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Abstract

This paper presents some important issues and potential research
tracks for Geometric Constraint Solving: the use of the simplicial
Bernstein base to reduce the wrapping effect in interval methods,
the computation of the dimension of the solution set with meth-
ods used to measure the dimension of fractals, the pitfalls of graph
based decomposition methods, the alternative provided by linear
algebra, the witness configuration method, the use of randomized
provers to detect dependences between constraints, the study of in-
cidence constraints, the search for intrinsic (coordinate-free) for-
mulations and the need for formal specifications.
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tional Geometry and Object Modeling—Geometric algorithms, lan-
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1 Geometric constraints solving

This article intents to present some essential issues for Geometric
Constraints Solving (GCS) and potential tracks for future research.
For the sake of conciseness and homogeneity, it focuses on prob-
lems related to the resolution, the decomposition, and the formula-
tion of geometric constraints.

Today, all geometric modellers in CAD-CAM (Computer Aided
Design, Computer Aided Manufacturing) provide some Geometric
Constraints Solver. The latter enables designers and engineers to
describe geometric entities (points, lines, planes, curves, surfaces)
by specification of constraints: distances, angles, incidences, tan-
gences between geometric entities. Constraints reduce to a system
of (typically algebraic) equations. Typically, an interactive 2D or
3D editor permits the user to enter a so called approximate ”sketch”,
and to specify geometric constraints (sometimes some constraints
are automatically guessed by the software). The solver must correct
the sketch, to make it satisfy the constraints.

Usually, the solver first performs a qualitative study of the con-
straints system to detect under-, well- and over-constrained parts;
when the system is correct, i.e. well-constrained, it is further de-
composed into irreducible well-constrained subparts easier to solve
and assemble. This qualitative study is mainly a Degree of Free-
dom (DoF) analysis. It is typically performed on some kind of
graphs [Owen 1991; Hoffmann et al. 2001; Gao and Zhang 2003;
Hendrickson 1992; Ait-Aoudia et al. 1993; Lamure and Michelucci
1998]. This article presents the pitfalls of graph based approaches,
and suggests an alternative method. After this qualitative study,
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if it is successful, irreducible subsystems are solved, either with
some formula in the simplest case (e.g. to compute the intersection
between two coplanar lines, or the third side length of a triangle
knowing two other side lengths and an angle, etc), or with some
numerical method, e.g. a Newton-Raphson or an homotopy, which
typically uses the sketch as a starting point for iterations, or with in-
terval methods which can find all real solutions and enclose them in
guaranteed boxes (a box is a vector of intervals). Computer algebra
is not practicable because of the size of some irreducible systems,
and it is not used by nowadays’ CAD-CAM modelers. In this ar-
ticle, we will show that in some cases using computer algebra is
possible and relevant.

Depending on the context, either users expect only one solution, the
”closest” one to an interactively provided sketch; or they expect the
solver to give all real roots, and interval methods are especially in-
teresting in this case. For instance, in Robotics, problematic config-
urations of flexible mechanisms are solutions of a set of geometric
constraints: engineers want to know all problematic situations or a
guarantee that there is none.

The paper is organized as follow: Section 2 discusses GCS using
interval arithmetic and Bernstein bases. Problems related to the de-
composition of geometric constraints systems (degree of freedom,
scaling, homography, pitfalls of graph based methods, etc.) are dis-
cussed in Section 3. This section also provides some ideas on how
probabilistic tests such as NPM (Numerical Probabilistic Method)
can be used as an efficient alternative for GCS and decomposition
when they are used with a good initial configuration (which we refer
to as the witness configuration in Section 3.9). Section 4 considers
GCS when there is a continuum of solutions and the use of curve
tracing algorithms. Section 5 presents the expression of geometric
constraints in a coordinate free way and shows how kernel functions
can be used to provide intrinsic formulation of constraints. Section
6 discusses the need for formal specifications of constraints and for
specification languages. The conclusion is given in Section 7.

2 Interval arithmetic and Bernstein bases

A recurrent problem of interval methods is the wrapping effect
[Neumaier Cambridge, 2001]: interval arithmetic loses the depen-
dance between variables, so that the width of intervals increases
with the computation depth. Maybe Bernstein bases can help.
They are well known in the CAD/CAM world, since Bézier and
de Casteljau, but people in the interval analysis seem unaware of
them. Fig. 1 permits to compare the naive interval arithmetic
with the tensorial Bernstein based one: the same algebraic curve
f (x,y) = 0 is displayed, with the same classical recursive method,
using (above) the naive interval arithmetic and (below) the Bern-
stein interval arithmetic: clearly, the former needs much more sub-
divisions than the latter. Transcendental functions are a difficulty, of
course. Either we enclose transcendental functions between some
polynomials, using for instance a Bernstein-Taylor form as Nataraj
and Kotecha [Nataraj and Kotecha 2004], or maybe the Poisson
base is a solution [Morin 2001].



Figure 1: Above: naive interval arithmetic. Below: Bernstein based arithmetic. Left to right columns: Cassini oval: C2,2(x,y) = 0 in
[−2,2]× [−2,2], where Ca,b(x,y) = ((x + a)2 + y2)× ((x− a)2 + y2)− b4. The curve f (x,y) = 15/4 + 8x− 16x2 + 8y− 112xy + 128x2y−
16y2 +128xy2 −128x2y2 = 0 on the square [0,1]× [0,1]. Random algebraic curves with total degree 10, 14, 18.

2.1 Tensorial Bernstein base

This section gives a flavor of tensorial Bernstein bases on a sim-
ple example of a polynomial equation f (x,y) = 0, 0 ≤ x,y ≤
1. We consider f (x,y) = 0 as the intersection curve between
the plane z = 0 and the surface z = f (x,y). Assume f has
degree 3 in x and y. Usually the polynomial f is expressed
in the canonical base: (1,x,x2,x3)× (1,y,y2,y3), but we prefer
the tensorial Bernstein base: (B0,3(x),B1,3(x),B2,3(x),B3,3(x))×
(B0,3(y),B1,3(y),B2,3(y),B3,3(y)). The conversion between the two
bases is a linear transform:

(B0,3(x),B1,3(x),B2,3(x),B3,3(x)) =

(1,x,x2,x3)







1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1
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and idem for y. This kind of formula and matrix ex-
tends to any degree: for degree n, the Bernstein base
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The surface z = f (x,y),0 ≤ x,y ≤ 1 has this representation in the
Bernstein base:
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m ,zi, j) are called control points of the surface
z = f (x,y), which is now a Bézier surface. Control points have
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Figure 2: Equation f1(x1,x2) = 0 has degree 2 in x and y, and a
grid of 3× 3 control points. The surface lie inside the convex hull
of its control points. Computing the smallest rectangle enclosing
the intersection between the plane z = 0 and this convex hull is a
linear programming problem.

an intuitive meaning: typically, geometric modelers of curves and
surfaces permit the user to interactively move control points and the
Bézier curve or surface follows. A crucial property is that the sur-
face patch (the part for 0 ≤ x,y ≤ 1) lie inside the convex hull of its
control points. Of course the convex hull of f (0 ≤ x ≤ 1,0 ≤ y ≤ 1)
is just the interval [minzi, j,maxzi, j]. It gives an enclosing interval
for f (0≤ x≤ 1,0≤ y≤ 1), which is often sharper than the intervals
provided by other interval arithmetics.

