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Abstract

Every multivariate polynomial p(x), x = (x1, . . . , xn) ∈ [0, 1]n, is enclosed in
the interval given by the smallest and the greatest of its coefficients in the
Tensorial Bernstein Basis (TBB). Knowing that the total number of these
TBB coefficients is exponential with respect to the number of variables n,
∏n

i=1(1 + di), even if all partial degrees di equal 1, a combinatorial problem
arises: is it possible to compute in polynomial time the smallest and the
greatest coefficients? This article proves that the 3-SAT problem, known to
be NP-complete, polynomially reduces to the above defined combinatorial
problem, which let us consequently conclude that this problem is NP-hard.

Keywords: Bernstein polynomials, tensorial Bernstein basis, combinatorial
complexity.

1. Introduction

Multivariate polynomials are frequently used in formalizing and solving var-
ious engineering and physical science problems.

Expressing a multivariate polynomial p(x), x = (x1, . . . xn) ∈ R
n in the

Tensorial Bernstein Basis (TBB) gives a tight enclosure of p(x ∈ [0, 1]n): the
smallest coefficient in the TBB is a lower bound of p(x ∈ [0, 1]n), and the
greatest coefficient in the TBB is an upper bound. The lower (upper) bound
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is exact, i.e. it is reached, when the smallest (greatest) coefficient is related
to a vertex of the hypercube [0, 1]n, as explained in the next section. For
multivariate polynomials with all partial degrees at most 1, the lower and
the upper bounds are exact, see section §3.

However, a combinatorial problem arises, the number of TBB coefficients is
exponential with respect to the number of variables:

∏n

i=1(1+di) where di is
the partial degree of p in xi. Even if all partial degrees di equal 1, the number
of coefficients, i.e. the cardinality of the TBB, is exponential, it is equal to
2n. We are only interested in the smallest and the greatest coefficients. We
call this problem the Bernstein Combinatorial Problem (BCP). The acronym
BCP will be used to refer to this problem throughout the remaining part of
this paper.

The naive method to solve BCP computes all TBB coefficients, and then
finds the smallest and the greatest ones. Each TBB coefficient is a linear
combination of the m non-zero monomial coefficients in the canonical basis.
It is polynomial time, assuming that m is polynomial in n, i.e. that the
polynomial is sparse in the canonical basis. Weights in the linear combination
are products of binomial coefficients and are given in standard formulas in
section §2. The naive method is clearly exponential and can be used only for
small polynomial systems, say n ≤ 6 or 7, with low degree. It is sufficient for
some classical problems in computer graphics. But, in many new domains of
computer graphics or computer engineering like geometric constraint solving,
some problems need to solve polynomial systems with hundreds or thousands
of unknowns. Therefore it becomes essential to know the complexity of the
BCP.

In this study, we consider the complexity of the BCP, and show that most
likely it is not possible to solve it in polynomial time, by proving that the
3-SAT problem polynomially reduces to the BCP, thus the latter is NP-
hard. 3-SAT, NP-completeness, NP-hardness and complexity theory are ex-
plained in textbooks such as [1, 2]. The paper is organized as follows: Section
§2 presents tensorial Bernstein bases and the BCP. Section §3 presents the
polynomial reduction of the 3-SAT problem to the BCP. To the best of our
knowledge this result is new. Section §4 presents the principles of some
workarounds. Section §5 concludes the paper.
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2. Tensorial Bernstein bases

Knowledgeable readers can skip this section, Farin’s textbook presents the
material included hereunder in more details [3].

For univariate degree d polynomials, Bernstein polynomials B
(d)
0 (x), . . . B

(d)
d (x)

form a basis, and are defined with:

B
(d)
i (x) =

(

d

i

)

xi(1 − x)d−i , i = 0, . . . d

Clearly, for x ∈ [0, 1] they are always non-negative and smaller than or
equal to 1. Moreover, their sum equals 1 for every x, because of Newton’s
expansion:

1d = (x + (1 − x))d =
d

∑

i=0

(

d

i

)

xi(1 − x)d−i =
d

∑

i=0

B
(d)
i (x)

Thus for x ∈ [0, 1], p(x) =
∑

piBi(x) is a linear convex combination of the
pi. So p(x ∈ [0, 1]) belongs to [min pi, max pi]. Moreover, since p(0) = p0,
if p0 is the smallest (or greatest) coefficient, this lower (or upper) bound is
exact, i.e. it is reached. Similarly, p(1) = pd, so if pd is the smallest (or
greatest) coefficient, this lower (or upper) bound is exact.

