
Bernstein basis and its applications in solving

geometric constraint systems

Sebti Foufou∗ (soufou@u-bourgogne.fr, sfoufou@qu.edu.qa)
CSE Department, CENG, Qatar University, P.O. Box 2713, Doha, Qatar.
Le2i, UMR CNRS 5158, Université de Bourgogne, BP 47870, 21078 Dijon, France.

Dominique Michelucci (dmichel@u-bourgogne.fr)
Le2i, UMR CNRS 5158, Université de Bourgogne, BP 47870, 21078 Dijon, France.

Abstract. This paper reviews the properties of Tensorial Bernstein Basis (TBB),
then discusses the use of this basis and interval analysis for solving systems of
non-linear univariate or multivariate equations resulting from geometric constraints.
TBB are routinely used in computerized geometry: geometric modelling for CAD-
CAM, or computer graphics. They provide sharp enclosures of polynomials and their
derivatives. They are used to reduce domains while preserving roots of polynomial
systems, to prove that domains do not contain roots, and to make existence and
uniqueness tests. They are compatible with standard preconditioning methods and
fit linear programming techniques. However, current Bernstein-based solvers are
limited to small algebraic systems. The paper presents the Bernstein polytopes and
shows how combining them with Linear Programming permit to solve big systems as
well. The paper also gives a generalization of Bernstein polytopes to higher degrees
and a comparison of polytopes-based versus TBB-based polynomial bounds.

Keywords: Tensorial Bernstein basis, Algebraic systems, Univariate and multivari-
ate polynomials, Geometric constraint solving. Bernstein polytope

1. Introduction

This text intents to be a gentle introduction for using Tensorial Bern-
stein Basis (TBB) to compute sharp ranges for the values of a mul-
tivariate polynomial inside a box, i.e. a vector of intervals, and for
solving well-constrained systems of polynomial equations. It also sum-
marizes former results in this topic and presents Bernstein polytopes
and their use in solving geometric constraint systems. The content of
this paper should be useful to people in interval analysis, since sev-
eral reference textbooks on interval analysis (or on the resolution of
polynomial systems) do not mention Bernstein basis.

In the remainder of this paper, the word interval refers to a 1D
interval, while domain and box refer to 2D, 3D, . . . nD intervals. The
range refers to the interval that encloses the image of a polynomial
inside an interval or a box.

∗ Corresponding author

c⃝ 2012 Kluwer Academic Publishers. Printed in the Netherlands.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.1

2 Foufou, Michelucci

The paper is organized as follows: Section 2 recalls the definition
and the basic properties of Bernstein polynomials, and the Bernstein
basis and discusses their use in computer graphics and geometric con-
straint solving. Section 3 gives a brief presentation of our solver which
is based on interval arithmetic and Bernstein basis, and then presents
the fundamental ingredients and algorithms used to build this solver.
The Bernstein classical approach (the one based on TBB) expresses all
polynomials in the TBB, thus it is exponential time, and it becomes
unpractical with systems of more than six variables. Section 4 presents
the notion of Bernstein polytopes and shows how they can be computed
and used, resorting to linear programming, to improve Bernstein basis-
based solvers. This approach does not need to express polynomials in
the TBB, it is polynomial time and thus it solves systems of arbitrary
size. Section 5 extends the idea of Bernstein polytopes to higher degree.
Section 6 gives a short comparison between Bernstein polytopes-based
and TBB-based polynomial bounds. Section 7 concludes and presents
possible future extensions.

2. Bernstein polynomials and Bernstein basis

2.1. Bernstein polynomials definitions and properties

The d + 1 Bernstein polynomials B
(d)
i of degree d, also written Bi(t)

for fixed d, constitute a basis for degree d polynomials:

B
(d)
i (x) =

(
d

i

)
xi(1− x)d−i

The conversion between this basis and the canonical basis: (x0, x1, . . . xd)
is a linear mapping. Classical formulas are [5]:

xk = (1/

(
k

d

)
)

d∑
i=k

(
k

i

)
B

(d)
i (x)

x = (1/d)×
d∑

i=0

i B
(d)
i (x)

x0 = 1 =

d∑
i=0

B
(d)
i (x) (1)

Bernstein polynomials have two main properties: their sum equals

1 (see eq. 1), and every B
(d)
i (x) is positive for x ∈ (0, 1). These two

properties imply that for 0 ≤ x ≤ 1, p(x) =
∑

piBi(x) is a linear

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.2

Bernstein basis & geometric constraint solving 3

convex combination of the coefficients pi. For a polynomial p, each
pi ∈ R and p(x ∈ [0, 1]) lies in [min pi,max pi]. This enclosure is tight,
and the min or max bound is exact if it occurs at i = 0 or i = d. When
pi lies in 2D (or 3D), p(x) describes a 2D (or 3D) Bézier curve, and
the arc p(x), x ∈ [0, 1] lies inside the convex hull of its so called control
points pi.

Example: since x = 0B0(x)+1/dB1(x)+2/dB2(x)+ . . . d/dBd(x),
the polynomial curve (x, y = p(x)), with x ∈ [0, 1], lies in the convex
hull of its control points (i/d, pi).

Contrarily to coefficients in the usual basis: (1, x, x2, . . . xd), control
points depend on the x interval. The classical de Casteljau method
provides the control points of p(x), x ∈ [0, t], and of p(x), x ∈ [t, 1].

For multivariate polynomials, the TBB is the tensorial product:

(B
(d1)
0 (x1), . . . B

(d1)
d1

(x1))× (B
(d2)
0 (x2), . . . B

(d2)
d2

(x2))× . . .

The convex hull properties and the de Casteljau method extend to
the TBB, which provide sharp enclosure of multivariate polynomials
p(x), x ∈ [0, 1]n.

2.2. Bernstein polynomials and computer graphics

In a nutshell, tensorial Bernstein basis provides sharp enclosures for
the value of a multivariate polynomial inside a box. The superiority of
Bernstein basis over the naive interval arithmetic has been illustrated
in [16] and in [15, 17] where implicit algebraic curves f(x, y) = 0 are
displayed with the classical subdivision method using both the naive
interval arithmetic and a more optimized interval arithmetic that relies
on the tensorial Bernstein basis for bound computations. These studies
clearly revealed that the last method needs much less subdivision to cull
domains which are not crossed by the curve. Bernstein basis is optimal
in dealing with the problem of inaccuracy and numerical instability,
which has been proved by several authors, in particularly by Farouki’s
theorem on condition number [5, 6]. In comparison, the canonical basis
is terribly unstable, as illustrated by Wilkinson’s polynomials. Last
but not least, Bernstein basis brings geometric insight and intuition
on algebraic and numerical problems. Examples of naive interval and
Bernstein-based arithmetic applied on different polynomials are shown
in Figure 1.

