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The tensorial Bernstein basis for multivariate polynomials in n variables has a number 3n of functions
for degree 2. Consequently, computing the representation of a multivariate polynomial in the tensorial
Bernstein basis is an exponential time algorithm, which makes tensorial Bernstein-based solvers im-
practical for systems with more than n = 6 or 7 variables. This article describes a polytope (Bernstein
polytope) with a number O(

(n,2
)

)
of faces, which allows to bound a sparse, multivariate polynomial

expressed in the canonical basis by solving several linear programming problems. We compare the
performance of a subdivision solver using domain reductions by linear programming with a solver
using a change to the tensorial Bernstein basis for domain reduction. The performance is similar for
n = 2 variables but only the solver using linear programming on the Bernstein polytope can cope with
a large number of variables. We demonstrate this difference with two formulations of the forward kine-
matics problem of a Gough-Stewart parallel robot: a direct Cartesian formulation and a coordinate-free
formulation using Cayley-Menger determinants, followed by a computation of Cartesian coordinates.
Furthermore, we present an optimization of the Bernstein polytope-based solver for systems contain-
ing only the monomials xi and x2

i . For these, it is possible to obtain even better domain bounds at no
cost using the quadratic curve (xi,x2

i ) directly.

Keywords: Bernstein polynomials, algebraic systems, subdivision solver, linear programming, simplex
algorithm
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1. Introduction

Bernstein bases and Bernstein solvers are used in computer graphics and CAD-CAM
for computing intersection points between algebraic non-linear curves or surfaces. These
solvers reduce domain boxes while retaining the solutions of a given polynomial system,
and detect when it does not have solutions. Subdivision of the current domain box can
separate different solutions and allows to converge to single solutions. Usually, a simple
bisection is used for simplicity. In the overview, the solving process is depicted in the
pseudo code of Figure 1.

Start with domain D on candidate list C
While (the candidate list C is not empty) {

Take box b from C and calculate ls=max longest side of b
do {

perform domain reduction on b
if (b does not contain any solution) {

exit and continue with next candidate b
} else { calculate ls=max longest side of b }

} while (b has been sufficiently reduced)
if (ls < delta) {

b contains potentially a solution
} else {

bisect b along longest side into b1 and b2,
and add them to candidate list C

}
}

Fig. 1. Subdivision solver

For simplicity in this paper, we assume that the system has total degree at most 2. Each
algebraic system can be rewritten as a system of total degree 2 by introducing additional
variables and equations. In terms of performance, the domain reduction and the test for
a solution are of major importance. A classic way for domain reduction is based on the
representation of the multivariate polynomial in n variables in the tensorial Bernstein basis
(TBB). However, the representation of a multivariate polynomial in the tensorial Bernstein
basis (TBB) has exponential length: the basis for degree d has (d +1)n basis functions. It
makes TBB-based solvers impractical for large systems with more than n = 6 or 7 vari-
ables, which arise for example in geometric constraint solving.

An alternative for domain reduction uses a polytope enclosing the nonlinear momomi-
als on the domain. This polytope can be described by a polynomial number of halfspaces
in the number n of variables. By using linear programming, we can compute a range bound
for each multivariate polynomial and a domain bound of all system solutions.

We give a short survey of the representation of polynomials in the tensorial Bernstein
basis in Section 2 and introduce our Bernstein polytope in the following Section 3. We
collect data of numerical experiments calculating the intersection of 2D algebraic curves in
Section 7. Therein, we compare with the domain reduction method proposed in ref. 1 using
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the tensorial Bernstein basis. This method was selected because it has the best domain
reduction performance currently available. In Section 6, we give a possible optimization of
the subdivision solver for squared variables x2

i . It is possible to derive bounds for xi directly
from the curve (xi,x2

i ), which are tighter than the ones obtained by the Bernstein polytope
alone.

Concerning industrial applications, Section 8 considers the kinematics of a Gough-
Stewart parallel robot in two formulations: a direct Cartesian formulation and a coordinate-
free formulation using Cayley-Menger determinants, which results in a system with much
less variables. We present the systems and their solution statistics with both solvers. Finally,
we give conclusions in Section 9.

