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1 INTRODUCTION

MOTIVATION

Medical imaging faces increasingly huge 3D data images.
Some paradigm is required to

interactively visualize huge amount of data images (C'T-

scan, MRI)

reconstruct surfaces of organs

extract relevant features for diagnosis or surgical inter-
ventions

automatic match objects extracted from 3D images



OVERVIEW

The paradigm used here is the ellipsoidal skeleton.

It is a tree of the best partitions of the set of 3D
points extracted from segmented 3D data images.

The best partition in & classes (k € 1,2...10) is the
one which maximizes the homogeneity of classes, and thus
the differences between classes.

A k-partition permits to reconstruct the surface :
approximate each class by some geometric primitive (the
best ellipsoid or another implicit surface) before merging
a la Blinn.

Varying £ gives multiple levels of detalils.

The E-skeleton is invariant through isometries, and steady
against discretization noise, under-,
steadyness is used for automatic matching between
shapes, computing distances between shapes, ie recog-
nition.

over-sampling. This



2 BEST £-PARTITION

USING ”INTRINSIC” PARTITIONS

rigwe 1: A carpal bone, the hamatum: the cloud, 2-, 5-, and
10-partition.



rigwe 22 A femur. 4-, 5-, 6-, 7-, 8-, 10- partitions.



EXPECTATION, VARIANCE, COVARIANCE

Let C' = cloud (2, P) be a cloud of n points, with weights
() € R" and coordinates P = (X € R")Y € R", Z € R").
(often all Q¢] are equal).

The X expectation:

aef o1 Q] x X[i]
> 1 1]

The covariance of X and Y:

C(X,Y) ¥ E(XY)-E(X)x E(Y)

= C(Y, X)
where XY stands for [ X[1] x Y[1],... X[n] x Yn]].

E(X)

The variance of X is:
V(X) = C(X,X)

= E(X?) - (B(X))

It 1s also the expectation of the squares of the

differences between X and E (X):



THE EUCLIDEAN VARIANCE OF (' IS:

V(C)EV(X)+V(Y)+V(2)
Actually it is also the expectation of the squares of
the distances between points P and their gravity center

(X,Y,Z)=(E(X),E(Y),E(2)):

N

E((X )2+(Y—?)2+(_Z—7)2) B
E(X-X?)+E(Y =Y} +E((Z-2)
VX)+V(Y)+V(Z2)=V(C)

thus, since distances are invariant through isometries (trans-
lations, rotations, symmetries and their composition), the
euclidean variance V (C') as well.



THE COVARIANCE MATRIX M OF THE CLOUD
C 1IS:

[ VX) CXY) C(X,2)
ME | C,X) V) C(Y,2)
C(2,X) C(Z,Y) V(Z)

M is symmetric and positive, and definite in the generic
case. Thus eigenvalues are real and positive. Ay > Ay >

A3 > 0

The eigenvectors are orthogonal, and called: main axis of
inertia. The coordinate system they define is unique (up to
orientations) and has a strong physical meaning.

Nota: M has same eigenvectors as the matrix of inertia.



DEFINITION OF BEST PARTITIONS

If {C1,...CL} is a k-partition of the cloud C, the euclidean

variance V (C') of C' is decomposed into two parts:

e the intraclass variance, te the sum of all euclidean vari-
ances of classes C',...C}

e the interclass variance V ({C, Cs . . . Ck}):

V{C,C...0) MV Z V(C

The best k-partition is the one which maximizes the in-
terclass variance (the differences between classes), and thus
minimizes the intraclass variance.

The Progressive Dynamic Clustering algorithm finds
the best partition.



DYNAMIC CLUSTERING ALGORITHM (DCA)

It computes the best k-partition as follows:

Choose an initial k-partition
Repeat
For each class C;, 1 =1...k
Compute G; the center of gravity of C}
Empty the class C;
EndForEach
For each point p;
Add p; to class C; where G is closest to p;
EndForEach
Until neither of G; change

This algorithm is guaranteed to find the optimal solution;
oscillations due to degeneracies or inaccuracies may happen
in some case but are easily avoided.
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THE PROGRESSIVE DCA

The DCA works well but is slow. To speed-up, use the Pro-
gressive DCA:

The best 1-partition is known.
From the best k-partition, find the best k& + 1-partition:

Virtually split each class C; by the plane through its gravity
center, and orthogonal to the major main axis; then use DCA
to split C; in 2 sub-classes C?, C!', and compute

def V(C)) +V(C})
r, =
V(Cy)

The initial £ + 1-partition is obtained by spliting class C;
with smallest r;. then perform DCA on the whole cloud.

Other improvement: compute the best k-partition with an

under-sampled cloud, using the underlying grid structure of
the 3D data image (it divides n by 27).

In practice, time is O(k?n), n points, k = 10 classes.
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MAHALANOBIS VARIANT

To characterize and recognize shapes up to affine transforms:

Apply a scaling on the points of the cloud such that the
inertia ellipsoid of the whole cloud becomes a sphere with
radius 1, then perform the progressive DCA as usual.

[t is equivalent to using Mahalanobis distance.