On one hand, there is no textbook that exposes Bernstein-based
solutions, while several textbooks expose interval analysis [13] and
homotopy methods [24]. On the other hand most of the methods pre-
sented here are all well known and widely used in computer graphics,
computer geometry, CAD-CAM; all principles were laid down in CAD-

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.3

4 Foufou, Michelucci

Figure 1. top: naive interval arithmetic. bottom: Bernstein-based arithmetic.
Left to right columns: Cassini oval C2,2(x, y) = 0 in [−2, 2] × [−2, 2]
where Ca,b(x, y) = ((x + a)2 + y2) × ((x − a)2 + y2) − b4, the curve
f(x, y) = 15/4 + 8x− 16x2 + 8y − 112xy + 128x2y − 16y2 + 128xy2 − 128x2y2 = 0
on the square [0, 1]× [0, 1], and three random algebraic curves with total degree 10,
14, 18.

CAM with the de Casteljau’s work in 1959 (in industry at Citroën),
which have been covered until 1975 when W. Böhm made them public.
Meanwhile, P. Bézier published his work on UNISURF in the sixties, in
Renault, another French car company. Arguably, Bernstein basis and
Bézier curves and surfaces, and their offspring (spline basis for piecewise
algebraic functions, and the today fashionable subdivision curves and
surfaces or volumes) are at the heart of CAD-CAM.

2.3. Bernstein basis and Geometric Constraint Solving

Geometric constraint-based modelling includes three connected (and
sometimes iterative) phases: (i) constraint specifications, (ii) constraint
analyses and decompositions, (iii) constraint solving. This paper con-
cerns the third phase and aims at showing the appropriateness of the
Bernstein Basis for solving algebraic systems of equations resulting
from the analysis and decomposition phase. Solving methods for these
systems can be classified in two main categories: iterative numeri-
cal methods such as Newton-Raphson and continuation (homotopy)
[14, 24], and interval numerical methods which combine the advantages
of interval arithmetic for correct numerical computations and rigorous
searches of solutions [12, 13]. We note here that continuation meth-
ods do not use Bernstein basis [24], and that Newton-Raphson-based
methods may use interval arithmetic [12], but, to our knowledge, never
Bernstein basis.

The principle of current Bernstein-based solvers [20, 11, 18] is as
follows. To find the roots of an algebraic system inside an initial box,

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.4

Bernstein basis & geometric constraint solving 5

contract the box, while preserving the roots, until it is no more possible
to significantly reduce it; then try to prove that it does not contain any
root (these 2 procedures can be used in the other order). Otherwise,
bisect the studied box (for instance along its longest side) and study
recursively the two halves. To quote a few, Patrikalakis and Maekawa
[20], Garloff and Smith [11], Mourrain and Pavone [18], and Elbert
and Kim [4] have proposed variants of this method. The refinement is
stopped either when some accuracy is reached, or when it is no more
possible to refine depending on the available finite numerical accuracy.
To understand this last point, consider that numbers (i.e. Bernstein
coefficients) are represented with intervals with integer bounds (for
instance, 1 means 10−6 meter). When an interval width is equal to one,
bisecting it is no more possible: the left half (and the right half) of [0, 1]
is itself; actually, all intervals with width 1 are ”atomic”, and can no
more be bisected. The same kind of thing occurs with floating point
numbers, instead of integers, due to discreteness.

3. Resolution of algebraic systems

This section presents a solver relying on the tensorial Bernstein prop-
erties. This solver explicitly represents polynomials in the tensorial
Bernstein basis [11, 18, 20]. This is the classical approach in Com-
puter Graphics and CAD-CAM. This solver also uses some Linear
Programming (see Section 3.4).

Our approach performs some simple symbolic operations such as
sums, linear combinations, and derivatives on polynomials, but it does
not need expensive operations used in computer algebra, such as re-
sultants, greatest common divisors and standard basis. The coefficients
of polynomials are represented by intervals to account for rounding
errors: thus these intervals remain narrow during computations. Clas-
sically, the use of interval arithmetic is two-folds: on one hand, intervals
enclose rounding errors of floating point arithmetic, and on the other
hand, interval arithmetic is used to compute the range of functions
on large domains where the width can be huge. Our approach uses
interval arithmetic only to account for rounding errors. Indeed, sharp
ranges of polynomials inside boxes are computed relying on properties
of Bernstein basis (and not on the classical interval arithmetic, naive
or centered).

The solver starts by expressing the polynomials of the equations in
the Bernstein basis using classical formulas for the conversion between
canonical and Bernstein basis [5]. The initial box is recursively sub-
divided until one of the three following terminating cases is reached:

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.5

6 Foufou, Michelucci

(i) there is no solution within the box (see Section 3.4), (ii) the box
contains one unique solution (see Section 3.5), and (iii) the box is so
small that it cannot be subdivided any more. This process may be
accelerated with two independent optimizations: preconditioning of the
equations in the multivariate case, and contraction of boxes (Section
3.2). Box contraction uses the computation of 2D convex hulls, for any
number of equations and unknowns, as a subroutine (Section 3.3). A
variant of box contraction used by Mourrain [18] relies on the resolution
of univariate polynomials (Section 3.1).

3.1. Isolating real roots of univariate polynomials

Bernstein basis enables a simple and fast algorithm to enclose real
roots of an univariate polynomial in an interval, e.g. [0, 1]. Convert
the polynomial in the Bernstein basis. If all Bernstein coefficients have
the same sign, the polynomial has no root inside the interval. Other-
wise study recursively the two halves of the interval. The Bernstein
coefficients within the two halves are computed using the classical
de Casteljau algorithm [5]. When the Bernstein coefficients increase
(decrease) monotonously, and are negative at one end and positive at
the other end, then the interval contains a single, regular root, and the
standard Newton method is guaranteed to converge to the root. Inter-
vals without roots are culled quickly; it is known that the convergence
of Bernstein-based subdivision methods is quadratic [18].