Standard formulas [3, 4] shown below give the linear mapping (i.e. rep-
resentable with a square invertible matrix) which converts an univariate
polynomial from the canonical basis (x0, x1, . . . xd) to the Bernstein basis

(B
(d)
0 (x), . . . B

(d)
d (x)):

xk =
1

(

d

k

)

d
∑

i=k

(

i

k

)

B
(d)
i (x) , k = 0, . . . d

x =
1

d

d
∑

i=0

i B
(d)
i (x)

x0 = 1 =
d

∑

i=0

B
(d)
i (x) : their sum equals 1.

A consequence of these formulas is that the graph of a polynomial p(x), x ∈
[0, 1], i.e. the curve y = p(x) for x ∈ [0, 1], lies inside the convex hull of the
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d + 1 points ( i
d
, pi), i = 0, . . . d, called “control points” in Computer Aided

Design [5] or Computer Graphics. Indeed

x =

d
∑

i=0

i

d
B

(d)
i (x)

If each pi is a point in R
k space, then p(x ∈ [0, 1]k) describes an arc of curve

in R
k, each point of which is a convex combination of the pi i = 0, . . . d; so

this curve lies in the convex hull of the points pi, pi ∈ R
k; this curve is called

a Bézier curve, and is often used in Computer Aided Design [5]. Numerous
interactive graphic software systems enable designers to edit such curves, by
selecting and dragging its control points; the curve is refreshed and displayed
in interactive time.

For two variables x1 and x2, the tensorial Bernstein basis, with degree d1 in
x1 and degree d2 in x2 is:

B
(d1,d2)
i1,i2

(x1, x2) = B
(d1)
i1

(x1)B
(d2)
i2

(x2)

and is the tensorial product:

(B
(d1)
0 (x1), B

(d1)
1 (x1), . . .B

(d1)
d1

(x1)) ⊗ (B
(d2)
0 (x2), B

(d2)
1 (x2), . . .B

(d2)
d2

(x2))

For short, B
(d1)
i1

(x1)B
d2

i2
(x2) is denoted B

(d1,d2)
i1,i2

(x) where x stands for (x1, x2).
Degrees (d1, d2) can be omitted if no confusion is possible. Similarly the

coefficient of B
(d1,d2)
i1,i2

(x) is denoted pi1,i2 , or pi where i is a multi index i =
i1, i2.

The convex hull property still holds:

min pi1,i2 ≤ p(x1, x2) ≤ max pi1,i2

for (x1, x2) ∈ [0, 1]2.

The square domain [0, 1]2 has 22 vertices: (0, 0), (0, 1), (1, 0), (1, 1), and
p(0, 0) = p0,0, p(0, 1) = p0,d2

, p(1, 0) = pd1,0, p(1, 1) = pd1,d2
. When the index

of the smallest (greatest) TBB coefficient is a vertex in {p0,0, p0,d2
, pd1,0,

pd1,d2
} the lower (upper) bound of p(x ∈ [0, 1]2) is exact.

A trivial but key remark for the proof in the next section is: when all degrees
d1, d2, . . . dn equal 1, all coefficients indices in the TBB are vertices. Thus
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the lower (upper) bound given by the smallest (greatest) TBB coefficient is
exact, and is reached at the corresponding vertex of the hypercube [0, 1]n.

Bézier patches used in Computer Aided Design [3, 5] are parametric algebraic
surfaces:

S = {(x, y, z) | x = f(x1, x2), y = g(x1, x2), z = h(x1, x2), (x1, x2) ∈ [0, 1]2}

where polynomials f, g, h are given in the TBB. 3D coefficients (fi1,i2, gi1,i2 ,
hi1,i2) in the TBB are called control points. Again, users can interactively
edit patches, by selecting and dragging control points.