The method to display algebraic curves follows: if 0 6∈
[mini, j zi, j,maxi, j zi, j] then the curve does not cut the unit square,
otherwise subdivide the square in four; the recursion is stopped at
some recursion threshold; the Casteljau subdivision method permits
to quickly compute the Bernstein representation (i.e. the control
points) of the surface for any x interval [x0,x1] and any y interval
[y0,y1], without translation to the canonical base. All that extends
to higher dimension and the solving of systems of polynomial equa-
tions [Garloff and Smith 2001b; Garloff and Smith 2001a; Mour-
rain et al. 2004].

To find the smallest x interval [x−,x+] enclosing the curve f (x,y) =
0,0 ≤ x,y ≤ 1, project all control points on the plane x,z; compute
their convex hull (it is an easy 2D problem); compute its intersec-
tion with the x axis: it is [x−,x+]. This is visually obvious on Fig.
2. Proceed similarly to find the smallest y-interval. In any dimen-
sion d, reducing the box needs only d computations of 2D con-



Figure 3: Reduction of a 2D box: it is the intersection of two trian-
gles; reduce in the two triangles and take the bounding box.

vex hulls. A variant replaces the 2D convex hull computation by
the computation of the smallest and greatest roots of two univariate
polynomials, a lowest one and a largest one.

This box reduction is very advantageous when solving [Mourrain
et al. 2004; Hu et al. 1996; Sherbrooke and Patrikalakis 1993]
an algebraic system f (x,y) = g(x,y) = 0,0 ≤ x,y ≤ 1 (or a more
complex one), since it reduces the search space without subdi-
vision or branching. Box reduction is even more efficient when
combined to preconditionning: the system f (x,y) = g(x,y) = 0
has the same roots as a linear combination a f (x,y) + bg(x,y) =
c f (x,y)+dg(x,y) = 0; the idea is to use a linear combination such
that a f (x,y)+ bg(x,y) is very close to x and c f (x,y)+ dg(x,y) is
very close to y: this combination is given by the jacobian inverse
at the center of the considered box. It straightforwardly extends to
higher dimension. Near a regular root, the convergence of such a
solver is quadratic.

2.2 Simplicial Bernstein base

However there is a difficulty in high dimension: the tensorial Bern-
stein base has an exponential number of coordinates (as the canon-
ical base) and is dense, i.e. a polynomial which is sparse in the
canonical base becomes dense in the tensorial Bernstein base. For
instance, a linear polynomial in d variables is represented by 2d

control points, a polynomial with total degree 2 is represented by
3d control points, a polynomial with total degree n is represented
by (n+1)d control points. A solution is to use the simplicial Bern-
stein base [Farin 1988] (the previous Bernstein base is the tensorial
one).

For three variables x,y,z related by x + y + z = 1, the simplicial
Bernstein base is defined by:
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and for any number of variables x1, . . .xd related by x1 + . . .xd = 1,
it is defined by:
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thus it straightforwardly extends the tensorial base defined by:
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In the simplicial Bernstein base, a multivariate polynomial in d vari-
able and with total degree n is represented by O(dn) control points;
thus with total degree 1, 2, 3, etc, there are O(d), O(d2), O(d3), etc
control points. If the initial system is sparse in the canonical base,
adding a logarithmic number of auxiliary unknowns and equations
(using iterated squaring), every equation of any total degree n ≥ 2
is translated into equations with total degree 2: thus with the sim-
plicial Bernstein base the number of control points is polynomial;
moreover the good properties of the tensorial Bernstein base still
hold with the simplicial one: the convex hull property, the possi-
bility of preconditioning, the possibility of reduction (it only needs
several 2D convex hull problems as well), the de Casteljau method.
An open question, which seems tractable, is which edge of the sim-
plex to bissect?

2.3 Box reduction

For the moment, nobody uses the simplicial Bernstein base to solve
algebraic systems. Perhaps it is due to the fact that domains are no
more boxes (vectors of intervals) but simplices, which are less con-
venient for the programmer. In this respect, the simplicial Bernstein
base can be used in a temporarily way, to reduce usual boxes, as fol-
lows. See Fig. 3 for a 2D example. A box B = [x−1 ,x+

1 ], . . . [x−d ,x+
d ]

is given, it is cut by an hypersurface H : h(x1, . . .xd) = 0; the prob-
lem is to reduce the box B as much as possible, so that it still
encloses B∩ H. In any dimension d, the box is the intersection
of two d simplices. Consider the hypercube [0,1]d for simplic-
ity: a first simplex has (0,0 . . .0) as vertex, the opposite hyper-
plane is x1 + x2 + . . .xd = d, its other hyperplanes are xi = 0. The
second simplex has vertex (1,1, . . .1), the opposite hyperplane is
x1 + x2 + . . .xd = 0, its other hyperplanes are xi = 1. To reduce the
box, reduce in the two simplices, and compute the bounding box of
the intersection between the two reduced simplices.

3 Decomposition related problems

3.1 DoF counting

All graph-based methods to decompose a system of geometric con-
straints rely on some DoF counting.

It is simpler to explain first the principle of DoF counting for sys-
tems of algebraic equations. A system of n algebraic equations is
structurally well constrained if it involves n unknowns, also called
DoF, and no subset of n′ < n equations involves less than n′ un-
knowns, i.e. it contains no over-constrained part. For example,
the system f (x,y,z) = g(z) = h(z) = 0 is not well constrained, be-
cause the subsystem g(z) = h(z) = 0 over-constrains z; remark that
the details of f ,g,h do not matter. Second example: the system
f (x,y) = g(x,y) = 0 is structurally well constrained, i.e. it has a
finite number of roots for generic f and g; if the genericity assump-
tion is not fulfilled, it can have no solution: g = f +1, or a contin-
uum of solutions: f = g. Later we will see that a pitfall of graph
based approaches is that the genericity condition is not fulfilled.

A natural bipartite graph is associated to every algebraic system
F(X) = 0. The first set of vertices represent equations: one equa-
tion per vertex. The second set of vertices represent unknowns:
one unknown per vertex. An edge links an equation-vertex and
an unknown-vertex iff the unknown occurs in the equation. The
structural well-constrainedness of a system is equivalent to the ex-
istence of a complete matching in the associated bipartite graph
(König-Hall theorem): a matching is a set of edges, with at most



one incident edge per vertex; vertices with an edge in the matching
are said to be covered or saturated by the matching; a matching is
maximum when it is maximum in cardinality; it is perfect iff all
vertices are saturated. In intuitive words, one can find one equa-
tion per unknown (the two vertices are linked in the bipartite graph)
which determines this unknown. There are fast methods to compute
matchings in bipartite graph. Maximum matchings are equivalent
to maximum flows (a lot of papers about graph based decomposi-
tion refer to maximum flows rather than maximum matchings).

