than three points, etc) so that programmers have to handle only the few generic cases. Themore often, people put forward e�ciency arguments to restrict used perturbation schemes: most of thetime, the perturbation is valid only for a single geometric predicate (say the InCircle predicate), andin�nitesimals are not explicitly represented inside the computer. As a consequence, geometric predicatesmust concern input parameters only, and not derived values; moreover the user has poor control, ifany, on the perturbation, typically seen as a black box. In opposition, the arithmetic in this extendedabstract enables the user to compute with in�nitesimals like if they were ordinary numbers in �Q. Thusthis arithmetic can manage in a straightforward way all proposed perturbation schemes (assuming thequadratic framework is su�cient, of course). Here are some of them:- In Yap's perturbation [11, 10, 7], each input parameter xi is perturbed into xi + �i. Thus f(x +�) =P� 1�!��f (�)(x) by Taylor's formula. A consistent ordering between all power products �� =��11 ��22 : : : sorts derivatives in decreasing magnitude: the sign of f(x+ �) is the one of the �rst nonvanishing term in that sequence. Actually, �s are only implicit in Yap's perturbation.- Each input parameter xi is perturbed into xi+ gi�, where gi describe a generic situation, in Emirisand Canny's work [3]. Then xi + gi� is a generic con�guration: a single � is su�cient.- Each input parameter xi is perturbed into xi + ai�, where ai is random. The idea is that randomai are very probably generic [3]. That is a probabilist perturbation scheme.- See quoted references for other perturbation schemes.This quadratic arithmetic cannot guarantee that the used perturbation scheme is valid, ie really removesall degeneracy: that obviously remains the responsibility of the CGer. But it detects persistent degeneracyat run time.



2 A Quadratic Arithmetic2.1 Towers of extensionsThe material in this section is not new [6], it is here only for completeness. In Fortune's method [4],one has to compare numbers of the form a+pbc , where a, b, c are integers. It is possible to use repeatedsquaring, for this restricted case. This section presents a more general real quadratic arithmetic, whichprovides exact comparisons and operations: +, �, �, � and p on non negative numbers, starting fromQ. This arithmetic is an alternative to Yap and Dub�e's one [1, 9]. Lack of space does not permit acomparison.The idea is to compute in a tower of Real quadratic extensions K0 = Q, . . .Ki = Ki�1(p�i�1) where Kiis an algebraic (and quadratic) extension over Ki�1, and �i�1 2 Ki�1 is Real and positive and has nosquare roots in Ki�1. It means Ki = Ki�1(p�i�1) is the set of the numbers u+ vp�i�1, with u and vtwo elements in Ki�1: in other words, numbers in Ki are represented by a vector of two components: u,v 2 Ki�1, and Ki is represented by �i�1 2 Ki�1 (which we already know how to represent, by induction)and by some reference to Ki�1. Operations in Ki straightforwardly reduce to operations in Ki�1:(u+ vp�i�1) + (u0 + v0p�i�1) = (u+ u0) + (v + v0)p�i�1(u+ vp�i�1)� (u0 + v0 �p�i�1) = (u� u0 + v � v0 � �i�1) + (u� v0 + u0 � v)p�i�1�(u+ vp�i�1) = (�u) + (�v)p�i�11=(u+ vp�i�1) = (u=[u2 � �i�1 � v2])� (v=[u2 � �i�1 � v2])p�i�1Computing the sign of w = u+ vp�i�1 2 Ki also boils down to computations in Ki�1:u = 0 or v = 0 : trivialu > 0 and v � 0) w > 0u > 0 and v < 0) sign(w) = sign(u2 � v2�i�1)u < 0) sign(w) = �sign(�w)and in the end K0 = Q, where we know how to compute a sign, so the recursion eventually stops.The last required operation is the square root in Ki. Assume w = u+ vp�i�1 2 Ki is positive. The �rstthing is to test if w is a square in Ki, say the square of z 2 Ki with z = x+yp�i�1 > 0 with x; y 2 Ki�1.We suppose u and v do not vanish, because this case trivially reduces