Similarly, for n variables x1, . . . xn, the tensorial Bernstein basis with par-
tial degrees di in xi is the tensor product of the univariate Bernstein bases
B(di)(xi); its cardinality is the product of the partial degrees plus one:

∏n

i=1(1+
di). It is clearly exponential with n, the number of variables. If all di = 1, it
is 2n. Thus even in the multilinear case, the TBB has an exponential number
of basis functions and coefficients.

The convex hull property of the univariate Bernstein basis extends to the
TBB, and p(x), x = (x1, . . . xn) ∈ [0, 1]n lies in [min pi, max pi], here i is a
multi index i = i1, i2, . . . in. Moreover, if the index of the smallest (greatest)
TBB coefficient is a vertex of the hypercube [0, 1]n, then this lower (upper)
bound is exact. It is the case when the multivariate polynomial is multilinear,
i.e. all its partial degrees in all variables equal at most one.

Thus expressing a polynomial into the TBB gives a (usually tight) enclo-
sure of p([0, 1]n). Some variable change permits to compute enclosures of p
over any box: see [3] for details and Casteljau’s method. These convenient
properties are intensively used in Computer Aided Design, for solving alge-
braic systems, computing intersection curves or points between 3D algebraic
surfaces, ray tracing implicit algebraic surfaces (given by their polynomial
equation p(x, y, z) = 0) or Bézier patches [6, 7, 8, 9]. However, n is low in
these Computer Aided Design problems.

When one wants to use the TBB for larger n, one faces the Bernstein combi-
natorial problem: there is an exponential number of Bernstein polynomials
(and coefficients) in the TBB, and we are interested only with the smallest
and the greatest one. The multi index of the smallest and the greatest TBB
coefficient are unknown. Is it possible to compute these two TBB coefficients
in polynomial time? or: what is the complexity of the BCP?

The rest of this article considers, without loss of generality, only the compu-
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tation of the smallest coefficient in the TBB: the greatest coefficient for p is
just the opposite of the greatest coefficient of −p. Thus both problems are
equivalent in complexity.

Polynomials are usually sparse in the tensorial canonical basis: their size is
polynomial in n. For the reduction below, they are O(n3). They are no
more sparse in the TBB. For instance, all TBB coefficients of the constant
polynomial p(x) = 1 are equal to 1. The exponential size of this polynomial
in the TBB is the main reason for the NP-hardness of the BCP.

Example. We consider now an example with n = 2 for simplicity, with
d1 = d2 = 2, x1 is renamed x, and x2 is renamed y. Consider the polynomial

p(x, y) = 7 + 8x + 3y + 2xy + 4x2 − 5y2 = 7x0y0

+8x1y0 + 3x0y1 + 2x1y1 + 4x2y0 − 5x0y2

The formulas for converting from the canonical basis to the Bernstein basis
are:

1 = 1 B0(x) + 1 B1(x) + 1 B2(x)
x = 0 B0(x) + 1/2 B1(x) + 1 B2(x)

x2 = 0 B0(x) + 0 B1(x) + 1 B2(x)
1 = 1 B0(y) + 1 B1(y) + 1 B2(y)
y = 0 B0(y) + 1/2 B1(y) + 1 B2(y)

y2 = 0 B0(y) + 0 B1(y) + 1 B2(y)

For simplicity, we note Xk = Bk(x) and Yk = Bk(y). The TBB is: {X0Y0,
X0Y1, X0Y 2, X1Y0, X1Y1, X1Y 2, X2Y0, X2Y1, X2Y2}, and contains 9 ele-
ments. To compute the coefficient of, say X1Y2, we must multiply row by
row in the next tableau the content of the column of coefficients with the
content of the column X1 and with the content of the column Y2. Then we
compute the sum of the obtained (rightmost) column, which gives 10 here.
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7x0y0 = 7 × (1X0 + 1X1 + 1X2) × (1Y0 + 1Y1 + 1Y2) = . . . + 7 X1Y2 + . . .