The decomposition of bipartite graphs due to Dulmage and Mendel-
sohn also relies on maximum matchings. It partitions the system
into a well-constrained part, an over-constrained part, an under-
constrained part. The well-constrained part can be further decom-
posed (in polynomial time also) into irreducible well-constrained
parts, which are partially ordered: for example f (x) = g(x,y) = 0
is well constrained; it can be decomposed into f (x) = 0 which is
well constrained, and g(x,y) = 0 which is well constrained once x
has been replaced by the corresponding root.

Relatively to systems of equations, systems of geometric con-
straints introduce two complications:

First geometric constraints are (classically...) assumed to be inde-
pendent of the coordinate system, thus they can, for instance, de-
termine the shape of a triangle in 2D (specifying either two lengths
and one angle, or one angle and two lengths, or three lengths) but
they can not fix the location and orientation of the triangle relatively
to the cartesian frame. This placement is defined by three param-
eters (an x translation, an y translation, one angle). Thus in 2D,
the DoF of a system is the number of unknowns (coordinates, radii,
non geometric unknowns) minus 3. The same holds in 3D, where
the placement needs six parameters; thus the DoF of a 3D system
is the number of unknowns minus 6 — the constant is d(d + 1)/2
in dimension d. Numerous ways have been proposed for adapting
decomposition methods for systems of equations to systems of ge-
ometric constraints.

Second, the bipartite graph is visually cumbersome and not intu-
itive. People prefer the ”natural” graph: each vertex represent a ge-
ometric unknown (point, line, plane) or a non geometric unknown,
and each edge represents a constraint. There is a difficulty for repre-
senting constraints involving more than 2 entities; either hyper-arcs
are used, or all constraints are binarized. Moreover vertices carry
DoF, and edges (constraints) carry DoR: degree of restriction, i.e.
the number of corresponding equations.

The differences between the bipartite and natural graphs are not
essential. In passing, the matroid theory provides yet another for-
malism to express the same things, but it is not used in the GCS
community up to now.

In 2D, a point and a line have 2 DoF; in 3D, points and planes
have 3 DoF, lines have 4. In 3D, DoF counting (correctly) predicts
there is a finite number of lines which cut four given skew lines:
the unknown line has 4 DoF and there are 4 constraints. Similarly,
there is a finite number of lines tangent to 4 given spheres.

Decomposition methods are essential, since they permit to solve big
systems of geometric constraints, which can not be otherwise.

3.2 Decomposition modulo scaling or homography

Decomposition methods are complex and do not always take into
account non geometric unknowns or geometric unknowns such as
radii (which are independent on the cartesian frame, contrarily to
unknowns). Decomposition methods should be simpler, more gen-
eral, and decompose not only in subparts well constrained mod-

ulo displacements, but also modulo scaling [Schramm and Schreck
2003]: so we can compute an angle, or a distance ratio, in one part,
and propagate this information elsewhere, and modulo homogra-
phy: so we can compute cross ratios in one part and propagate else-
where.

3.3 Almost decomposition

Hoffmann, Gao and Yang [Gao et al. 2004] introduce almost de-
compositions. They remark that a lot of irreducible systems in 3D
are easier to solve when one of the unknowns is considered as a pa-
rameter, and when the system is solved for all (or some sampling)
values of this parameter. In this artificial but simple example:

f1(x1,x2,x3,x4 = u) = 0
f2(x1,x2,x3,x4 = u) = 0
f3(x1,x2,x3,x4 = u) = 0
f4(x1,x2,x3,x4,x5,x6,x7) = 0
f5(x1,x2,x3,x4,x5,x6,x7) = 0
f6(x1,x2,x3,x4,x5,x6,x7) = 0
f7(x1,x2,x3,x4,x5,x6,x7) = 0

x4 is considered as a parameter u with a given value (we call it a key
unknown for convenience). The subsystem Su : f1(x1,x2,x3,u) =
f2(x1,x2,x3,u) = f3(x1,x2,x3,u) = 0 is solved for all values of u,
or in a more realistic way for some sampling of u. Then the rest
of the system Tu : f4(x) = f5(x) = f6(x) = 0 is solved, forgetting
temporarily one equation, say f7. f7 is then evaluated at all sam-
pling points on the solution curve of f1(x) = . . . f6(x) = 0. When
f7 almost vanishes, the possible root is polished with some New-
ton iterations. For the class of basic 3D configurations studied by
Hoffmann, Gao and Yang [Gao et al. 2004], one key unknown is
sufficient most of the time, but some rare more difficult problems
need two key unknowns. One may imagine several variants of this
approach, for instance the use of marching curve methods to fol-
low the curve parameterized with u, or methods to automatically
produce the best almost decomposition for irreducible systems: the
best is the one which minimizes the number of key unknowns.

Curve tracing [Michelucci and Faudot 2005] can also be used to
explore a finite set of solutions when no geometric symbolic so-
lution is available (which is often the case in 3D). If the solution
proposed by the solver does not fit the user needs, the idea is to
forget one constraint and to trace the corresponding curve. In this
case the roots are the vertices of a graph the edges of which cor-
respond to the curves where a constraint has been forgotten. If we
have d equations and d unknowns then each vertex is of degree d.
One difficulty is that this graph can be disconnected, and there is no
guarantee to reach every vertex starting from a given solution.

3.4 Some challenging problems

Some challenging problems resist this last attack of almost decom-
position. Consider the graph of the regular icosahedron (20 trian-
gles, 30 edges, 12 vertices). Labelling edges with lengths gives a
well constrained system with 30 distance constraints between 12
points in 3D (the regular pentagons of the icosahedron are not con-
strained to stay coplanar). This kind of problems, with distance
constraints only, is called the molecule [Hendrickson 1992; Porta
et al. 2003; Laurent 2001] problem because of its applications in
chemistry: find the configuration of a molecule given some dis-
tances between its atoms. This last system has Bézout number
230 ≈ 109.



A seemingly more difficult problem uses the graph of the regular
dodecahedron (12 pentagonal faces, 20 vertices, 30 edges). Label
edges with lengths; this time, also impose to each of the 12 pen-
tagonal faces to stay planar, for the problem to be well constrained.
The dodecahedron problem is not a molecule one, because of the
coplanarity constraints. In the same family, the familiar cube gives
a well constrained problem, with 8 unknown points, 12 distances,
and 6 coplanarity relations.

Considering the regular octahedron gives a simpler molecule prob-
lem, with 6 unknown points and 12 distances (no coplanarity con-
dition). This problem was already solved by Durand and Hoffmann
[Durand 1998; Durand and Hoffmann 2000] with homotopy. An-
other solution is to use Cayley-Menger relations [Yang 2002; Porta
et al. 2003; Michelucci and Foufou 2004].

3D

1 2

3

4
5

1

4
5

2

3

Figure 4: The double banana, and three other 3D configurations
due to Auxkin Ortuzar, where DoF counting fails. No four points
are coplanar.