2. Multivariate Polynomials in the Tensorial Bernstein Basis

The d + 1 Bernstein polynomials B(d)
i of degree d, also written Bi for fixed d, are a basis

for polynomials of degree ≤ d

B(d)
i (x) =

(
d
i

)
xi(1− x)d−i

The conversion from and to the canonical basis (x0,x1, . . .xd) is a linear mapping 2

xk =
(d

k

)−1
∑d

i=k
( i

k

)
B(d)

i (x)
x = d−1 ∑d

i=1 iB(d)
i (x)

1 = ∑d
i=0 B(d)

i (x)

Every Bernstein polynomial B(d)
i (x) is non-negative for x ∈ [0,1], and the sum of all

Bernstein polynomials equals 1.
These two properties imply that p(x) = ∑ piBi(x) for x ∈ [0,1] is a linear convex com-

bination of the coefficients pi. With coefficient components pi ∈ R, p(x), x ∈ [0,1] is con-
tained in [min pi,max pi], and this enclosure is tight. For control points pi in 2D or 3D,
p(x) describes a Bézier curve, and the curve p(x), x ∈ [0,1] lies in the convex hull of its
control points pi. For example, since x = 0

d B0(x)+ 1
d B1(x)+ . . .+ d

d Bd(x), the polynomial
curve (x,y = p(x)) for x ∈ [0,1] lies in the convex hull of its control points (i/d, pi).

In contrast to the canonical basis (1,x,x2, . . .xd), the control points in the TBB depend
on the domain interval. The classical de Casteljau algorithm provides the control points for
the curve section p(x), x ∈ [0, t], and for the curve section p(x), x ∈ [t,1] with t ∈ (0,1).

For multivariate polynomials, a Bernstein basis can be constructed using the tensorial
product of univariate Bernstein basis functions

(B(d1)
0 (x1), . . .B

(d1)
d1

(x1)) . . . (B
(dn)
0 (xn), . . .B

(dn)
dn

(xn))

Then, a multivariate polynomial p of degree (d1, . . . ,dn) is represented as

p(x) = ∑
0≤i1≤d1

. . . ∑
0≤in≤dn

pi1...inB(d1)
i1

(x1) . . .B
(dn)
in (xn)

The de Casteljau method extends to the TBB, and it can be used to subdivide the patch.
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Subdivision solvers for algebraic equations, Bézier curves and surfaces exist in some
variations. They all express a multivariate polynomial in the TBB since they require tight
enclosures of the polynomial’s range 3,4 or of the polynomial’s roots in the domain 5,1.
In the projected polyhedron algorithm 5, a domain reduction of variable x j is performed
by intersecting the convex hull of projected control points (i j/d j, pi1,...,i j ,...,in)i j=0,...,d j with
the axis x j. The method in ref. 1 improves the domain reduction by computing the first
and last intersection of the two univariate, degree-d j Bézier curves defined by control
points (i j/d j,minik,k ̸= j pi1,...,i j ,...,in)i j=0,...,d j and (i j/d j,maxik,k ̸= j pi1,...,i j ,...,in)i j=0,...,d j with
the axis x j. The reductions using the range-bounding curves are more effective than the
ones using simply the convex hull. For the details of Mourrain/Pavone’s method see Sec-
tion 7.

Note that the TBB contains a number (1+ d1)(1+ d2) . . .(1+ dn) of basis functions,
where di is the maximum degree of variable xi. Even for linear systems, this number
2n has exponential growth. The canonical basis in n variables has the same number of
functions but polynomial systems given in the canonical basis are sparse. They are not
sparse anymore after the change to the TBB. For an illustration, the monomial 1 ex-
pressed in the TBB has a length, which is exponential in terms of n: 1 = (B(d1)

1 (x1)+ . . .+

B(d1)
d1

(x1)) . . . (B(dn)
1 (xn) + . . .+B(dn)

dn
(xn)). Clearly, the existing Bernstein-based solvers

become impractical for a large number n of variables due to the exponential growth of the
number of basis coefficients in terms of n. In geometric constraint solving, especially in
3D, systems with a large number of variables occur frequently. For an example, the vertex
coordinates of a dodecahedron can be computed by means of geometric insight, i.e., that all
its vertices lie on its circumscribed sphere. Alternatively, in a descriptive geometry system
the dodecahedron might be described by its simplicial elements: the lengths of its 30 edges
connecting the 20 vertices, and the coplanarities of its 12 faces.