To find roots of f(x) = 0 in [1,+∞), define g(x) = xdf(1/x): if
f(x) =

∑
fix

i in the canonical basis, then g(x) =
∑

fix
d−i, i.e. g is a

polynomial with the same coefficients than f but in reverse order in the
canonical basis; and the roots of g inside [0, 1] are clearly the inverses
of the roots of f inside [1,+∞). This way all positive roots are found.
To find negative roots of f(x) = 0, compute the positive roots of the
polynomial h(x) = f(−x).

This kind of algorithm is used in computer graphics to ray trace
algebraic implicit surfaces f(x, y, z) = 0 with total degree d, i.e. to
compute the intersection points between a ray (a half line) and the
surface. The ray is parameterized with: x = x0 + at, y = y0 + bt, z =
z0 + ct, where the origin (x0, y0, z0), and the direction (a, b, c) of the
ray are known. Replacing x, y, z by their values in t gives an univariate
algebraic equation in t, with degree d, which can be solved by some
variant of the previous method.

3.2. Preconditioning and box contractions

As it is well known in interval analysis, contraction methods, i.e. meth-
ods which contract the considered domain while preserving the roots it

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.6

Bernstein basis & geometric constraint solving 7

contains, are interesting since they can avoid useless and costly branch-
ing (bisections). Bernstein basis enables to very efficiently contract
domains around their contained roots.

f=0

g=0

af+bg=0

a’f+b’g=0

af+bg=0

a’f+b’g=0

f=0

g=0

Figure 2. Effect of preconditioning for a linear system (left), and a non-linear one
(right).

First the polynomial system is preconditioned (see Figure 2 for two
2D examples), so that its jacobian is the identity matrix at the center
x0 of the studied box. Let f(x) = 0 be the studied system, the precon-
ditioned system is g = Mf for some matrix M , so that g′(x0) = Inn;
of course, f and g have the same roots. Since g′(x0) = Mf ′(x0) = Inn,
it turns out that M = f ′(x0)

−1 is the inverse of the jacobian at x0.
After preconditioning, the kth equation in g(x) = 0 can be close to
an hyperplane having equation xk = ck, where ck is some constant.
Now, each hypersurface z = gk(x) = 0 lies inside the convex hull of
its control points. The convex hull is a polytope in high dimension,
which is not convenient. But this polytope lies inside a prism, the base
of which is the 2D convex hull of the projections of the control points
on the (xk, z) plane, as exemplified in Figure 3. For a system of n
unknowns and equations, n 2D convex hulls have to be computed, in
the planes (xi, z), i ∈ [1, n]. Computing a 2D convex hull is cheap and
easy (section 3.3).

If all equations have the same degree, the Bernstein coefficients
of a linear combination

∑
aifi(x) are just the linear combination of

the Bernstein coefficients of the fis. This makes possible to not really
compute the jacobian inverse, but to rather solve several linear sys-
tems. Finally, this contraction method also partially applies when the
jacobian has not full rank, i.e. is not invertible.

A variant of box contraction used by Mourrain [18] relies on the
resolution of univariate polynomials e.g. in right most part of Fig-
ure 3, the three points having maximal (minimal) z coordinates in
x1 = 0, 1/2, and 1 give control points of an univariate maximal (min-
imal) polynomial. Computed roots of these polynomials permit box
contractions.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.7

8 Foufou, Michelucci

3.3. 2D convex hull computations

Computing the convex hull of a set of 2D points is a basic problem of
computerized geometry. Let (xi, zi) be a set of points in the plane x, z.
We only explain how to compute the lower part of the convex hull of the
(xi, zi) points. The upper part can be computed in a similar way. First,
sort the points by increasing xi: x0 < x1 < . . . xd. Note that there is
only one point for each xi value (the one with the smallest z). Initialize
the lower convex hull with the two leftmost points p0 = (x0, z0), p1 =
(x1, z1), and h = 1. Then scan the (xk, zk) points from left to right (i.e.
with increasing x), for k = 2, . . . d, and update the lower convex hull as
follows. Let ph be the rightmost point of the lower convex hull, and ph−1

the point just before. While ph−1phpk ”turns right” (the angle ph−1phpk
is concave), remove the point ph from the lower hull. Then add point
pk at the end of the lower convex hull. Three points p, q, r ”turn right”
when the determinant of ((px, pz, 1), (qx, qz, 1), (rx, rz, 1))

t is negative.
When it vanishes, points p, q, r are aligned; when it is positive, they
turn left.

x2

 x1 x1

x2

f1(x1,x2)=0
x1

z

Figure 3. Equation z = f1(x1, x2) = 0 has degree 2 in x1 and x2, and a grid of 3×3
control points. This curve is seen as the intersection between the zero level set z = 0
and the surface z = f1(x1, x2). This surface lies inside the convex hull of its control
points (i/2, j/2, bi,j), i = 0, 1, 2, j = 0, 1, 2. It is easy to compute the 2D convex hull
of the projection on the x1, z plane of the control points. The intersection of this
2D convex hull with the x1 axis encloses all points of the curve.

This algorithm is in O(d log d) if d is the number of points, the d log d
factor is due to the sorting stage, which is useless here, so the method
is linear in the number of points (the number of Bernstein coefficients).

3.4. Proving a domain does not contain roots

Sometimes, the previous reduction method cannot detect quickly that
a box does not contain roots. For instance, with 2 circles with the same
center and close radius, the method has to subdivide all along the 2
circles, until it separates them. The following test detects very quickly
this kind of situation.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.8

Bernstein basis & geometric constraint solving 9

Let f1(x) = f2(x) = . . . = fn(x) = 0 be a system of equations.
Assume that all fi have equal degrees. Then, if there are numbers
λi ∈ Rn such that g(x) =

∑n
i=1 λifi(x) has only positive Bernstein

coefficients, then g(x) is always positive in the studied domain; since
g vanishes at all common roots of fi, i = 1 . . . n, it proves that the fi
have no common root in the domain. The Bernstein coefficients of g
are just λi linear combinations of the Bernstein coefficients of the fi,
so such λi exist if the corresponding linear programming problem has
feasible solutions.