3.5 Pitfalls of graph based methods

A pitfall of DoF counting is that geometric constraints can be de-
pendent in subtle ways. In 2D, the simplest counter example to DoF
counting is given by the 3 angles of a triangle: they can not be fixed
independently (note they can in spherical geometry). Fig. 5 shows
a more complex 2D counter example. In 3D, a simple counter ex-
ample is: point A and B lie on line L, line L lie on plane H, point
A lie on plane H; the last constraint is implied by the others. Fig.
4 shows other counter examples which make fail DoF counting in
3D. It is possible to use some ad hoc tests in graph based methods
to account for some of these configurations. However every inci-
dence theorem (Desargues, Pappus, Pascal, Beltrami, Cox... see
Fig. 6) provide dependent constraints: just use its hypothesis and
conclusion (or its negation) as constraints; moreover no generic-
ity assumption (used in Rigidity theory) is violated since incidence
constraints do not use parameters. Thus detecting a dependence is
as hard as detecting or proving geometric theorems.

DoF counting is mathematically sound only in a very restricted
case, the 2D molecule problem, i.e. when all constraints are generic
distance constraints between 2D points (thus points can not be
collinear): it is Laman theorem [J. Graver 1993]. For the 3D
molecule problem, no characterization is known; Fig. 4 leftmost
shows the most famous counterexample to DoF counting: the dou-
ble banana, which uses only distance constraints. Even in the sim-
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Figure 5: Left: be given 3 aligned points A,B,X ; for any point
s outside AB, for any L through X outside s, define: a = L∩As,
b = L∩Bs, s′ = Ab∩ aB, X ′ = ss′ ∩AB; then X ′ is independent of
s and L. Right: Desargues theorem: if two triangles (in gray) are
perspective, homologous sides cut in three collinear points.
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Figure 6: Pappus, its dual, Pascal theorems.

ple case of distance constraints, a combinatorial (i.e. in terms of
graph or matroids) characterization of well constrainedness seems
out of reach.

With the still increasing size of constraints systems, the probability
for a subtle dependence increases as well. J-C. Léon (personal com-
munication), who uses geometric constraints to define constrained
surfaces or curves, reports this typical behavior: the solver detects
no over-constrainedness but fails to find a solution; the failure per-
sists when the user tries to modify the value of parameters (dis-
tances, angles) – which is terribly frustrating. This independence to
parameter values suggests that the dependence is due to some inci-
dence theorems of projective geometry (such as Pappus, Desargues,
Pascal, Beltrami, etc). For conciseness, the other hypothesis: some
triangular (or tetrahedral [Serré 2000]) inequality is violated, is not
detailed here.

Detecting such dependences -or solving in spite of them when it is
a consistent dependence- is a key issue for GCS. Clearly, no graph
based method can detect all such dependences. It gives strong mo-
tivation for investigating other methods.

3.6 Linear Algebra performs qualitative study

Today decomposition is graph based most of the time. Linear al-
gebra seems a promising alternative. For conciseness, the idea is
illustrated for 2D systems of distance constraints only between n
points. Assume also the distances are algebraically independent
(thus no collinear points), and that points are represented by their
cartesian coordinates: X = (x1,y1, . . .xn,yn). For clarity, we say
that p = (x,y) is a ”point”, and X is a ”configuration”. After Rigid-
ity theory [J. Graver 1993; Lamure and Michelucci 1998], it is well
known that it suffices to numerically study the jacobian at some
random configuration X ∈ R2n. It is the essence of the so called
numerical probabilistic method (NPM).

By convention, the k th line of the jacobian J is the derivative of
the k th equation of the system. Vectors m such that Jmt = 0 are
called infinitesimal motions. The notation Ẋ = (ẋ1, ẏ1, . . . ẋn, ẏn) is
also used to denote the infinitesimal motion at configuration X .

First, if the rank of the jacobian (at the random, generic configu-
ration) is equal to the number of equations, equations are indepen-
dent; otherwise it is possible to extract a base of the equations. Sec-
ond, the system is well-constrained (modulo displacement) if its ja-
cobian has corank 3: actually it is even possible to give a base of the
kernel of the jacobian (the kernel is the set of infinitesimal motions).
This base is tx, ty,r, where tx = (1,0,1,0, . . .) is a translation in x,
ty = (0,1,0,1, . . .) is a translation in y, and r is an instantaneous ro-
tation around the origine: r = (−y1,x1,−y2,x2, . . .− yn,xn). These
3 infinitesimal motions are displacements, also called isometries;
they do not modify the relative location of points, contrarily to de-
formations (also called flexions).

An infinitesimal motion m is a displacement iff for all couple of
points A,B, the difference Ȧ− Ḃ between A and B motions is or-
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Figure 7: Left: the arrows illustrate the infinitesimal rotation around
O of points A and B. For a displacement like this rotation, Ȧ− Ḃ is
orthogonal to AB for all couples A,B. Right: this system is well-
constrained. Removing the bar (the constraint distance) 1,5 breaks
the system into two well-constrained parts (the left and the right of
point 4).

thogonal to the vector
−→
AB. Fig. 7 illustrates that for the rotation

r.

For convenience, define di, j as the vector (ẋ1, ẏ1, . . . ẋn, ẏn) where
ẋi = xi − x j , ẋ j = x j − xi, ẏi = yi − y j , ẏ j = y j − yi and ẋk = ẏk =
0 for k 6= i, j; actually, di, j is half the derivative of the distance
equation (xi − x j)

2 +(yi − y j)
2 −D2

i j = 0. Obviously di, j = −d j,i.
It is easy to check that, consistently, tx, ty and r are orthogonal to all
di, j,1≤ i < j ≤ n: they indeed are displacements, not deformations.

All that is well known, after Rigidity theory [J. Graver 1993]. What
seems less known is that linear algebra makes also possible to de-
compose a well-constrained system into well-constrained subparts.

3.7 The NPM decomposes

Consider for instance the well-constrained system in Fig. 7 Right,
and remove the constraint distance (the edge) 1,5. It increases the
corank by 1, adding an infinitesimal flexion (a deformation); a pos-
sible base for the kernel is tx, ty,r and f = (0,0,0,0,0,0,0,0,y4 −
y5,x5 − x4,y4 − y6,x6 − x4,y4 − y7,x7 − x4) i.e. an instantaneous
rotation of 4,5,6,7 around 4, or g = (y4 − y1,x1 − x4,y4 − y2,x2 −
x4,y4 − y3,x3 − x4,0,0,0,0,0,0,0,0) i.e. an instantaneous rotation
of 1,2,3,4 around 4, or any linear combination m of f , g, tx, ty,r
(outside the range of tx, ty,r, to be pedantic). Of course f and g
especially make sense for us, but any deformation m is suitable.

The deletion of edge 1,5 leaves the part 1,2,3,4 well-constrained: it
is visually obvious, and confirmed by the fact that di, j,1≤ i < j ≤ 4
is orthogonal to m. Idem for the part 4,5,6,7, because di, j,4 ≤ i <
j ≤ 7 is orthogonal to m. But no di, j with i < 4 < j is orthogo-
nal to m. This gives a polynomial time procedure to find maximal
(for inclusion) well-constrained parts in a flexible system, and a
polynomial time procedure to decompose well-constrained systems
into well-constrained subsystems: remove a constraint and find re-
maining maximal (for inclusion) well-constrained parts, as in the
previous example.