3. Bernstein Polytope

For univariate polynomials, the inequalities Bi(x) ≥ 0 are used to define the halfspaces of
a convex polyhedron in Rd , which encloses the curve (x,x2, . . .xd), x ∈ [0,1]. We call it
the Bernstein polytope. For d = 2, the Bernstein polytope is a triangle, see Figure 2. Its
delimiting halfspaces are

B(2)
0 (x) = (1− x)2 ≥ 0 → y−2x+1 ≥ 0

B(2)
1 (x) = 2x(1− x)≥ 0 → 2x−2y ≥ 0

B(2)
2 (x) = x2 ≥ 0 → y ≥ 0

For d = 3, the Bernstein polytope is a tetrahedron, see Figure 3. Its vertices are v0 =

(0,0,0), v1 = (1/3,0,0), v2 = (2/3,1/3,0) and v3 = (1,1,1). For example, v0 lies on
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0 1

y = x2

B
(2)
1 ≥ 0

B
(2)
0 ≥ 0

B
(2)
2 ≥ 0 3/5 7/90 1

System 4y + x − 3 = 0

Bernstein polytope

B
(2)
1 ≥ 0

B
(2)
0 ≥ 0

B
(2)
2 ≥ 0

Fig. 2. The Bernstein polytope, a triangle, enclosing the curve (x,y = x2) for x ∈ [0,1].

B1 = B2 = B3 = 0 and v1 lies on B0 = B2 = B3 = 0.

B(3)
0 (x) = (1− x)3 ≥ 0 → 1−3x+3y− z ≥ 0

B(3)
1 (x) = 3x(1− x)2 ≥ 0 → 3x−6y+3z ≥ 0

B(3)
2 (x) = 3x2(1− x)≥ 0 → 3y−3z ≥ 0

B(3)
3 (x) = x3 ≥ 0 → 3z ≥ 0.

The extension to higher degrees is possible but illustrations are not easily possible
anymore.

So far, we have considered curves with a single variable only. Representing a quadratic
multivariate polynomial with them requires a separation of variables occurring in the mixed
monomials of the form xy. This is possible, for example, using xy= 1/2((x+y)2−x2−y2).

But we prefer an extension of the Bernstein polytope for the mixed monomial xy as
follows. Figure 4 shows the Bernstein polytope, enclosing the surface patch (x,y,z = xy),
a tetrahedron. Its halfspaces are defined by

B(1)
0 (x)B(1)

0 (y)≥ 0 → 1− x− y+ z ≥ 0
B(1)

0 (x)B(1)
1 (y)≥ 0 → y− z ≥ 0

B(1)
1 (x)B(1)

0 (y)≥ 0 → x− z ≥ 0
B(1)

1 (x)B(1)
1 (y)≥ 0 → z ≥ 0.

This tetrahedron is optimal: it is the convex hull of the patch.
In summary, the inequalities for multivariate polynomials are obtained as the product

of the inequalities for univariate polynomials.
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(1, 1, 1)

(0, 0, 0)

(1/3,0,0) (2/3, 1/3, 0)

Fig. 3. The Bernstein polytope, a tetrahedron, enclosing the curve (x,y = x2,z = x3) with x ∈ [0,1].

z

B
(1)
1 (x)B

(1)
0 (y) ≥ 0

B
(1)
1 (x)B

(1)
1 (y) ≥ 0

B
(1)
0 (x)B

(1)
1 (y) ≥ 0

B
(1)
0 (x)B

(1)
0 (y) ≥ 0

x

y

Fig. 4. The Bernstein polytope enclosing the surface patch (x,y, z = xy).
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4. Subdivision Solver