This idea straightforwardly extends to systems of equations and
inequalities. Assume the problem is to find x in some box of Rn such
that f1(x) = . . . = fe(x) = 0 and g1(x) ≤ 0, . . . , gs(x) ≤ 0. If there are
λi ∈ Re and µj ≥ 0 such that

∑
i λifi +

∑
j µjgj > 0 (say

∑
i λifi +∑

j µjgj ≥ 1) for all points x in the box B, then the system has no
solution. Such λi and µj exist iff the corresponding linear programming
problem is feasible, i.e. this question reduces to linear programming.
This idea is illustrated in Figure 4 where the problem is to find x such
that f(x) = 0 and g(x) ≤ 0. Since the Bernstein coefficients of (say)
g − 2f are all strictly positive, then g − 2f is strictly positive on the
considered interval, thus f(x) = 0 ⇒ g(x) > 0, and the system has no
solution in the interval.

g−2f

g

f

Figure 4. A system with no solution in the given interval

3.5. Proving existence and uniqueness

The solver terminates with a set of small boxes it cannot eliminate.
There are very few spurious boxes (i.e. boxes without roots) due to the
optimality of Bernstein basis. To prove that a resulting box contains a
root, or contains a unique root, all tests available in interval analysis
apply, of course. Moreover, their computation time is not an issue, due
to the small number of spurious boxes; their computation time is an
issue only for solvers which are driven by such tests.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.9

10 Foufou, Michelucci

Even if all tests apply, some fit the Bernstein scheme in a very
natural way. For instance, according to Miranda (or Poincaré-Miranda)
theorem, if n continuous functions fk from Rn to R are such that the kth

function has constant sign on the hyperface xk = ak of the hypercube
ak ≤ xk ≤ bk and constant but opposite sign on the opposite face
xk = bk, for every k = 1, . . . d, then the system f1(x) = . . . = fn(x) = 0
with x ∈ Rn has a common root inside the hypercube, see the left half of
Figure 5. Now, after preconditioning, in a box containing a regular root
r = (r1, . . . rd), the hypersurface of the k

th equation is very close to the
hyperplane xk = rk; the hyperfaces xk = ak and xk = bk are on opposite
sides of the hyperplane xk = rk; the fact that fk has constant sign on
an hyperface xk = ak or xk = bk is proved as long as the Bernstein
coefficients on the hyperface have constant sign, and Miranda theorem
then applies. This approach is smart because it is simple and uses only
available data.

+ ++

− − −
+

+

+

−

−

−

T2

1

2

T1

Figure 5. Left: Poincaré-Miranda theorem in 2D proves existence of a root. Right:
the uniqueness test, tangent cones are disjoint.

Elbert and Kim [4] propose an uniqueness test, which fits nicely
with Bernstein basis (and with B-splines basis, which extend Bernstein
basis to piecewise algebraic functions). Let Ti be the cone of vectors
tangent to the hypersurface z = fi(x). Elbert and Kim enclose such
cones with a central vector (the average of the generators) and an
interval of angles; in passing, the same central vector is used for the
cone bounding the normal vectors of this hypersurface z = fi(x). When
the null vector is the only vector common to all Ti, then there is at most
one common root in the studied box, due to the mean value theorem.
After preconditioning, when the box contains a unique regular root,
this condition very likely holds since preconditioning favors orthogonal
surfaces (see Figure 5). Elbert and Kim stop the reduction process as
soon as existence and uniqueness are proved, and resort to a Newton-
Raphson iteration, or some variant. This improvement may speed up
the solver, though its complexity is unchanged: in this case, both the
reduction process and Newton iteration have quadratic convergence.

Actually, the theorem also holds for weaker conditions on f : it suf-
fices f to be G1 continuous; thus the theorem applies to function f

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.10

Bernstein basis & geometric constraint solving 11

0 1

B0 ≥ 0

B1 ≥ 0

B2 ≥ 0

4y+x−3 = 0

3/5 7/90 1

B0 ≥ 0

B1 ≥ 0

B2 ≥ 0

Figure 6. Left: The Bernstein polytope encloses the curve: (x, y = x2), for
(x, y) ∈ [0, 1]2. Its limiting sides are: B0(x) = (1 − x)2 = y − 2x + 1 ≥ 0,
B1(x) = 2x(1−x) = 2x−2y ≥ 0, B2(x) = x2 = y ≥ 0. Right: Solving 4x2+x−3 = 0,
with x ∈ [0, 1], is equivalent to intersecting the line 4y + x − 3 = 0 with the
curve (x, x2). Linear programming gives the intersection between the line and the
Bernstein polytope.

which are piecewise polynomial, or piecewise rational and well defined
everywhere in the box (no component of f has a pole in the box B).

In the univariate case, if f(x) has degree d and control values Fk,
then the d control values of its derivative f ′(x) are F ′

k = (Fk+1−Fk)/d,
for k = 0, . . . d− 1. This straightforwardly extends to the multivariate
case, and to derivatives of higher order.

4. The Bernstein polytope

A difficulty of TBBs is that they have an exponential numbers of ele-
ments (it also applies for the canonical basis, but very often polynomials
are sparse in the canonical basis). The size is (d1+1)(d2+1) . . . (dn+1)
where n is the number of variables and each di, i = 1 . . . n is the partial
degree of the polynomial in the variable number i. Current Bernstein-
based solvers compute all control points, which prevents them to be
used beyond a small number of unknowns (6 or 7 without optimization,
a dozen with optimization such as [23])

This section presents a polynomial time method to bypass the dif-
ficulty due to the exponential number of the Bernstein basis functions
[9, 8]. The key remark is that existing Bernstein-based solvers compute
all control points, i.e. all coefficients in the TBB, and only the smallest
and the greatest ones are needed. Resorting to linear programming
permits to bypass the above mentioned difficulty. TBB bounds and the
bounds provided by linear programming are compared in section 6.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.11

12 Foufou, Michelucci

(1, 1, 1)

(0, 0, 0)

(1/3,0,0) (2/3, 1/3, 0)

Figure 7. The Bernstein polytope, a tetrahedron, enclosing the curve
(x, y = x2, z = x3) with x ∈ [0, 1]. Its vertices are v0 = (0, 0, 0), v1 = (1/3, 0, 0),
v2 = (2/3, 1/3, 0) and v3 = (1, 1, 1). v0 lies on B1 = B2 = B3 = 0, v1 on
B0 = B2 = B3 = 0, etc. B0(x) = (1−x)3 = 1−3x+3x2−x3 ≥ 0 ⇒ 1−3x+3y−z ≥ 0,
B1(x) = 3x(1 − x)2 = 3x − 6x2 + 3x3 ≥ 0 ⇒ 3x − 6y + 3z ≥ 0,
B2(x) = 3x2(1− x) = 3x2 − 3x3 ≥ 0 ⇒ 3y − 3z ≥ 0, B3(x) = x3 ≥ 0 ⇒ 3z ≥ 0.