4x2y0 = 4 × (0X0 + 0X1 + 1X2) × (1Y0 + 1Y1 + 1Y2) = . . . + 0 X1Y2 + . . .

8x1y0 = 8 × (0X0 + 1/2X1 + 1X2) × (1Y0 + 1Y1 + 1Y2) = . . . + 4 X1Y2 + . . .

3x0y1 = 3 × (1X0 + 1X1 + 1X2) × (0Y0 + 1/2Y1 + 1Y2) = . . . + 3 X1Y2 + . . .

2x1y1 = 2 × (0X0 + 1/2X1 + 1X2) × (0Y0 + 1/2Y1 + 1Y2) = . . . + 1 X1Y2 + . . .

4x2y0 = 4 × (0X0 + 0X1 + 1X2) × (1Y0 + 1Y1 + 1Y2) = . . . + 0 X1Y2 + . . .

−5x0y2 = −5 × (1X0 + 1X1 + 1X2) × (0Y0 + 0Y1 + 1Y2) = . . . − 5 X1Y2 + . . .

3. Reduction of 3-SAT to the Bernstein combinatorial problem

For a given multivariate polynomial p(x) in n variables x = (x1, . . . xn), and
with polynomial size in n in the canonical basis, the BCP is to compute the
smallest TBB coefficient, i.e. the smallest coefficient of p in the tensorial
Bernstein basis.

We assume for simplicity that p is given in the tensorial canonical base, and
that it is sparse enough, so that its size is polynomial in n; in the reduction
below of 3-SAT to BCP, this size is O(n3). Actually, any representation of p
with polynomial size in n is appropriate, for instance a straight line program
representation, also called DAG (Directed Acyclic Graph) representation.

This section proves that the BCP is NP-hard by reducing, in polynomial time,
any instance of the NP-complete 3-SAT problem to the BCP. The following
three lemmas L1, L2 and L3 will be needed to reduce the 3-SAT problem to
BCP.

Let p(x) be a multilinear polynomial in n variables x = (x1, . . . xn). From now

on, we will omit superscripts in the univariate case in B
(1)
v (xk), v ∈ {0, 1},

and in the multivariate case in B
(1n)
v (x), x = (x1, . . . xn), v ∈ {0, 1}n.

Lemma L1. In the univariate and in the multivariate cases, Bv(v) = 1 for
all v ∈ {0, 1}n, and Bv(w) = 0 when w 6= v, with w ∈ {0, 1}n.

Proof. First, consider the case n = 1, we have B0(x) = 1−x and B1(x) = x,
thus for any v in {0, 1}, Bv(v) = 1 and Bv(1−v) = 0. Thus Lemma L1 holds
in the univariate case.
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Second, consider the case n > 1. Let v ∈ {0, 1}n be a vertex or a multi
index: vi ∈ {0, 1}. Then Bv(v) = Bv1

(v1) . . . Bvn
(vn) = 1 because every

Bvk
(vk) equals 1 after Lemma L1 in the univariate case. Consider now a

multi index or vertex w ∈ {0, 1}n not equal to v; thus vk = 1 − wk for some
integer k, 1 ≤ k ≤ n; then Bv(w) = Bv1

(w1) . . .Bvk
(wk) . . . Bvn

(wn) = 0
because Bvk

(wk) = Bvk
(1 − vk) = 0 after Lemma L1 in the univariate case.

Thus Bv(v) = 1 and Bw(v) = 0 when w 6= v, in the multivariate case as well.
QED.

Lemma L2. p(x) =
∑

v∈{0,1}n p(v)Bv(x)

Proof. Express p(x) in the TBB:

p(x) =
∑

v∈{0,1}n

pvBv(x)

We want to prove that pv = p(v).

p(v) =
∑

w∈{0,1}n

pwBw(v) (1)

= pvBv(v) +
∑

w 6=v

pwBw(v) but w 6= v ⇒ Bw(v) = 0 by L1. (2)

= pvBv(v) but Bv(v) = 1 by L1. (3)

= pv (4)

Which terminates the proof of Lemma L2 showing that p(v) = pv for each
vertex v ∈ {0, 1}n. QED.