to the same problem in Ki�1.w = u+ vp�i�1 = (x+ yp�i�1)2, u = x2 + �i�1 � v2 and v = 2� x� y, x2 = 12 hu�pu2 � �i�1 � v2i and v = 2� x� yThus w 2 Ki is a square in Ki i� u2 � �i�1 � v2 is a square in Ki�1 and if 12 hu+pu2 � �i�1 � v2i or12 hu�pu2 � �i�1 � v2i is a square in Ki�1 (Note that they cannot be both squares in Ki�1 becausetheir product: �i�1v24 is not a square in Ki�1).Thus testing if w 2 Ki is a square in Ki reduces to computations in Ki�1: in the end, testing ifw 2 K0 = Q is a square in Q is trivial. If w is a square in Ki, the method also gives its positive squareroot x+ yp�i�1. When w 2 Ki is not a square in Ki, we have to de�ne the quadratic extension of Kiwhich contains the square root of w: call this extension Ki+1 = Ki(pw). In particular, the coordinatesof pw in Ki+1 are: (0 2 Ki; 1 2 Ki).



2.2 Using dagsUsing a single tower of quadratic extensions to perform all computations results in very poor performance,since the �rst required operation is to express all met numbers (even integers or rationals) in the higher�eld. Thus the time required for a new computation increases with the number of previously performedcomputations, even when they are independent. It is clearly unacceptable. A possible solution is asfollows.Numbers are �rst represented by expressions, or dags (Directed Acyclic Graphs), like in the lazy rationalarithmetic [8] or Dub�e and Yap's arithmetic. A dag may be: a usual rational number, the sum or theproduct of two other dags, the opposite, the reciprocal or the square root of another dag. Each dag isassociated with an enclosing interval, computed with arithmetic interval. When the interval becomesinsu�cient, the dag at hand is evaluated in an exact way, starting from an empty tower, ie a towercontaining only Q. This way, the time needed to exactly evaluate a dag depends only on the complexityof the dag itself (and of its subdags of course, but not on previously evaluated dags). Moreover, onlyinevitable exact computations are performed.This optimization exploits the fact that CG typically deals with a lot of little computation trees, insteadof a big one or a few big ones like in Symbolic Computing. Actually, the depth of computation trees metin classical non re-entrant CG methods (Convex Hulls, say) can even be known a priori: it is a constantfor CG methods working in 2D or 3D, and a linear function of the underlying space dimension for CGmethods working in Rn (actually Qn or �Qn).2.3 Computing characteristic polynomialsIf need be, the characteristic polynomial of z 2 �Q can be computed by the following method. Assumethe characteristic polynomial of z is known in some extension K(� = pA): it is f(z) =Pdi=0 fizi = 0,with fi = ai + bi�, where ai and bi are in K. Then the equation of z in K is obtained with:g(z) = " dXi=0 aizi#2 �A" dXi=0 bizi#2 = 0and has degree twice f degree. Now an initial characteristic polynomial of z is easily computed in thehighest extension of the tower: the polynomial of z = x+ ypA is (z � x)2 � y2A = 0.Another possible method gives a companion matrix, the characteristic polynomial of which is the one ofz. Then interpolation methods (e.g. Lagrange) can be used to recover the characteristic polynomial ofthe matrix. Let z = x+ y� 2 K(� = pA), with x; y 2 K. Multiplication of any number a + b� 2 K(�)and z can be seen as a linear transformation of vector (a b) by the companion matrix:M (z) = � x yyA x �More generally, each number z 2 K(�) can be represented by M (z). In particular, the characteristicequation of M (z) is the one of z. Recursive replacements of M (z) entries by other matrices eventuallyreaches a matrix with rational coe�cients. For instance, let z = x+yp3 with x = a+bp2 and y = c+dp2.Then z is represented by companion matrixM (z) = � x y3y x � = 0BB@ � a b2b a � � c d2d c �3� c d2d c � � a b2b a � 1CCA = 0BB@ a b c d2b a 2d c3c 3d a b6d 3c 2b a 1CCA