y

x x

y

z
z

Figure 8. The Bernstein polytope enclosing the surface patch: (x, y, z = xy). In-
equalities of delimiting planes are: Bi(x)Bj(y) ≥ 0, with i = 0, 1 and B0(t) = 1− t
and B1(t) = t

We need to define the Bernstein polytope. For univariate polynomi-
als with degree d, the Bernstein polytope is a simplex in dimension
d, i.e. d coordinates (x1, x2, . . . xd) are needed to represent its ver-
tices. The Bernstein polytope encloses the arc of curve: (xi = xi), x ∈
[0, 1], i = 1 . . . d. The hyperplanes of its faces are given by the inequali-

ties: B
(d)
i (x) ≥ 0, i = 0, . . . d, where each monomial xi is changed in xi,

for i = 1, . . . d. Figure 6 shows the Bernstein polytope (a triangle) for
degree d = 2, which encloses the arc of curve (xi, x

2
i), where 0 ≤ xi ≤ 1:

for convenience, the points (xi, x
2
i) are renamed (x, y = x2) on the

figure. Figure 7 shows the Bernstein polytope (a tetrahedron) for degree
d = 3; this tetrahedron encloses the curve (xi, x

2
i , x

3
i), where 0 ≤ xi ≤ 1:

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.12

Bernstein basis & geometric constraint solving 13

for convenience, the points (xi, x
2
i , x

3
i) are renamed (x, y = x2, z = x3)

on the figure.
This definition of Bernstein polytope can then be extended to mul-

tivariate polynomials. For simplicity, consider first quadratic polyno-
mials, i.e. the total degree of monomials is at most 2 with the tensorial
canonical basis. The Bernstein polytope enclosing the quadratic surface
patch (xi, xj , xi × xj), or rather (x, y, z = xy) to use more convenient
and intuitive notations, is illustrated in Figure 8. Its hyperplanes are

defined by B
(1)
0 (x)×B

(1)
0 (y) ≥ 0 ⇒ (1−x)(1−y) ≥ 0⇒ 1−x−y+z ≥ 0,

B
(1)
0 (x)×B

(1)
1 (y) ≥ 0 ⇒ (1−x)y ≥ 0 ⇒ y− z ≥ 0, B

(1)
1 (x)×B

(1)
0 (y) ≥

0 ⇒ x(1−y) ≥ 0⇒ x−z ≥ 0, B
(1)
1 (x)×B

(1)
1 (y) ≥ 0 ⇒ xy ≥ 0⇒ z ≥ 0.

This tetrahedron is optimal: it is the convex hull of the algebraic patch.
Notice that to the monomial xy is attached a LP (linear programming)
variable z. More generally, for a quadratic system, every monomial
xixj , with i < j is attached to a LP variable xij , every monomial x2i
is attached to a LP variable qi, every monomial is attached to a LP
variable xi (itself). The monomial 1 is attached to no LP variable.
Replacing the monomials x2i , xixj , xi with the corresponding LP vari-

ables in the inequalities: B
(2)
i (xi) ≥ 0, i = 0, 1, 2, and in the inequalities:

B
(1)
s (xi)×B

(1)
t (xj) ≥ 0, s = 0, 1, t = 0, 1 provide the linear inequalities

(in the LP variables) which bound the Bernstein polytope. For instance,
B11(x1, x2) = B1(x1) × B1(x2) = x1x2 = x12. Clearly, the Bernstein
polytope for a quadratic system in n unknowns has O(n2) hyperplanes.

For systems of higher degree, either auxiliary equations and un-
knowns are used to reduce them to quadratic systems, or the Bernstein
polytope is extended: for a total degree d system, the Bernstein poly-
tope hasO(nd) hyperplanes. The Bernstein polytope has an exponential
number of vertices [1], but it has only a polynomial number of hyper-
planes. Therefore, in the multivariate case, the Bernstein polytope is
not a simplex.

Computing a lower and an upper bounds of a polynomial p(x), see
an example in section 4.1, reduces to find the vertex of the Bernstein
polytope which minimizes or maximizes the linear objective function
p(x) which is obtained after replacing the monomials not equal to 1
with the corresponding LP variables. This is a linear programming
problem with polynomial size [22]. It is theoretically soluble in (weak)
polynomial time with some interior point method or with the ellipsoid
method; in practice, the simplex method is very competitive.

Linear programming can also be used to contract the box, while
preserving roots, as illustrated in Figure 6-right and in section 4.2. Each
equation of the system provides an equality in the LP variables. It is also
possible to account for algebraic inequalities in a very straightforward

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.13

14 Foufou, Michelucci

way: each inequality provides a linear inequality in the LP variables.
These equalities and inequalities are used together with the inequalities
defining the Bernstein polytope, see [10] for further explanation. The
new solver that exploits the LP programming, is simpler than former
solvers and encompasses them; for instance, the method illustrated in
section 3.4 becomes useless: in such cases, the feasible set of the LP
problem is empty, which is detected by the simplex algorithm.

The Bernstein polytope and linear programming permit to use Bernstein-
based solvers with big algebraic systems. The simplex method, as well
as other methods for Linear Programming, may suffer reliability prob-
lems due to rounding errors of floating point numbers. This inaccuracy
issue is studied and solved in [19, 7].

An advantage of this approach is that it extends to non-algebraic
functions; for instance, for equations involving transcendentals like y =
expx or y = cosx, it suffices to enclose the curve (x, y = expx) or the
curve (x, y = cosx) in 2D convex polygons.

4.1. Bounding: 4x2 + x− 3, 0 ≤ x ≤ 1

To compute a lower and an upper bound of the polynomial p(x) =
4x2+x− 3, for x ∈ [0, 1], minimize, and maximize, the linear objective
function: 4y+x−3 on the Bernstein polytope (the triangle in Figure 6)
enclosing the curve (x, y = x2), x ∈ [0, 1]. It is an LP problem, after
replacing x2 with y:

min p = 4y + x− 3,max p = 4y + x− 3
B0 = y − 2x+ 1
B1 = −2y + 2x
B2 = y
x ≥ 0, y ≥ 0, B0 ≥ 0, B1 ≥ 0, B2 ≥ 0