Let ps be the smallest TBB coefficient of p (or one of the smallest, if there
are many), its multi index is the vertex s of {0, 1}n; similarly let pg be the
greatest TBB coefficient of p (or one of the greatest, if there are many), its
multi index is the vertex g of {0, 1}n.

Lemma L3. p([0, 1]n) = [ps, pg]. In words, for a multilinear polynomial,
the smallest and the greatest of its TBB coefficients give the exact range of
p([0, 1]n).

Proof. We already know that p([0, 1]n) ⊂ [ps, pg]: it is a classical prop-
erty of TBB. Now, after Lemma L2, ps = p(s) and the vertex s belongs
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to the hypercube [0, 1]n. Similarly, pg = p(g) and the vertex g belongs to
the hypercube [0, 1]n. Thus p([0, 1]n) ⊂ [p(s), p(g)] and we conclude that
p([0, 1]n) = [p(s), p(g)]. QED.

We can now reduce the 3-SAT problem to BCP as follows:

Theorem. BCP is NP-hard.

Proof. Let P (x) be an instance of the 3-SAT problem. We first encode the 3-
SAT problem into a multilinear polynomial p = φ(P ): φ maps boolean values
to {0, 1}, boolean unknowns xi to variables xi (for convenience and simplicity,
we use the same names for boolean and numeric unknowns), clauses to clausal
polynomials, and 3-SAT problems to 3-SAT polynomials as follows: define
T = true and F = false. We use φ(T ) = 0 and φ(F ) = 1. Though it may
seem counter-intuitive, this convention is convenient: for v ∈ {0, 1}n, the
polynomial p(v) will count the number of clauses violated by the assignment
φ−1(v). The polynomial p = φ(P ) is the sum of the clausal polynomials of
all clauses in P . The clausal polynomial is defined as follows:

• p(x, y, z) = φ(x ∨ y ∨ z) = xyz. Thus

p(φ(F ), φ(F ), φ(F )) = p(1, 1, 1) = 1

for the unique assignment which violates the clause, and p vanishes for
the other 7 assignments.

• p(x, y, z) = φ(x ∨ y ∨ ¬z) = xy(1 − z) = xy − xyz. Thus

p(φ(F ), φ(F ), φ(T )) = p(1, 1, 0) = 1

for the unique assignment which violates the clause, and p vanishes for
the other 7 assignments.

• p(x, y, z) = φ(x ∨ ¬y ∨ ¬z) = x(1 − y)(1 − z) = x − xy − xz + xyz.
Thus

p(φ(F ), φ(T ), φ(T )) = p(1, 0, 0) = 1

for the unique assignment which violates the clause, and p vanishes for
the other 7 assignments.
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• p(x, y, z) = φ(¬x ∨ ¬y ∨ ¬z) = (1−x)(1− y)(1− z) = 1 + xy + xz +
yz − xyz. Thus

p(φ(T ), φ(T ), φ(T )) = p(1, 1, 1) = 1

for the unique assignment which violates the clause, and p vanishes for
the other 7 assignments.

Thus, the clausal polynomial equals 1 for the assignment which violates the
clause, and vanishes for assignments which satisfy the clause. Moreover, each
clausal polynomial is size O(1) in the tensorial canonical basis. The 3-SAT
polynomial p(x) = (φ(P ))(x) of a 3-SAT instance P (x) is the sum of all
clausal polynomials of every clause of P ; thus p(v) counts the number of
clauses violated by the assignment φ−1(v).

The 3-SAT polynomial p has the following properties:

• p is multilinear: all partial degrees with respect to each variable xi are
1.

• The total degree of p(x) is 3: each monomial in the tensorial canonical

basis involves zero, one, two, or three variables.