3 Computing with in�nitely small numbersLet G be a computable real quadratic �eld. Initially G = �Q, which the previous section has shown tobe computable, ie we can perform additions, multiplications, opposites, reciprocals, comparisons, squareroots of non negative numbers in G . We introduce a new and in�nitely small number, namely �, which issmaller than all positive numbers in G . This section shows that G (�) is also a computable real quadratic�eld. Then G (�) can itself be used as a new background �eld for another non standard extension, withanother new in�nitely small number, namely �0, which is smaller than all positive numbers in G (�). Thisway it is possible to compute in a tower of non standard extensions: that may be useful when the CGproblem at hand does not admit a perturbation scheme with a single �. Recall if g = (g1; g2 : : : gn) is ageneric input of the same problem, whose input parameters are: p = (p1; p2 : : : pn), then p+ �g is generic;but it may be a di�cult realizability question to �nd such a generic con�guration for some problem, likefor instance �nding a polytope with a prescribed topology.3.1 The non quadratic caseIn the simplest case, square roots and divisions are not used. Numbers reachable from G and � are thuspolynomials in �: P (�) = a0 + a1� + : : :+ an�n, where ai 2 G . The sign of P (�) is clearly the coe�cientsign of its �rst non vanishing term. The naive method computes all coe�cients of polynomials, usingstandard symbolic computations. A more clever method represents polynomials with (not inevitablyminimal) dags, in the now usual way, and exploits laziness and Taylor's formula:P (�) = P (0) + �P 0(0) + �22!P 00(0) + : : : �dd!P (d)(0)The sign of P (�) is the one of the �rst non vanishing term in the sequence: P (0), P 0(0), P 00(0) : : : P (d)(0),where d is P degree (or an upper bound). When all coe�cients vanish, P (�) is identically zero and thesign is zero. When polynomialP is represented by some dag, it is easy to generate on-the-y a dag for itsderivative P 0 (and then for P 00, P 000, etc), using standard derivation rules. Successive derivations of a dageventually reach a dag without occurrence of �, possibly at the cost of some supplementary derivation.For instance the dag: d0(�) = (�� �) is a non minimal dag representing the null polynomial. It vanishesin � = 0; it has derivative: d1 = (1 � 1) which also vanishes in 0. Since d1 contains no more occurrenceof �, d1 and d0 are proven to be identically zero.To summarize: if a dag f(�) does not contain �, its sign is trivially computed in G . Otherwise, when f(0)does not vanish, its sign gives the sign of f(�). Otherwise the sign of f(�) is the one of f 0(�). This processalways ends. Note dags are evaluated in � = 0, thus no really symbolic computations (like polynomialgcd or resultants) are performed on polynomials, except dag derivation and construction.This method can be seen as an extension of Yap's perturbation, whose limitations are overcome: the userhas full control on the perturbation (recall Yap's perturbation systematically and implicitly perturbsthe ith input parameter pi into pi + �i): it is easy to choose the sign of the perturbation or to force aperturbed point to stay on a given half straight line for instance. Moreover the programmer is relievedof the burden of expressing all tests with input parameters only: dag handling does the job. It is truethat towers of non standard extensions: ��Q(�)� (�0)::: implicitly sort the set of power products in �, �0 : : :with reverse lexicographic order, ie :1 >> � >> �2 >> �3 : : : >> �0 >> ��0 >> �2�0 >> �3�0 : : : >> �02 >> ��02 >> �2�02 >> �3�02 : : : > 0though the user may prefer another consistent ordering (also called: compatible ordering), say for instancetotal degree ordering. But the user can easily obtain any other compatible order [7], for instance using:� = �0 and �0 = ��0, he gets � and �0 power products sorted in total then reverse lexicographic order, ie :1 >> � >> �0 >> �2 >> ��0 >> �02 >> �3 >> �2�0 >> ��02 >> �03 : : : > 0