Notations are self-explanatory. The simplex algorithm [3, 21] provides
the enclosure [−3, 2]:

min p = −3 + x+ 4y
B0 = 1− 2x+ y
B1 = 2x− 2y
B2 = y

max p = 2− 5B0 − 9/2B1

x = 1−B0 −B1/2
y = 1−B0 −B1

B2 = 1−B0 −B1

Remember that variables on the right side (”not in base”) have values
0. Only the max part is commented. In max p = 2− 5B0 − 9/2B1, the
value of p cannot be greater than 2: variables on the right side B0 and
B1 are zero, and increasing one of them or both will only decrease p
due to the negative coefficients −5B0−9/2B1 in the objective function.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.14

Bernstein basis & geometric constraint solving 15

Consequently, at vertex v0 = (0, 0) where B1 = B2 = 0, the polyno-
mial value is p0 = p(0) = −3; at vertex v1 = (1/2, 0) where B0 = B2 =
0, the polynomial value is p1 = p(1/2) = −3/2; at vertex v2 = (1, 1)
whereB0 = B1 = 0, the polynomial value is p2 = p(1) = 2. These values
p0, p1, p2 are the coefficients in the Bernstein basis, or control points,
of p(x): p(x) = p0B0(x) + p1B1(x) + p2B2(x). This property extends
to all univariate polynomials. It is a consequence of the definition of
Bernstein polytopes. This property does not extend to multivariate
polynomials otherwise the Bernstein polytope would be bounded by an
exponential number of hyperplanes, see section 6.

Using other inequalities (we use: B
(2)
1 (x) ≤ 1/2) often provides

tighter bounds. This feature is not compatible with the standard ap-
proach of TBB.

4.2. Solving: 4x2 + x− 3 = 0, x ∈ [0, 1]

This section shows how the solver reduces intervals or boxes containing
roots, for the simple equation 4x2 + x− 3 = 0 for x ∈ [0, 1]. Solving is
equivalent to finding the intersection points between the line 4y+x−3 =
0, and the curve (x, y = x2). This curve is enclosed in its Bernstein
polytope: the triangle of Figure 6. Intersecting the line and the triangle,
i.e. finding the min and max value of x, will reduce the interval for x;
it is the same LP problem as above, except we minimize and maximize
x. Solutions are:

minx = 3/5 + 2/5B1

x = 3/5 + 2/5B1

y = 3/5− 1/10B1

B0 = 2/5− 9/10B1

B2 = 3/5− 1/10B1

maxx = 7/9− 4/9B0

x = 7/9− 4/9B0

y = 5/9 + 1/9B0

B1 = 4/9− 10/9B0

B2 = 5/9 + 1/9B0

Thus the interval [0, 1] for x has been reduced to [3/5, 7/9]. To
further reduce this interval, apply a scaling to map x ∈ [3/5, 7/9] to
X ∈ [0, 1]: x = 3/5 + (7/9 − 3/5)X = b + aX, and the equation in
X is: 4a2X2 + (8ab + b)X + (b − 3) = 0. LP is used again to reduce
the interval. Convergence around a regular root is very fast, but is not
discussed for conciseness. A thorough treatment about convergence is
done in [18].[18,19].

Notice that if the line does not cut the Bernstein polytope, then the
LP problem is not feasible and the interval [0, 1] contains no roots.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.15

16 Foufou, Michelucci

5. Generalization of Bernstein polytopes for higher degree

This section explains the generalization of the Bernstein polytopes for
higher degrees. The main idea is to consider all inequalities

0 ≤ B
(d1)
i1

(x1)B
(d2)
i2

(x2) . . . B
(dk)
ik

(xk) ≤ B
(d1)
i1

(i1/d1)B
(d2)
i2

(i2/d2) . . . B
(dk)
ik

(ik/dk)

which are relevant to the problem at hand, and to translate them
into the tensorial canonical basis. A LP variable is then associated to
each monomial in the tensorial canonical basis, and the two previous
inequalities provide two linear inequalities in the LP variables in a
straightforward way. The following examples illustrate this process.

In a first example, k = 2, d1 = d2 = 2, x1 = x, x2 = y. Then, using
symmetry to omit some inequalities for conciseness:

0 ≤ B0(x)B0(y) = (1− x)2 × (1− y)2 ≤ B0(0)B0(1) = 1
0 ≤ B0(x)B1(y) = (1− x)2 × 2y(1− y) ≤ B0(0)B1(1/2) = 1/2
0 ≤ B0(x)B2(y) = (1− x)2 × y2 ≤ B0(0)B2(1) = 1
0 ≤ B1(x)B1(y) = 2x(1− x)× 2y(1− y) ≤ B1(1/2)B1(1/2) = 1/4
0 ≤ B1(x)B2(y) = 2x(1− x)× y2 ≤ B1(1/2)B2(1) = 1/2
0 ≤ B2(x)B2(y) = x2y2 ≤ B1(1)B2(1) = 1

and expanding polynomials in each row, we get the following set of
inequalities:

0 ≤ x2y2 − 2xy2 − 2x2y + x2 + y2 + 4xy − 2x− 2y + 1 ≤ 1
0 ≤ −2x2y2 + 2x2y + 4xy2 − 4xy − 2y2 + 2y ≤ 1/2
0 ≤ x2y2 − 2xy2 + y2 ≤ 1
0 ≤ 4(x2y2 − x2y − xy2 + xy) ≤ 1/4
0 ≤ −2x2y2 + 2xy2 ≤ 1/2
0 ≤ x2y2 ≤ 1

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.16

Bernstein basis & geometric constraint solving 17

In a second example, k = 3, d1 = 3, d2 = 2, d3 = 1, x1 = x, x2 = y, x3 =
z. Then:

0 ≤ B3
0(x)B

2
0(y)B

1
0(z) = (1− x)3 × (1− y)2 × (1− z) ≤ B3

0(0)B
2
0(0)B

1
0(0) = 1

0 ≤ B3
0(x)B

2
0(y)B

1
1(z) = (1− x)3 × (1− y)2 × z ≤ B3

0(0)B
2
0(0)B

1
1(1) = 1

0 ≤ B3
0(x)B

2
1(y)B

1
0(z) = (1− x)3 × 2y(1− y)× (1− z) ≤ B3

0(0)B
2
1(1/2)B

1
0(0) = 1/2

0 ≤ B3
0(x)B

2
1(y)B

1
1(z) = (1− x)3 × 2y(1− y)× z ≤ B3

0(0)B
2
1(1/2)B

1
1(1) = 1/2

0 ≤ B3
0(x)B

2
2(y)B

1
0(z) = (1− x)3 × y2 × (1− z) ≤ B3

0(0)B
2
2(1)B

1
0(0) = 1

0 ≤ B3
0(x)B

2
2(y)B

1
1(z) = (1− x)3 × y2 × z ≤ B3

0(0)B
2
2(1)B

1
1(1) = 1

0 ≤ B3
1(x)B

2
0(y)B

1
0(z) = 3x(1− x)2 × (1− y)2 × (1− z) ≤ B3

1(1/3)B
2
0(0)B

1
0(0) = 4/9

0 ≤ B3
1(x)B

2
0(y)B

1
1(z) = 3x(1− x)2 × (1− y)2 × z ≤ B3

1(1/3)B
2
0(0)B

1
1(1) = 4/9

0 ≤ B3
1(x)B

2
1(y)B

1
0(z) = 3x(1− x)2 × 2y(1− y)× (1− z) ≤ B3

1(1/3)B
2
1(1/2)B

1
0(0) = 2/9

0 ≤ B3
1(x)B

2
1(y)B

1
1(z) = 3x(1− x)2 × 2y(1− y)× z ≤ B3

1(1/3)B
2
1(1/2)B

1
1(1) = 2/9

0 ≤ B3
1(x)B

2
2(y)B

1
0(z) = 3x(1− x)2 × y2 × (1− z) ≤ B3

1(1/3)B
2
2(1)B

1
0(0) = 4/9

0 ≤ B3
1(x)B

2
2(y)B

1
1(z) = 3x(1− x)2 × y2 × z ≤ B3

1(1/3)B
2
2(1)B

1
1(1) = 4/9

0 ≤ B3
2(x)B

2
0(y)B

1
0(z) = 3x2(1− x)× (1− y)2 × (1− z) ≤ B3

2(2/3)B
2
0(0)B

1
0(0) = 4/9

0 ≤ B3
2(x)B

2
0(y)B

1
1(z) = 3x2(1− x)× (1− y)2 × z ≤ B3

2(2/3)B
2
0(0)B

1
1(1) = 4/9

0 ≤ B3
2(x)B

2
1(y)B

1
0(z) = 3x2(1− x)× 2y(1− y)× (1− z) ≤ B3

2(2/3)B
2
1(1/2)B

1
0(0) = 2/9

0 ≤ B3
2(x)B

2
1(y)B

1
1(z) = 3x2(1− x)× 2y(1− y)× z ≤ B3

2(2/3)B
2
1(1/2)B

1
1(1) = 2/9

0 ≤ B3
2(x)B

2
2(y)B

1
0(z) = 3x2(1− x)× y2 × (1− z) ≤ B3

2(2/3)B
2
2(1)B

1
0(0) = 2/9

0 ≤ B3
2(x)B

2
2(y)B

1
1(z) = 3x2(1− x)× y2 × z ≤ B3

2(2/3)B
2
2(1)B

1
1(1) = 2/9

0 ≤ B3
3(x)B

2
0(y)B

1
0(z) = x3 × (1− y)2 × (1− z) ≤ B3

3(1)B
2
0(0)B

1
0(0) = 1

0 ≤ B3
3(x)B

2
0(y)B

1
1(z) = x3 × (1− y)2 × z ≤ B3

3(1)B
2
0(0)B

1
1(1) = 1

0 ≤ B3
3(x)B

2
1(y)B

1
0(z) = x3 × 2y(1− y)× (1− z) ≤ B3

3(1)B
2
1(1/2)B

1
0(0) = 1/2

0 ≤ B3
3(x)B

2
1(y)B

1
1(z) = x3 × 2y(1− y)× z ≤ B3

3(1)B
2
1(1/2)B

1
1(1) = 1/2

0 ≤ B3
3(x)B

2
2(y)B

1
0(z) = x3 × y2 × (1− z) ≤ B3

3(1)B
2
2(1)B

1
0(0) = 1

0 ≤ B3
3(x)B

2
2(y)B

1
1(z) = x3 × y2 × z ≤ B3

3(1)B
2
2(1)B

1
1(1) = 1

There are other possible bounds for polynomials. In his PhD [2],
Olivier Beaumont bounds f(x) = xk − xk+1, for x ∈ [0, 1], as follows:
since f ′(x) = kxk−1 − (k + 1)xk = xk−1(k − (k + 1)x) vanishes at
x = k/(k + 1), then f(x) is maximum at x = k/(k + 1) and is equal
to kk/(k + 1)k+1. To correlate the xi (each xi is represented with a
LP-variable xi in a LP problem) Beaumont uses the constraints xk −
xk+1 ≤ kk/(k+1)k+1; each of these constraints is represented with the
linear constraint 0 ≤ xk − xk+1 ≤ kk/(k+1)k+1. The obtained bounds
are related to Tchebychev polynomials. For multivariate polynomials,
Beaumont uses the tensorial product, like for the Bernstein polytope.
Beaumont’s polytope is less tight than the Bernstein polytope; they
have the same complexity (number of hyperplanes). Of course, it is
possible to use both Bernstein and Beaumont inequalities.

6. Polytope-based versus TBB-based bounds

For a multivariate polynomial, the classical TBB bounds are its small-
est and its greatest coefficient in the TBB. These bounds can also be
expressed as two Linear Programming problems, with, unfortunately,

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.17

18 Foufou, Michelucci

exponential size. Pose x = (x1, . . . xn), D is the set of multi-degrees:
D = [0, d1]× . . . [0, dn] and the multivariate polynomial is

p(x) =
∑
α∈D

cαx
α =

∑
α∈D

pαB
(D)
α (x)

with the usual notation xα = xα1
1 . . . xαn

n , i.e. its coefficients in the
tensorial canonical basis are cα and its coefficients in the TBB are pα.
Then the TBB simplex is the set of points in R|D| with coordinates bα
and constrained with:

∑
α∈D bα = 1 and 0 ≤ bα, for all α ∈ D (it implies

that bα ≤ 1). The bα are LP unknowns corresponding to the B
(D)
α (x).

Then min
∑

α∈D pαbα, and max
∑

α∈D pαbα are obviously equal to the
classical TBB bounds. The TBB simplex has an exponential number of
vertices and hyperfaces: |D| =

∏n
i=1(1+di). It may seem at first glance

that expressing the classical TBB bounds as two LP problems on the
TBB simplex brings nothing. However, it has two advantages: First,
it becomes apparent that the TBB simplex can be tightened, because
all except one bα are strictly less than 1, and it is easy to compute the

greatest valueMα of bα, i.e. the greatest value of B
(D)
α (x) for x ∈ [0, 1]n.