This idea can be easily extended to 3D distance constraints, with
some minor changes: the corank is 6 instead of 3. Note this method
detects the bad constrainedness of the classical double banana, con-
trarily to graph based methods which extend the Laman condition.

What if other kinds of constraints are used, not only distance con-
straints? From a combinatorial point of view, the vertices in Fig.
7 can represent points, but also lines (which have also 2 DoFs,
like points, in 2D). Thus as far as decomposing an well-constrained
graph into well-constrained subparts is concerned, we can consider
vertices of the graph as points, and constraints/edges as distance
constraints. This first answer is not always satisfactory, for instance
when vertices have distinct DoF (in 3D, points and planes have 3
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Figure 8: From left to right: the unknown solution configuration;
a random configuration, not fulfiling incidence constraints; a wit-
ness configuration; an irrational configuration with an underlying
regular pentagon (or an homography of).

DoF, but lines have 4), or when constraints involve more than 2
geometric objects.

In fact this method has been extended to other kind of constraints
[Foufou et al. 2005]. The only serious difficulty occurs when the
assumption of the genericity of the relative location of points is
contradicted by some explicit (or induced) projective constraints
(collinearity or coplanarity constraints). Of course graph based de-
composition methods have the same limitation.

3.8 The witness configuration principle

Clearly, the NMP give incorrect results because it studies the jaco-
bian at a random, generic, configuration which does not fulfil these
projective constraints. A solution straightforwardly follows: com-
pute a ”witness configuration” and study it with the NPM; a witness
configuration [Foufou et al. 2005; Michelucci and Foufou 2006]
does not satisfy the metric constraints (i.e. it has typically lengths
or angles different of the searched configuration), but it fulfils the
specified projective constraints (see Fig. 9), and also, by construc-
tion, the projective constraints (collinearities, coplanarities) due to
geometric theorems of projective geometry, e.g. Pascal, Pappus,
Desargues theorems. First experiments validate the witness config-
uration method [Foufou et al. 2005]: it works for all counter exam-
ples to DoF in this paper (for instance Fig. 4 or 5), and it is even
able to detect and stochastically prove incidence theorems which
confuse DoF counting (see below). In other words no confusing
witness configuration has been found up to now.

3.9 Computing a witness configuration

Most of the time, the sketch is a witness configuration. Otherwise,
if the distance and angle parameters are generic (no right angle,
for instance), remove all metric constraints and solve the remaining
(very under-constrained system); the latter contains only projective
constraints, i.e. incidence constraints. Even for the challenging
problems: icosahedron, dodecahedron, cube, it is trivial to find a
witness polyhedron – the latter can be concave or self intersecting.

Finally, if distance and angle values are not generic (e.g. right an-
gles are used), the simplest strategy is to consider parameters as
unknowns (systems are most of the time of the form: F(U,X) = 0
where U is a vector of parameters: lengths, angle cosines, etc; their
values are known just before resolution), then to solve the very
under-constrained resulting system: it is hoped it is easily solvable.
Once a solution has been found, it gives a witness configuration
which is studied and decomposed with the NPM.

This section has given strong motivations to study the decomposi-
tion and resolution of under-constrained systems, and of systems of
incidence constraints.



3.10 Incidence constraints

The previous section has already given some motivations to study
incidence constraints, but these constraints also arise in photogram-
metry, in computer vision, in automatic correction of hand made
drawings. We hope the systems of incidence constraints met in our
applications to be trivial or almost trivial (defined below), however
incidence constraints can be arbitrarily difficult even in 2D.

In 2D, a system of incidence constraints between points and lines
reduce to a special 3D molecule problem [Hendrickson 1992; Porta
et al. 2003; Laurent 2001]: represent unknown points and lines by
unit 3D vectors; the incidence p ∈ L means that the corresponding
vertices on the unit sphere have distance

√
2. To avoid degeneracies

(either all points are equal, or all lines are equal), one can impose
to four generic points to lie on some arbitrary square on the unit
sphere.

3.10.1 Trivial and almost trivial incidence systems

In 2D, a system of incidence constraints (point-line incidences) is
trivial iff it contains only removable points and lines. A point p
is removable when it is constrained to lie on two lines l1 and l2
(or less): then its definition is stored in some data structure (either
p = l1 ∩ l2, or p ∈ l1 is any point on line l1, or p is any point), it is
erased from the incidence system, the rest of the system is solved,
then the removed point is added using its definition. Symmetrically
(or dually) for a line, when it is constrained to pass through two
points (or less). Erasing a point or a line may make removable
another point or line. If all points and lines are removed, the graph
is trivial. Trivial systems are easily solved, using the definitions of
removed elements in reverse order.

The extension to 3D is straightforward. This method finds a witness
for every Eulerian 3D polyhedra (a polyhedron is Eulerian iff it
fulfils Euler formula). It is easily proved that every Eulerian 3D
polyhedron contain a removable vertex or a removable face, and
thus is trivial: assume there is a contradicting polyhedron, with V
vertices, E edges and F faces. Let v1,v2 . . .vV be the vertex degrees,
all greater than 3, and f1, f2 . . . fF the number of vertices of the F
faces, all greater than 3 as well; it is well known that ∑V

1 vi = 2E =

∑F
1 f j , thus E ≥ 2V and E ≥ 2F . By Euler’ formula: V −E +F =

2. Thus E + 2 = V + F ≥ 2V + 2 and E + 2 = V + F ≥ 2F + 2.
Add. We get 2E + 4 = 2V + 2F ≥ 4 + 2V + 2F : a contradiction.
QED. Unfortunately, this simple method no more applies with non
Eulerian polyhedra, say a faceted torus with quadrilateral faces and
where every vertex has degree 4 (this last polyhedron has a rational
witness too).

Another construction of a witness for Eulerian polyhedra first com-
putes a 2D barycentric embedding (also called a Tutte embedding)
of its vertices and edges: an arbitrary face is mapped to a convex
polygon and other vertices are barycenters of their neighbors – it
suffices to solve a linear system. Maxwell and Cremona already
knew that such a 2D embedding is the projection of a 3D convex
polyhedron; for instance, the three pairwise intersection edges of
the three faces of a truncated tetrahedron concur. It is then easy to
lift the Tutte embedding to a 3D convex polyhedron, using prop-
agation and continuity between contiguous faces. In passing, this
construction proves Steinitz theorem: all 3D convex polyhedra are
realizable with rational coordinates only, and thus with integer co-
ordinates only; this property is wrong for 4D convex polyhedra
[Richter-Gebert 1996].

Configurations in incidence theorems are typically almost trivial
(the word is chosen by analogy with almost decomposition). A

system is almost trivial iff, removing an incidence, the obtained
system is trivial: Desargues, Pappus, hexamy1 configurations are
almost trivial.

Almost triviality permits the witness configuration method to detect
and prove incidence theorems in a probabilistic way: erase an inci-
dence constraint to make the system trivial; for Pappus, Desargues,
hexamy configurations to quote a few, due to the symmetry of the
system, every incidence is convenient; solve the trivial system.