• The total degree of the TBB is n. Indeed, the TBB can represent
polynomials x1x2 . . . xn, . . . (1−x1)(1−x2) . . . (1−xn), the total degree
of which is n.

• If the 3-SAT instance P has K clauses, the size of the 3-SAT polynomial
p is O(K) in the tensorial canonical basis, which is the size of the 3-SAT
instance P in the 3-CNF (Conjunctive Normal Form).

• K = O(n3): there are n(n − 1)(n − 2)/6 triples of distinct variables
amongst n unknowns xi, and there are 23 = 8 possible clauses for
each triple, because each variable xi appears either negatively (¬xi) or
positively (xi). O(n3) is also the size of the 3-SAT polynomial p in the
tensorial canonical basis. This is polynomial in n.

• In the TBB, p(x) is defined by 2n coefficients, one coefficient for each
vertex, or multi index, in {0, 1}n. Thus the representation of p in
the TBB has exponential size. The TBB coefficients of p are integers,
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in [0, K]: remember that for an assignment V and the corresponding
vertex v = φ(V ) ∈ {0, 1}n, the coefficient pv = p(v) is the number
of clauses of P violated by the assignment V . Thus pv = p(v) is an
integer in [0, K]. As usual, we assume for simplicity that the size of K
is constant.

• p(v) counts the number of clauses violated by the assignment φ−1(v).

We can now proceed to the reduction of the 3-SAT problem to the BCP. Let
P be the 3-SAT instance in n variables, and p = φ(P ) be the corresponding
3-SAT polynomial, represented in the tensorial canonical basis, so that P and
p have both size O(K) = O(n3) which is polynomial in n. Assume that we
can compute, in polynomial time, the value ps of the smallest TBB coefficient
of p (or one of the smallest TBB coefficients, if there are many). Moreover,
by Lemma L2, ps is the value p(s) of p at some vertex s of the hypercube
[0, 1]n. If ps is zero, the 3-SAT instance P is satisfiable: the assignment
φ−1(s) satisfies P . If ps is non zero, it is the smallest number of violated
clauses, thus K − ps is the maximum number of satisfiable clauses: we have
solved in polynomial time the 3-SAT problem, but 3-SAT is NP-complete,
thus the BCP is NP-hard. QED.

Example. Which boolean values of x, y, z, t satisfy the problem P :

(C1 : x ∨ y ∨ z) ∧ (C2 : x ∨ y ∨ z̄) ∧ (C3 : x ∨ ȳ ∨ z) ∧

(C4 : x̄ ∨ y ∨ t) ∧ (C5 : x̄ ∨ ȳ ∨ t̄) ∧ (C6 : x ∨ ȳ ∨ z̄) ∧ (C7 : x̄ ∨ y ∨ z)

Clauses are numbered C1, . . . C7 for convenience. P is satisfied with these 3
assignments:

(x, y, z, t) ∈ {(T, T, T, F ), (T, T, F, F ), (T, F, T, T )}

where T is true and F is false. The 7 clausal polynomials are given below,
in the tensorial canonical base, and in the TBB B(14)(x, y, z, t):

φ(C1 : x ∨ y ∨ z) = xyz = B1110 + B1111

φ(C2 : x ∨ y ∨ z̄) = xy(1 − z) = B1100 + B1101

φ(C3 : x ∨ ȳ ∨ z) = x(1 − y)z = B1010 + B1011

φ(C4 : x̄ ∨ y ∨ t) = (1 − x)yt = B0101 + B0111

φ(C5 : x̄ ∨ ȳ ∨ t̄) = (1 − x)(1 − y)(1 − t) = B0000 + B0010

φ(C6 : x ∨ ȳ ∨ z̄) = x(1 − y)(1 − z) = B1000 + B1001

φ(C7 : x̄ ∨ y ∨ z) = (1 − x)yz = B0110 + B0111
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Remark: in this example, n = 4, which is too small to make visible the expo-
nential growth of the size of the TBB, relatively to the size of the tensorial
canonical basis. This growth is due to the fact that the constant polynomial
1 does not belong to the TBB, and must be converted. For instance, for the
first line, clause C1: xyz = B1(x)B1(y)B1(z)(B0(t)+B1(t)) = B1110 +B1111.
In the general case, expressing a clausal polynomial in the TBB requires 2n−3

Bernstein polynomials.