3.2 Quadratic caseUnfortunately, the previous solution doesn't extend with divisions and square roots: some derivatives canbe unde�ned in 0, like F (�) = p� the derivative of which is F 0(�) = 12p� . Moreover, successive derivationsmay never reach an expression without occurrence of �. The proposed solution uses series in �.3.2.1 Using series in �Each element of G (�) is �rst represented by a dag: a dag can be a constant in G , �, the sum or the productof two other dags, the opposite or the reciprocal or the square root of another dag. Moreover, each dagis associated with a series S(�), represented by a factor k 2 N, an algebraic degree d 2 N (de�ned below),a shift power p 2 N, and the lazy (potentially in�nite) list or array ai of its coe�cients in G :� = �( 12k ) , S(�) = a0 + a1� + a2�2 + : : :�pThe dag makes possible the computation of coe�cient ai when needed. The factor k is needed becauseof expressions like p�. It is easy to convert a series to another one with a greater factor, thus we cansuppose w.l.o.g. that series to be added or multiplied have the same factor. The shift power p typicallyequals 0, it is only used to avoid negative exponents, like in 1� = ��1. It is ignored from now on. We giveformulas for coe�cients of sum, product, inverse and square root:(a0 + a1� + : : :) + (b0 + b1� + : : :) = x0 + x1� + : : : where xk = ak + bk(a0 + a1� + : : :)(b0 + b1� + : : :) = x0 + x1� + : : : where xk =Pi=ki=0 aibk�i1a0+a1�+::: = x0 + x1� + : : : where x0 = 1a0 , xk = � 1a0 Pki=1 aixk�i, assuming a0 6= 0pa0 + a1� + : : : = x0 + x1� + : : : where x0 = pa0, xk = 12x0 �ak �Pi=k�1i=1 xixk�i� assuming a0 > 0.If a0 < 0 there is no square root. If a0 = 0, let �2 = p�, then pS(�) = �2pa1 + a2�22 + a3�42 : : :3.2.2 A gap theorem for sign computationThe sign of a non identically null series is the sign of its �rst non vanishing coe�cient. When theperturbation scheme really removes all degeneracy, series identically null cannot occur. However theirdetection is useful. It is made with the following gap theorem: a series y = S(�) is identically zero whenall its coe�cients in terms ai�i with i � d are zero, where d is the algebraic degree, or an upper bound,of the series.Let y = f(�), where f(�) is a dag in the variable �, and let S(�) be the corresponding series. � and yful�ll a polynomial condition: F (�; y) = 0. In other words, the point (�, y) lies on an algebraic curve.The degree of the dag f , and of the corresponding series, is the total degree of the polynomial F in �and y: for instance, if y = f(�) = p1 + �, then F (�; y) = y2 � (1 + �) = 0 has degree 2. Same degree fory = f(�) = (1 + �)2. d, the degree or an upper bound, is recursively computed like that: if the dag is �or a constant in G , then its degree is 1. If the dag is the sum or product of two other dags a and b, itsdegree is the product of the degrees for a and b. The degree of �a and 1=a is the degree of dag a. Thedegree for pa is twice the degree of dag a.We sketch now the proof of the gap theorem. Assume for simplicity that the factor of the series is 0, iethe series is y = S(�) = a0+ a1�+ a2�2+ : : :. The coe�cients for negative exponents are zero (otherwise,the series is clearly not 0!). The degree of the dag y = f(�) is at most d. Now, a0 = a1 : : : = ad = 0.Thus the curve branch y = s(�) = a0 + a1� + a2�2 + : : : cuts the straight line y = 0 at the origin, withmultiplicity d+ 1. But this branch is part of an algebraic curve F (�; y) = 0 with degree not greater thand. Thus the curve branch y = f(�) is the straight line y = 0, and the series S(�) is identically 0.