• If the obtained configuration fulfils the erased incidence con-
straint, then this incidence is with high probability a conse-
quence of the other incidences: a theorem has been detected
and (probabilistically) proved. A prototype [Foufou et al.
2005], performing computations in a finite field Z/pZ (p a
prime, near 109) for speed and exactness, probabilistically
proves this way all theorems cited so far and some others,
such as the Beltrami theorem2 in 3D in a fraction of a second.
This shows that using some computer algebra is possible and
relevant.

• If the obtained configuration does not fulfil the erased inci-
dence constraint, this constraint is not a consequence of the
others. This case occurs with the pentagonal configuration in
Fig. 8; the later is not realizable in Q: indeed a regular pen-
tagon (or an homography of) is needed. This configuration is
not relevant for CAD-CAM (actually, we know none).

3.10.2 Universality of point line incidences

However, incidence constraints in 2D (and a fortiori in 3D) can be
arbitrarily difficult; it is due to the following theorem which is a
restatement3 of the fundamental theorem of projective geometry,
known since von Staudt and Hilbert [Bonin 2002; Coxeter 1987;
Hilbert 1971]:

Theorem 1 (Universality theorem) All algebraic systems of
equations with integer coefficients and unknowns in a field K

(typically K = R or C) reduce to a system of point-line incidence
constraints in the projective plane P(K), with the same bit size.

The proof relies on the possibility to represent numbers by points
on a special arbitrary line, and on the geometric construction (with
ruler only) of the point representing the sum or the product of two
numbers (Fig. 9), from their point representation [Bonin 2002].
Some consequences are:

• Alone, point-line incidences in the projective plane are suffi-
cient to express all geometric constraints of today GCS.

• Programs solving point line incidence constraints (e.g. solv-
ing the 3D molecule problem [Hendrickson 1992; Laurent
2001; Porta et al. 2003]) can solve all systems of geometric
constraints.

• Programs detecting or proving incidence theorems in 2D (as
the hexamy prover [Michelucci and Schreck 2004]) address
all algebraic systems. Fascinating.

1An hexamy is an hexagon the opposite sides of which cut in three
collinear points; every permutation of an hexamy is also an hexamy; it is
a desguise of Pascal theorem.

2Coxeter [Coxeter 1999; Coxeter 1987] credits Gallucci for this theo-
rem, in his books.

3D. Michelucci and P. Schreck. Incidence constraints: a combinato-
rial approach. Submitted to the special issue of IJCGA on Geometric Con-
straints.
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Figure 9: left: affine and projective constructions of a+b; right: affine and projective constructions of a×b

• Algebra reduces to combinatorics: the bipartite graph of the
point line incidences contains all the information of the al-
gebraic system: no need for edge weights, no genericity as-
sumption (contrarily to Rigidity theory).

• This bipartite graph is a fundamental data structure. What are
its properties? its forbidden minors? Which link between its
graph properties and properties of the algebraic system?

• Incidence constraints are definitively not a toy problem.

Practical consequences are unclear for the moment: for instance,
does it make sense to reduce algebraic systems to a (highly degen-
erate) 3D molecule problem? Probably not.

4 Solving with a continuum of solutions

Current solvers assume that the system to be solved has a finite
number of solutions, and get into troubles or fail when there is a
continuum of solutions.

Arguably, computer algebra [Chou 1988; Chou et al. 1987], and
geometric solvers (typically ruler and compass) already deal with
under constrainedness; both are able to triangularize in some way
given under-constrained systems F(X) = 0; for instance, several
elimination methods from computer algebra are (at least theoreti-
cally) able to partition the set X of unknowns into T ∪Y , where
T is a set of parameters, and to compute a triangularized system
of equations: g1(T,y1) = g2(T,y1,y2) = . . .gn(T,y1,y2, . . .yn) = 0
which define the unknowns in Y . In the 2D case, and when a
ruler and compass construction is possible, some geometric solvers
are able to produce a construction program (also named: straight
line program, DAG, etc): y1 = h1(T ),y2 = h2(T,y1), . . .yn =
hn(T,y1 . . .yn−1), where hi are multi-valued functions for comput-
ing the intersection between two cercles, or between a line and
a cercle, etc; dynamic geometry softwares [Bellemain 1992; Ko-
rtenkamp 1999; Dufourd et al. 1997; Dufourd et al. 1998] have
popularized this last approach, which unfortunately does not scale
well in 3D.

Another approach, typically graph-based, considers that under-
constrainedness are due to a mistake from the user or to an incom-
plete specification; they try to detect and correct these mistakes, or
to complete the system to make it well-constrained – and as simple
to solve as possible [Joan-Arinyo et al. 2003; Gao and Zhang 2003;
Zhang and Gao 2006].

Some systems are intrinsically under-constrained: the specified set
is continuous. This happens when designing mechanisms or artic-
ulated bodies, when designing constrained curves or surfaces (for
instance for blends), when using an almost decomposition, when
searching a witness. Thus it makes sense to design more robust
solvers, able to deal with a continuum of solutions. Such a solver
should detect on the fly that there is a continuum of solutions,
should compute the dimension of the solution set (0 for a finite
solution set, 1 for a curve, 2 for a surface, etc) and should be able
to segment solution curves and to triangulate solution surfaces, etc.

Methods for computing the dimension of a solution set already exist
in computer graphics (and elsewhere); roughly, cover the solution
set with a set of boxes (as in Fig. 1) with size length ε; if halving ε
multiplies the number of boxes by about 1, 2, 4, 8, etc, induce that
the solution set has dimension 0, 1, 2, 3, etc; this is the Bouligand
dimension of fractals [Mandelbrot 1982; Barnsley 1998]. Instead
of boxes for the cover, it is possible to use balls or simplices. This
ultimate solver will unify the treatment of parameterized surfaces,
implicit surfaces, blends, medial axis, and geometric constraints in
geometric modeling. C. Hoffmann calls that the ”dimensionality
paradigm”.

Fig. 10 illustrate such an ultimate solver with examples, mainly 2D
for clarity. For the first picture, the input is the system:















(x− xc)
2 +(y− yc)

2 = r2

(x1 − xc)
2 +(y1 − yc)

2 = r2

(x2 − xc)
2 +(y2 − yc)

2 = r2

(x3 − xc)
2 +(y3 − yc)

2 = r2

with xn,yn the coordinates of the triangle vertices and x,y,xc,yc,r
the unknowns.

The second picture represents two circles with the radii defined by
an equation; the input of the solver is the system:

{

x2 + y2 = r2

(r−1)(r−2) = 0

The third one shows the section of a Klein’s bottle; the input of the
solver is:






(x2 + y2 + z2 +2y−1)((x2 + y2 + z2 −2y−1)2 −8z2)+
16xz(x2 + y2 + z2 −2y−1) = 0

x− z = 1

The latter is the intersection curve between an extruded folium and
a sphere; the input of the solver is the system:

{

x2 + y2 + z2 = 1
x3 + y3 −3xy = 0

The two last pictures illustrate also an adaptive subdivision in ac-
cordance with the curvature of the solution set inside a box and a
detection of the boxes containing singular points. In these exam-
ples, the Bouligand dimension is used also to get rid of terminal
boxes (at the lowest subdivision depth) without solutions.