The 3-SAT polynomial φ(P ) of the problem P , i.e. the sum of all φ(Ck), is:

B0000 + B0010 + B0101 + B0110 + 2B0111 + B1000 + B1001

+B1010 + B1011 + B1100 + B1101 + B1110 + B1111

where Bu are sorted in lexicographic order for convenience. The TBB coef-
ficients are zero for:

• B0001, thus φ−1(0, 0, 0, 1) = (T, T, T, F ) satisfies P .

• B0011, thus φ−1(0, 0, 1, 1) = (T, T, F, F ) satisfies P .

• B0100, thus φ−1(0, 1, 0, 0) = (T, F, T, T ) satisfies P .

The greatest TBB coefficient in the 3-SAT polynomial is 2, for B0111, thus the
corresponding assignment: φ−1(0, 1, 1, 1) = (T, F, F, F ) maximizes the num-
ber of unsatisfied clauses (these 2 non-satisfied clauses are C4 : x̄ ∨ y ∨ t ⇒
φ(C4) = (1−x)yt = B0101+B0111 and C7 : x̄ ∨ y ∨ z ⇒ φ(C7) = (1−x)yz =
B0110 + B0111).

Before concluding this section, we note the following remarks:

Remark 1. Satisfying a 3-SAT problem P (x), x = (x1, . . . xn) is equiva-
lent to solving the algebraic system: p(x) = 0, x2

i − xi = 0 ∀i = 1, . . . n
where p = φ(P ). Clearly if x∗ is a root of this system, then the assignment
φ−1(x∗) satisfies the problem P (x). This reduction permits to measure the
complexity of solving polynomial systems, and of devoted algorithms like the
Buchberger algorithm which computes Gröbner bases (also called standard
bases). Our result is compatible with previous ones, like the complexity of
the ideal membership problem.

Remark 2. Our result of the NP-hardness of BCP is also consistent with
Gaganov theorem [10] which proves that computing the range of a multivari-
ate polynomial over a box is NP-hard.
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Remark 3. An anonymous reviewer noticed that, actually, the previous proof
of the NP-hardness of BCP polynomially reduces MAX-3-SAT to BCP: the
MAX-3-SAT is to compute the maximum number of satisfiable clauses, and
3-SAT is its decision version. Thus the theory of hardness of approximation,
which considers the complexity of approximating problems like MAX-3-SAT,
may shed some light on the complexity of approximating BCP, for instance
with some non trivial bounds. However, the NP-hardness of BCP is sufficient
for our purpose, which is to show that tensorial Bernstein bases do not scale
for large n.

In conclusion, this section reduced in polynomial time the 3-SAT problem
to the BCP. But 3-SAT is a well known NP-complete problem [2], thus the
BCP is NP-hard. If the conjecture P6= NP (as usually assumed) holds, then
there is no polynomial time algorithm for BCP, and for tight approximations
of BCP. Conversely, if a polynomial time method is discovered for the BCP,
it will solve in polynomial time all NP-complete problems, e.g. 3-SAT. It
will also solve the MAX-3-SAT problem in polynomial time, and make the
complexity hierarchy collapse.

4. Workarounds

This section presents the principles of some workarounds, for bypassing the
BCP. When the number n of variables is small, in practice less than 7, it is
possible to compute all coefficients in the TBB [6, 7, 11].

For greater but moderate n, Andrew P. Smith [12] proposes a lazy scheme:
three tests (monotonicity, uniqueness, and dominance) dramatically reduce
the number of computed Bernstein coefficients for “the types of polynomials
encountered in global optimization problems”, to quote Smith. However the
method is still exponential in the worst cases, since the BCP is NP-hard. All
that is consistent with the well known fact that not all instances of the SAT
problem are hard.