This way two shapes differing by a scaling will have iso-
morphic E-skeletons.

However, in medical applications, it is not so relevant: mat-
uration and growth is not just a scaling. It is better to sample
ages.
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THE ELLIPSOIDAL SKELETON

A tree keeps track of the subdivision process. Each node or
leaf represents a class. Level £ (1 at root) countains k£ nodes
and represent the best k-partition.

Each node or leaf stores also: the gravity center, weigth.
number of points, covariance matrix, eigenvalues, eigenvec-
tors, «, u...

1-partition---------

2-partition{ o

3-partition-( Jo [ e

4-partition- ) Jo {0 F

rigure 3: A typical tree of an ellipsoidal skeleton.
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3 RECONSTRUCTION OF THE SURFACE

OME PICTURES

rigure 4. Reconstruction of hamatum: ellipsoids, deformed el-
lipsoids. blended deformed ellipsoids.
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rigwe 5. Deformation of ellipoids for the 4-partition of the
hamatum.

rigure 6: Reconstruction of an iliac bone: cloud and ellipsoids,
ellipsoids, merged undeformed ellipsoids.

The E-skeleton, including the Blinn’s surface parameters (the
heaviest one), is at least 1 thousand more compact than the
initial 3D data image. It is about one hundred times more
compact than a medium-quality meshing of the initial 3D
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rigure 7: Reconstruction of the eight carpal bones: each bone is
separately blended.

data image.
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SCHEMATIC RECONSTRUCTION

e cither represent each class by its best ellipsoid, and
union them.

e or, a bit better. blend the £ best ellipsoids with a Blinn
implicit surface.

BEST ELLIPSOID OF A CLASS

The best ellipsoid for a class C' has center C' gravity center,
and axis the main axis of C'. The radius are: yv/A;,2 =1,2,3
with 2 choices for the scaling constant -:

o v =+d+2=1+5=2236068...: if C is really an ellip-
soid, then the best ellipsoid is equal to C.

e v = 2 for all d, because of the big numbers law: if random
X follows a normal law, then E (X )£2+/V (X)) countains
90% samples.
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BLINN’S BLENDING SURFACES

The surface is an iso-potential one : P(z,y,2) —1 =0

The potential P(x,y, 2) is the sum ZZ  Pi(z,y, z) of all
k potentials P; emitted by each geometric primitive, one for
each class.

def _~.1.(.
Pi<x7y7 Z) = € oidi(@:7)

where d;(x,y,z) is 0 at the boundary of the geometric
primitive, negative inside, positive outside.

For an ellipsoid,

2 2 2
T
di(z,y,2) = — + 322 +—=—1

in its natural coordinate System. Express it in world coordi-

nates.
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DEFORMED ELLIPSOIDS

To best fit the surface, we deform each best ellipsoid with a
modal deformation D, following Barr: affine transform -+
non linear transform: twist. bend. etc

For each primitive, the best (or at least a good value) u €
R to minimize the mean gap between boundary points
and the surface, is computed with a tabu search (a variant
of simulated annealing).

Other tried methods: descent. homotopy, Levenberg-Marquardt.

A point is on the boundary if one of its 6 neighbors (in
the underlying grid of the initial 3D data image) does not
belong to the same class. With under-sampling for speeding
up dynamic clustering, it is the only place where the grid
structure is used.

The best «; for blending are also found with a tabu search.
However a; = 1 is simple and often good enough.
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IMPLICIT ALGEBRAIC SURFACE

(Not implemented) The geometric primitive for a class is an
algebraic implicit surface, with even degree to ensure bound-
edness:

ik
F(x,y,z) = E cijxx'y' 2" =0
0<i+j+k<2d

Assume wlog cppo = 1.

For p = (ps, py, p.) a given point, F'(p) is then a com-
putable linear expression in C' = [¢;jx]: F(p) =1+ C.,
where [ is the vector [p, x p/ x p*] (in the same order than
the ¢; j 1 in the C' vector); if p is a boundary point of the class,
we want F'(p) = 14 C.[ as small as possible. Expressing this
constraint for all boundary points p, we have to minimize the
euclidean norm of [1,...1] + CL.

[t is a least square problem, whose solution is C' = [—1,...—
1]L*, where L™ is the pseudo inverse of L: L+t = LY(LL')™}

See fast methods in [Numerical recipes in CJ.

Nota: don’t use the canonical basis, but Bernstein basis.
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LEVEL OF DETAILS

Various £ give several level of details for the re-
constructed surface.

For fast display, marching tetrahedra tesselate the surface
on fly when needed. We don'’t have to evaluate the potential
function at all grid vertices, thus meshing requires always less
than 1 second.

The step size s for marching tetrahedra is another param-
eter to monitor the LoD.

Do we deform or not, do we blend or not are two other
parameters.

rigwre s: Dynamic rendering for visualization and exploration
on tarsal bones.
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4 MATCHING, RECOGNITION

MATCHING TWO £-PARTITIONS

The distance between 2 classes 1s the euclidean distance be-
tween their signature points.

The signature point for a class C; in a cloud C' is:

(VAi1, VA2 VAiss i)

with p; the distance between C; and C centers.