This argument extends as follows when the series factor is greater than 0. The dag y = f(�) has alwaysalgebraic degree d but the corresponding series is now: S(�) = a0 + a1[� 12k ]1 + a2[� 12k ]2 + : : :. Let� = � 12k , � = �(2k) and T (�) = a0+ a1�1+ a2�2+ : : :. The dag y = g(�) = f(�(2k)) has algebraic degreed� 2k. From the previous gap theorem, when all coe�cients for exponents 0; 1 : : : ; d� 2k of T (�) vanish,then the series y = T (�) = S(�) is identically zero. Conclude.3.3 Limitations of perturbation methodsThough input parameters are perturbed according some perturbation scheme, computations may stillyield to non generic situations. It is especially true, and annoying, with on-line or reentrant methods,where computed values may be re-used (for instance an intersection point becomes a vertex of a newedge). The most trivial example is as follows: the intersection point I between two perturbed segmentsAB and CD (whatever the perturbation) is exactly aligned with A and B, and with C and D! Alignmentof more than 2 points is a degeneracy1. Note geometric applications in the real world involve edition ofgeometric objects, thus they need reentrant methods. These limitations of perturbation have not beenseriously addressed so far.4 ConclusionThis extended abstract has presented a quadratic arithmetic which also handles in�nitely small numbers,like if they were ordinary numbers. The computation depth has not to be known or bounded a priori(contrarily to other CG exact arithmetics, like Fortune and Van Wyk's one [5]). Perturbations arehandled using lazy series and a gap theorem to achieve termination. Exploiting laziness insures thatonly inevitable computations are performed. This arithmetic can be used with all existing perturbationschemes (compatible with a quadratic arithmetic). It detects at run time cases in which the perturbationscheme does not remove degeneracy. It does not add any overhead (except constant) to the intrinsiccomplexity of asked computations. Unfortunately, due to lack of space, this extended abstract couldn'tcompare it with other quadratic or algebraic arithmetics.References[1] T. Dub�e and C. Yap. A basis for implementing exact geometric algorithms. manuscript, 1993.[2] H. Edelsbrunner and E.P. M�ucke. Simulation of simplicity: a technique to cope with degenerate cases in geometricalgorithms. ACM Trans. Graph, 9:66{104, 1990.[3] I. Emiris and J. Canny. A general approach to removing degeneracies. SIAM J. Computing, 24(3):650{664, June 1995.[4] S. Fortune. A sweep-line algorithm for Voronoi diagrams. Algorithmica, 2:153{174, 1987.[5] S. Fortune and C. Van Wyk. E�cient exact arithmetic for computational geometry. In Proceedings of the 9th ACMSymposium on Computational Geometry, pages 163{172, San Diego, May 1993.[6] D. Michelucci. The robustness issue. submitted to publication, 1997.[7] D. Michelucci. An epsilon-arithmetic for removing degeneracies. In Proceedings of the IEEE 12th Symposium onComputer Arithmetic, pages 230{237, Windsor, Ontario, July 1995.[8] D. Michelucci and J-M. Moreau. Lazy arithmetic. To be published in IEEE Transactions on Computers, summer 1997.Available at: <ftp://ftp.emse.fr/pub/papers/LAZY/lazy.ps.gz>.[9] K. Ouchi. Implementation of exact computation. Masters Thesis, New York University, 1997.[10] C.K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. J. Comput. Syst. Sci., 40:2{18, 1990.[11] C.K. Yap. Symbolic treatment of geometric degenaracies. J. Symbolic Comput, 10:349{370, 1990.1A solution is here to perturb the intersection point with a new in�nitesimal smaller than all already existing ones