Thus it is possible to find better bounds than the classical TBB bounds;
of course the TBB simplex is no more a simplex after all these clippings
bα ≤ Mα. Second, this polytope-based formulation permits to unify the
classical TBB bounds with other enclosing methods which are polytope-
based and resort to Linear Programming, and thus to compare pros and
cons of all these polytopes. The study in [8] concluded that Bernstein
polytope, or some variant, is the best trade off: it is defined with O(nd)
hyperplanes where d = max |α| = max

∑n
i=1 αi is the maximal partial

degree of involved monomials xα (for quadratic system, d = 2, and there
is O(n2) hyperplanes), while the TBB simplex is defined with (d+ 1)n

hyperplanes (e.g. 3n hyperplanes for quadratic systems, i.e. when d =
2), or, dually, as the convex hull of its (d+ 1)n vertices which has the
same exponential complexity; though the definition of the Bernstein
polytope is polynomial space, it still has an exponential number of
vertices (see [8]), which is required to obtain sharp bounds. Moreover
in some cases, the Bernstein polytope provides sharper bounds than
the classical TBB bounds.

7. Conclusion

This paper discussed the use of tensorial Bernstein basis in geometric
constraint solving. Current Bernstein-based solvers are very competi-
tive for small systems and are routinely used in Computer Graphics,

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.18

Bernstein basis & geometric constraint solving 19

for instance for ray tracing implicit algebraic surfaces f(x, y, z) = 0
(e.g. torii), and for ray tracing polynomial or rational patches. Current
Bernstein solvers compute all coefficients in the tensorial Bernstein
basis; since the number of these coefficients is exponential, these solvers
cannot be used with more than six unknowns. This paper has shown
how the Bernstein polytopes and linear programming make possible
to compute an enclosure (the lower and upper bounds) of the values
of a multivariate polynomial over [0, 1]n. The Bernstein polytope and
linear programming also make possible to reduce boxes while preserving
contained roots, and to solve polynomial systems with arbitrary size.
Moreover, these new solvers are simpler and can be extended to handle
transcendental functions.

Acknowledgements

This research work has been funded by NPRP grant number NPRP 09−
906 − 1 − 137 from the Qatar National Research Fund (a member of
the Qatar Foundation).

References

1. Faiz A. Al-Khayal and James E. Falk. Jointly constrained biconvex program-
ming*. Mathematics of Operations Research, 8(2):273–286, May, 1986.

2. O. Beaumont. Algorithmique pour les intervalles: comment obtenir un résultat
sûr quand les données sont incertaines? PhD thesis, Université Rennes I, 1999.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, MA, second edition, 2001.

4. G. Elber and M-S. Kim. Geometric constraint solver using multivariate rational
spline functions. In SMA ’01: Proceedings of the sixth ACM symposium on Solid
modeling and applications, pages 1–10, New York, NY, USA, 2001. ACM Press.

5. G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Academic Press
Professional, Inc., San Diego, CA, 1988.

6. R. T. Farouki and V. T. Rajan. On the numerical condition of polynomials in
Bernstein form. Comput. Aided Geom. Des., 4(3):191–216, 1987.

7. Ch. Funfzig, D. Michelucci, and S. Foufou. Nonlinear systems solver in floating-
point arithmetic using linear programming reduction. In SIAM/ACM Joint
Conference on Geometric and Physical Modeling, pages pp. 123–134, San
Francisco, CA, USA, 2009.

8. Ch. Funfzig, D. Michelucci, and S. Foufou. Polytope-based computation of
polynomial ranges. Computer Aided Geometric Design, 29:18–29, Jan. 2012.

9. Ch. Funfzig, D. Michelucci, and S. Foufou. Optimizations for tensorial
Bernstein-based solvers by using polyhedral bound. International Journal of
Shape Modeling (IJSM), 16(1-2):109–128, Dec. 2010.

10. Ch. Funfzig, D. Michelucci, and S. Foufou. Polytope-based computation of
polynomial ranges. In SAC ’10 Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 1247–1252, Sierre, Switzerland, March 22 - 26, 2010.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.19

20 Foufou, Michelucci

11. J. Garloff and A. P. Smith. Solution of systems of polynomial equation by using
Bernstein expansion. In Symbolic Algebraic Methods and Verification Methods,
pages 87–97. Springer, 2001.

12. R. B. Kearfott. Rigorous Global Search: Continuous Problems. Nonconvex
Optimization and its Applications, Vol. 13. Springer, 1996.

13. R. B. Kearfott and V. Kreinovich, editors. Applications of Interval Computa-
tions. Applied Optimization, Vol. 3. Springer, 1996.

14. H. Lamure and D. Michelucci. Solving constraints by homotopy. In Proc. of
the Symp. on Solid Modeling Foundations and CAD/CAM Applications, pages
263–269, May 1995.

15. R. R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang. Comparison
of interval methods for plotting algebraic curves. Computer Aided Geometric
Design, 19(7):553–587, 2002.

16. D. Michelucci, S. Foufou, L. Lamarque, and D. Ménégaux. Bernstein based
arithmetic featuring de Casteljau. In Proc. of the 17th Canadian Conference
on Computational Geometry, pages 212–215, University of Windsor, Canada,
August 2005.

17. D. Michelucci, S. Foufou, L. Lamarque, and P. Schreck. Geometric constraints
solving: some tracks. In ACM Symp. on Solid and Physical Modelling, pages
185–196, 2006.

18. B. Mourrain and J-P. Pavone. Subdivision methods for solving polynomial
equations. Journal of Symbolic Computation, 44(3):292–306, March, 2009.

19. Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-integer
programming. Math. Prog, 99:283–296, 2004.

20. N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided
Design and Manufacturing. Springer Verlag, 2002.

21. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C, the Art of Scientific Computing. Cambridge University Press,
1992.

22. Hanif Sherali and Leo Liberti. Reformulation-linearization technique for
global optimization. In P. Pardalos and C. Floudas, editors, Encyclopedia of
Optimization, pages 3263–3268. springer, Berlin, 2008.

23. Andrew Smith. Fast construction of constant bound functions for sparse poly-
nomials. Journal of Global Optimization, 43:445–458, 2009. 10.1007/s10898-
007-9195-4.

24. A. J. Sommese and C. W. Wampler. The Numerical Solution of Systems of
Polynomials Arising in Engineering and Science. World Scientific, 2005.

rc_BernsteinSurvey.tex; 28/02/2012; 7:53; p.20