Patrikalakis et al [13] use the simplicial (or barycentric) Bernstein basis,
instead of the tensorial Bernstein basis. The barycentric Bernstein basis
has a polynomial number of elements. However its domain is a simplex,
i.e. the smallest and the greatest coefficients bound the possible values of
a polynomial not inside the hypercube [0, 1]n, but inside the simplex 0 ≤
xi,

∑

xi = 1. It is not as convenient as an hypercube or box [14, 15].
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In [16, 17, 18, 19, 20] Michelucci et al. propose another, polynomial time,
workaround, which relies on the definition of a Bernstein polytope. For
example, for degree 2 multivariate polynomials, the manifold Q ⊂ R

N , N =
n + n(n + 1)/2:

Q = {(x1, . . . xn, x11 = x2
1, . . . xnn = x2

n, x12 = x1x2, . . . xn−1,n = xn−1xn)}

where (x1, . . . xn) ∈ [0, 1]n, is first enclosed in a polytope (convex and bounded
polyhedron) bounded with a polynomial number of hyperplanes: each hyper-
plane is given by the non-negativity of a Bernstein polynomial, namely:

0 ≤ B
(2)
0 (xk) = (1 − xk)

2 = x2
k − 2xk + 1

⇒ 0 ≤ xkk − 2xk + 1 ∀k ∈ [1, n]

0 ≤ B
(2)
1 (xk) = 2xk(1 − xk) ⇒ 0 ≤ 2xk − 2xkk

0 ≤ B
(2)
2 (xk) = x2

k ⇒ 0 ≤ xkk

0 ≤ B
(1)
0 (xi)B

(1)
0 (xj) = (1 − xi)(1 − xj)

⇒ 0 ≤ 1 − xi − xj + xij ∀i ∈ [1, n − 1]∀j ∈ [i + 1, n]

0 ≤ B
(1)
0 (xi)B

(1)
1 (xj) = (1 − xi)xj ⇒ 0 ≤ xj − xij

0 ≤ B
(1)
1 (xi)B

(1)
0 (xj) = xi(1 − xj) ⇒ 0 ≤ xi − xij

0 ≤ B
(1)
1 (xi)B

(1)
1 1(xj) = xixj ⇒ 0 ≤ xij

It is possible to add n inequalities: B2
1(xk) ≤ 1/2. The Bernstein polytope

can be defined for higher degrees, and for sparse polynomials its complexity
(its number of hyperplanes) remains polynomial. Indeed, not all Bernstein
polynomials are used, for instance in the previous example, the inequalities
0 ≤ B

(2)
i1

(x1) . . . B
(2)
in

(xn), ik ∈ {0, 1, 2}, k ∈ [1, n] are unused. Computing
polynomial ranges for p(x ∈ [0, 1]n), or reducing the domain x ∈ [0, 1]n (i.e.
computing min xi, max xi, ∀i ∈ [1, n]) while preserving included roots of a
given polynomial system F (x) = 0, becomes Linear Programming problems
in the N variables xi, xii, xij. Linear Programming is solvable in polynomial
time (not strongly polynomial, though) with the ellipsoid method, as realized
by Khachiyan [21, 22, 23] or with a bounding simplex method as realized by
Levin and Yamnitsky [24]. In practice, these Linear Programming problems
are solved with the Dantzig simplex method or better the revised simplex
method [23], or with interior point methods. Note that, since this workaround
is polynomial time, the intervals it provides are usually, but not always, less
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tight than the intervals provided by the smallest and greatest coefficients in
the TBB [19].

Though polynomial time, Linear Programming is costly. Maybe linear al-
gebra is sufficient? Our first experiments suggest that resorting to Linear
Programming cannot be avoided for problems in high dimension. Thus we
are currently implementing Linear Programming methods on a Graphics Pro-
cessing Unit (GPU).

5. Conclusion

This paper proves that computing the smallest or the greatest TBB coefficient
of a sparse multivariate polynomial (i.e. with polynomial size) is NP-hard.
It means, in practice, that the tensorial Bernstein bases do not scale well
when n, the number of variables, increases. Several workarounds are also
presented.
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