It is possible to also use the cosines of the angle between
the main axis of C; and C.
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Let C =CiUCy...UC,and C'=CiUC; ... UC.

The distance between C' and C' is:

dist(C, C") = min dist(Cy, o(CY)) + . .. + dist(Cy, o (Cy))
where o describes the k! bijections from {C4, Cs ... C}} to
(..ol

Finding the ¢ which minimizes
dist(Cy, 0(Ch)) + . .. + dist(C, a(Cy))

is a classical minimal matching problem (and also a max cost
min flow problem), solvable in O(k* + log k): in the matrix
D;; = dist(C;, C%), find k entries, one per line and one per
column, with minimal sum.
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RECOGNITION OF AN OBJECT

If the size is not relevant, normalize...

Recognition of C' is finding the closest shape in a library

S1, ....S, of shapes.
All shapes are described by their E-skeletons.

First compare 1-partitions of ' and of: S;, ... S, discard
the 90% S; farthest from C'. (When n is very large, some
range searching scheme is useful, e.g. some kd-tree).

Compare 2-partitions of C' and of remaining shapes in 57,
.S, discard the 90% S; farthest. Etc, until it remains
about 10 S;: compare using the maximal k. The shape .S
with smaller distance to C' is the closest.
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ABOUT CHIRALITY

Our recognition procedure confuses left and right, because
the used signature points are invariant by symmetry:.

It permits the software to match the left and right teeth
of upper and lower jaws, and to detect a pathology on an
incisive (left and right incisives were successfully matched,
but at a greater distance due to some real pathology). Note:
upper and lower teeth are different and cannot be confused...

If this feature is a bug, it is possible to define signature
discriminating left and right (see paper).
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EXAMPLE OF RECOGNITION

| |HLI[H2|H3|H4[H5[C1[C2[C3|C4[C5[L1|L2|L3[L4[L5|

Hi 08 ]3 ]3] 3 ]67[65]64]63][65]54]53][52][53]53
H2 [ 8 | 0 | 8 | 7 | 7 ]]69]67]66]66][67][54]53]52]54]53
H3[ 3 [ 8]0 ] 4] 4 ]]67[65]64]63][65]53]52]52]52]52
H4 3 | 7 [ 4]0 ] 1 ]]68]66]65]|64]66]53]53]51]53]53
H5[ 3 | 7 [ 4 ] 1 ]0 [[68]66]65]65]66]53]53]52]53]53

Cl|67 69|67 |68 |68 0| 4|5 |6 | 3 |68]|66]|68]|68]66
C21 65|67 |65]66 66| 4|06 | 7|3 |66|64]|65|65]64
C3] 6466|6465 |65 5|6 |0 |3 |5 |68]|66]|68]|67]66
C41 6366|6364 |65 6 | 7|3 |0 ] 6 |67]|65]|66]|66]65
C51 65|67 65|66 |66 3 |3 |5 |6 | 0|67]|65]|66]|66]65

L1 || 54 | 54 | 53 | 53 | 53 || 68 |66 | 68 | 67 [ 67 || 0 | 5 | 2 |3 | 4
L2 || 53 | 53 | 52 | 53 | 53 || 66 | 64 | 66 | 65 [ 65| 5 | 0 | 4 | 3 |1
L3 || 52 | 52 | 52 | 51 | 52 || 68 | 65 |68 |66 |66 || 2 | 4 | 0| 2 | 3
L4 || 53 | 54 | 52 | 53 | 53 || 68 | 65 | 67 | 66 | 66 || 3 | 3 | 2 | O | 2
L5 || 53 | 53 | 52 | 53 | 53 || 66 |64 |66 | 65 | 65 (|| 4 | 1 |3 | 2|0

Part of a distance matrix for hamatum. capitatum and lu-
natum and 5 other bones of 5 patients: bones are correctly
classified: hamatums are closer than other bones, etc.

An analysis editor was developped to find correlations be-
tween organs (allometries), and between organs and other
criteria (gender, age, genetic parameter).

For example, with this tool, Dr Canovas was able to find
relevant correlations between hamulus (some protuberance
in the hamatum) maturation and gender.
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5 CONCLUSION

A GENERIC DATA STRUCTURE

The E-skeleton model presented was used in a plant modeler.
for growth simulation and energy transfer computation.

The E-skeleton seems to be a promising data structure.,
which exhibits:

e compacity
e surface reconstruction
e multi level representation and real time visualization

e automatic matching and recognition
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rigure 9: Multi-level representation of a tree.

28




FURTHER WORKS

e extension of geometric primitives for surface reconstruc-
tion;

e improvement of the E-skeleton by inserting a spring-mass
pair for each ellipsoid or primitive, allowing extensions
towards dynamic models or physically-based models:

e automatic detection of correlations or allometries inside
data;

e automatic allometry-based synthesis of organs;

e construction of an atlas of anatomical shapes at several
ages, including shapes with pathologies to be recognized:

e applications in CAD, like feature-based recognition and
modelling:

e use of feature recognition to help segmentation of original
lmages.

e cfc
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