5 Coordinates-free constraints

Recently several teams [Yang 2002; Lesage et al. 2000; Serré et al.
1999; Serré et al. 2002; Serré et al. 2003; Michelucci and Foufou
2004] propose coordinate-free formulations, which are sometimes
advantageous. For instance, the Cayley Menger determinant links



Figure 10: Some preliminary results of a solver based on centered interval arithmetic and Bouligand dimension; left: a triangle’s circumscribed
circle; middle-left: two circles with ”unknown” radius; middle-right: intersection between a plan and the Klein’s bottle; right: intersection
between an extruded folium and a sphere.

the distances between d + 2 points in dimension d and gives, for
the octahedron problem, a very simple system solvable with Com-
puter Algebra. These intrinsic relations have been extended to other
configurations, e.g. with points and planes in 3D, points and lines
in 2D. An intrinsic relation, due to Neil White, is given in Sturm-
fels’s book [Sturmfels 1993], th. 3.4.7: it is the condition for five
skew lines in 3D space to have a common transversal line. Philippe
Serré, in his PhD thesis [Serré 2000], gives the relation involving
distances between two lines AB and CD and between points A, B,
C, D. However, for 3D configurations involving not only lines but
also points or planes, intrinsic formulations (e.g. extending Cayley-
Menger formulations) are missing most of the time. Even the in-
trinsic condition for a set of points to lie on some algebraic curve
or surface with given degree was unknown (it is given just below).
Next sections suggest methods to find such relations. These issues
are foreseeable topics for GCS.
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Figure 11: Isomorphic subgraphs of the same class monomials.

5.1 Finding new relations

To find relations linking invariants (distances, cosines, scalar prod-
ucts, signed areas or volumes i.e. determinants) for a given config-
uration of geometric elements, it suffices in theory to use a Grob-
ner package which eliminates variables representing coordinates in
some set of equations, for instance equations: (xi − x j)

2 + (yi −
y j)

2 +(zi−z j)
2−d2

i j = 0, i∈ [1;4] , j ∈ [i+1;5], to find the Cayley-
Menger equation relating distances between 5 points in 3D. In prac-
tice, computer algebra is not powerful enough. The polynomial
conditions can be computed by interpolation: for instance, to guess
the Cayley-Menger equation in 3D, one can proceed in three steps:
first, generate N random configurations of 5 points (xi,yi,zi) ∈ Z3,
second compute square distances d(k)

i j , i ∈ [1;4] and j ∈ [i+1;5] for
each configuration k ∈ [1;N]; this gives N points with 15 coordi-
nates; third, all these N points lie on the zero-set of an unknown
polynomial in the variables di j: search for this polynomial by try-
ing increasing degrees.

This polynomial has an exponential number of monomials, thus an
exponential number of unknown coefficients. Due to symmetry,

some monomials have the same coefficients; they are said to lie in
the same class. For instance, monomials d2

12d2
34, d2

13d2
24, etc lie in

the same class; monomials in the same class correspond to isomor-
phic edge weighted subgraphs of K5, the complete graph with 5 ver-
tices and with edges weighted by the degree of the corresponding
monomial (Fig. 11). To be feasible this interpolating method must
exploit this symmetry. The fast generation of these classes (and of
one instance per class) is an interesting and non trivial combinato-
rial problem by itself, related to the Reed-Polya counting theory. To
validate this approach, we implemented a simple algorithm, which
successfully computes Cayley-Menger relations, and distance rela-
tions for six 2D (ten 3D) points to lie on the same conic (quadric). A
lesson of this prototype is that another good reason to exploit sym-
metry is to limit the size of the output interpolating polynomial.

5.2 Kernel functions provide intrinsic formulations

P2

P4P5 P3

P1 M

Figure 12: Vectorial condition for points to lie on a common conic
or algebraic curve with degree d (two cases).

Given a set of non null vectors vi, i = 1 . . .n having a common ori-
gin Ω, the set of lines li supported by these vectors and a plane
π not passing through Ω (Fig. 12), what is the condition on the
scalar products between vectors vi for the intersection points be-
tween lines li and plane π to lie on the same conic? This section
shows that the matrix M with Mi, j = (vi · v j)

2 = M j,i must have
rank 5 or less. If the n ≥ 6 intersection points do not lie on the same
conic, but are generic, the matrix M has rank 6 (assuming the vi lie
in 3D space). More generally:

Theorem 2 The intersection points between a plane π and the
lines defined by supporting vectors vi through a common origin
Ω outside π lie on a degree d curve iff the matrix M(d), where
M(d)

i, j = (vi · v j)
d = M(d)

j,i , has rank rd = d(d + 3)/2 or less (rd for
deficient rank). The generic rank gd = rd + 1 = (d + 1)(d + 2)/2
(the rank of the matrix in the generic case) is given by the number
of monomials in the polynomial in 2 variables of degree d, since
this curve is the zero set of such a polynomial.

The proof uses kernel functions [Cristianini and Shawe-Taylor
2000]. Let pi = (xi,yi,hi), i = 1 . . .6 be six homogeneous points



in 2D and φ2 the function that maps each point pi to Pi = φ2(pi) =
(x2

i ,y
2
i ,h

2
i ,xiyi,xihi,yihi). By definition of conics, if points pi lie on

a common conic ax2
i + by2

i + ch2
i + dxiyi + exihi + f yihi = 0, then

points Pi lie on a common hyperplane, having equation: Pi · h = 0
with h = (a,b,c,d,e, f ). Thus six generic (or random, i.e. not lying
on a common conic) 2D points pi give six lifted points Pi with rank
6, and six 2D points pi lying on a common conic give six lifted
points Pi with rank r2 = 5 or less.

If m vectors P1, . . .Pm have rank r, their Gram matrix Gi j = Pi ·Pj =
G ji has also rank r. To compute Pi ·Pj, the naive method compute
Pi = φ2(pi), and Pj = φ2(p j), then Pi ·Pj. Kernel functions avoid the
computation of φ2(pi). A kernel function K is such that K(pi, p j) =
φ2(pi) ·φ2(p j).

A first example of kernel function considers given p = (x,y,h) and
homogeneous φ2(p) = (x2,y2,h2,

√
2xy,

√
2xh,

√
2yh). The cos-

metic
√

2 constant does not modify rank but simplifies computa-
tions: K(p, p′) = φ2(p) ·φ2(p′) = φ2(p) ·φ2(p′) = . . . = (p · p′)2 as
the reader will check. More generally, for an homogeneous kernel
polynomial of degree d, K(p, p′) = (p · p′)d : it suffices to adjust the
cosmetic constants. Thus the Gram matrix for this homogeneous
lift with degree d is: Gi, j = (pi · p j)

d . The proof of the previous
theorem follows straightforwardly.

A second example considers a non homogeneous lifting polyno-
mial. Let p = (x,y) and φ(p) = (x2,y2,

√
2xy,

√
2x,

√
2y,1). As

above, the
√

2 does not modify rank but simplifies computations:
K(p, p′) = φ(x,y) ·φ(x′,y′) = . . . = (p · p′ + 1)2 as the reader will
check. More generally, for a non homogeneous lifting polynomial
of degree d, K( p, p′) = (p · p′ +1)d . Thus the Gram matrix for this
lift with degree d is Gi, j = (pi · p j + 1)d . We use the latter to an-
swer the question: what is the coordinate-free condition for six 2D
points Pi, i = 0 . . .5 to lie on a common quadric, or on a common
algebraic curve with degree d? We search a condition involving
scalar products between vectors P0Pj , thus independent on the co-
ordinates of points Pi. Suppose that the plane π containing points
Pi is embedded in 3D space, let Ω be any one of the two points such
that ΩP0 is orthogonal to π , and the distance ΩP0 equals 1. Use
the previous theorem: points Pi lie on the same conic iff the matrix
M, where Mi, j = (

−→
ΩPi ·

−−→
ΩPj)

2, has rank five or less, and the Pi lie
on the same algebraic curve with degree d iff the matrix M, where
Mi, j = (

−→
ΩPi ·

−−→
ΩPj)

d has deficient rank rd = d(d +3)/2. We remove
Ω:
−→
ΩPi ·

−−→
ΩPj = (

−−→
ΩP0 +

−−→
P0Pi) · (

−−→
ΩP0 +

−−→
P0Pj)

=
−−→
ΩP0 ·

−−→
ΩP0 +

−−→
ΩP0 ·

−−→
P0Pj +

−−→
P0Pi ·

−−→
ΩP0 +

−−→
P0Pi ·

−−→
P0Pj

= 1+0+0+
−−→
P0Pi ·

−−→
P0Pj

Theorem 3 Coplanar points Pi lie on the same algebraic curve
with degree d iff the matrix M has deficient rank (i.e. rd = d(d +

3)/2) or less, where Mi, j = (1+
−−→
P0Pi ·

−−→
P0Pj)

d .

These theorems nicely extends to surfaces and beyond. All relations
involving scalar products can be translated into relations involving
distances only, using: −→u ·−→v = (−→u 2 +−→v 2 − (−→v −−→u )2)/2.

6 The need for formal specification

Constraints systems are sets of specification described using some
specification languages. Up to now, the community of constraint
modeling focused more on solvers than on the study of description
languages. However, the definition of such languages is of major

importance since it sets up the interface between the solver, the
modeler and the user.

On this account, a language of constraints corresponds to the ex-
ternal specifications of a solver: it makes the skeleton of the refer-
ence manual of a given solver, or, conversely, it defines the techni-
cal specifications for the solver to be realized. On the other hand,
a language of constraints has to be clearly and fully described in
order to be able to define the conversion from a proprietary archi-
tecture to an exchange format (which is itself described by such a
language). CAD softwares are currently offering several exchange
formats, but, in our sense, they are very poorly related to the do-
main of geometric constraints and they are unusable, for instance,
for sharing benchmarks [Aut 2005].

It seems to us that a promising track in this domain consists in
considering the meta-level. More clearly, we argue that we need
a standard for the description of languages of geometric constraints
rather than (or in addition to) specific exchange formats. This is
the point of view adopted by the STEP consortium which is, as far
as we know, not concerned by geometric constraints 4. Besides, a
meta-level approach allows to consider a geometric universe as a
parameter of an extensible solver.

A first attempt in this direction was presented in [Wintz et al. 2005].
This work borrows the ideas and the terminology of the algebraic
specification theory [Wirsing 1990; Goguen 1987]: a constraint
system is syntactically defined by a triple (C,X ,A) where X and
A are some symbols respectively referring to unknowns and pa-
rameters, and C is a set of predicative terms built on a heteroge-
neous signature Σ. Recall that a heterogeneous signature is a triple
< S,F,P > where

• S is a set of sorts which are symbols referring to types,

• F is a set of functional symbols typed by their profile f :
s1 . . .sm → s,

• P is a set of predicative symbols typed by their profile p :
s1 . . .sk

Functional symbols express the tools related to geometric construc-
tion while the predicative symbols are used to describe geometric
constraints. The originality of the approach described in [Wintz
et al. 2005] consists in the possibility of describing the semantic
—or more precisely, several semantics like visualization, algebra,
logic— within a single framework allowing to consider as many
tool sets as provided semantic fields.

Since the main tools are based on syntactic analyzers, the support
language considered is XML which is flexible enough to allow the
description of geometric universes and which comes with a lot of
facilities concerning the syntactic analysis.

The advantages of using formal specifications can be summarized
in the two following points: (i) Clarifying and expliciting the se-
mantics, which helps to avoid the misunderstandings that com-
monly occur between all the partners during data exchanges; and
(ii) There are more and more software tools: parsers, but also
provers, code generators, compilers, which are able to use these
explicited semantics; these tools make it easier to ensure the reli-
ability and the consistence between distinct pieces of software, to
extend the software and to document it.

There is, of course, a lot of works to do in this domain, let us enu-
merate some crucial points:

4although some searchers are working on such a task (personal commu-
nication of Dr. Mike Pratt)



• the definition of tools able to describe and handle the transla-
tion between two languages of constraints (for instance using
the notion of signature morphism).

• the automatic generation of tools from a given language of
constraints.

• the possibility to take into account robustness consideration in
the framework (see, for instance, [Schreck 2001])

• ideally, it is possible to imagine that such languages would be
able to fully describe geometric solvers from the input of the
constraints to the expression and visualization of the solutions

Tackling the problem from another point of view, the user, that is
the designer, should be allowed to enter his proper solutions of a
constraints system or his proper geometric constructions within the
application. This should be made easier by considering a precise
language of constraints. This family of tools come with the ability
of compiling constructions and doing parametric design (see [Hoff-
mann and Joan-Arinyo 2002]). This problem is naturally very close
to the generative modeling problem and the well known notion of
features.

We think that the fields of geometric constraints solving and fea-
tures modeling are mature enough for attempting to join them
together (see for instance [Sitharam et al. 2006]). Indeed, the
geometric constraints solving field addresses routinely 3D prob-
lems and takes more and more semantic aspects into consideration.
This should give some hints to handle the problematic of under-
constrained or over-constrained constraint systems. Indeed, up to
now, researchers in GCS field have considered this problem from
a quite combinatorial point of view (see [Joan-Arinyo et al. 2003;
Hoffmann et al. 2004]); maybe the user intentions should deserve
more considerations.

7 Conclusion

This article posed several important problems for GCS and pro-
posed several research tracks: the use of the simplicial Bernstein
base to reduce the wrapping effect, the computation of the di-
mension of the solution set, the pitfalls of graph based decom-
position methods, the alternative provided by linear algebra, the
witness configuration method which overcomes the limitations of
DoF counting and which is even able to probabilistically detect and
prove incidence theorems (Desargues, Pappus, Beltrami, hexamy,
harmonic conjugate, etc and their duals), the study of incidence
constraints, the search for intrinsic (coordinate-free) formulations.
Maybe the more surprising conclusion concerns the importance of
incidence constraints.
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sistency of dimensioning and tolerancing. ISBN 0-7923-5654-3.
Kluwer Academic Publishers, March, 1–26.
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