With the polytope of Section 3, linear programming (LP) 6 can be used for the computation
of a bound of a polynomial’s range and for the reduction of a domain box while preserving
roots. In the following sections, we use the simplex algorithm in tableau form for the expo-
sition of the method although in practice the revised simplex algorithm is recommended.
We refer the reader to the exposition in ref. 6 for the efficient implementation of the sim-
plex algorithm. In our experiments in Sections 7 and 8, we used the primal-dual revised
simplex code SoPlex 1.4.2 7 on a Windows XP 32Bit system (2GB RAM) with an Intel
T7200 Core2 Duo processor (2.2GHz).

4.1. Range Bounding

To compute a lower and an upper bound of the polynomial p(x) = 4x2 + x− 3 for x ∈
[0,1], substitute a new variable for the nonlinear monomial: y = x2. Then minimize and
maximize the linear objective function 4y+ x−3 on the Bernstein polytope enclosing the
curve (x,y = x2), x ∈ [0,1] (the triangle in Figure 2). After replacing the monomial x2 with
the LP variable y, it is an LP problem.

min/max p = 4y+ x−3
B0 = y−2x+1
B1 =−2y+2x
B2 = y
B0 ≥ 0,B1 ≥ 0,B2 ≥ 0,x ≥ 0,y ≥ 0

The simplex algorithm 6 provides the enclosure [−3,2].

min p =−3+ x+4y, max p = 2−5B0 −9/2B1

B0 = 1−2x+ y x = 1−B0 −B1/2
B1 = 2x−2y y = 1−B0 −B1

B2 = y B2 = 1−B0 −B1

Note that the variables on the right side ("not in basis") have value 0.

4.2. Domain Reduction

Solving an equation 4x2 + x − 3 = 0, x ∈ [0,1] is equivalent to finding the intersection
points between the line 4y+ x−3 = 0, and the curve (x,y = x2). This curve is enclosed in
its Bernstein polytope, the triangle of Figure 2. Intersecting the line and the triangle, i.e.,
finding the minimum and maximum value of x, reduces the domain of variable x. With the
same polytope as above, we minimize and maximize the objective function x. The solutions
are
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minx = 3/5+2/5B1, maxx = 7/9−4/9B0

x = 3/5+2/5B1 x = 7/9−4/9B0

y = 3/5−1/10B1 y = 5/9+1/9B0

B0 = 2/5−9/10B1 B1 = 4/9−10/9B0

B2 = 3/5−1/10B1 B2 = 5/9+1/9B0

Thus the domain interval [0,1] for variable x has been reduced to [3/5,7/9].
For reducing the domain box while preserving roots, 2n LP problems are solved, a

minimization and a maximization for each variable Xk, k = 1, . . . ,n. If the LP problem is
not feasible then the domain box contains no root. Note that these 2n LP problems are
independent and can be solved in parallel.

4.3. Scaling

After reduction, the domain box is not [0,1]n anymore. There are two possibilities to handle
arbitrary domain boxes [u,v] ⊂ Rn. Either, we scale each variable xi ∈ [ui,vi], ui ≤ vi, to
Xi ∈ [0,1], i = 1, . . . ,n, or we formulate the Bernstein polytope of Section 3 for an arbitrary
domain box [u,v]⊂ Rn.

The variable scaling from the box [u,v] to the unit hypercube [0,1]n is given by

xi = ui +(vi −ui)Xi,

x2
i = (vi −ui)

2X2
i +2ui(vi −ui)Xi +u2

i ,

xix j = (vi −ui)(v j −u j)XiX j +ui(v j −u j)X j +u j(vi −ui)Xi +uiu j

The scaling is a linear map of the LP variables (Xi,Xii,Xi j), i, j = 1, . . . ,n, i < j, which has
to be performed on the system of polynomial equations.

With a formulation of the Bernstein polytope for an arbitrary domain box, the system
of polynomial equations remains unchanged. For an arbitrary domain box [u,v] ⊂ Rn, the
Bernstein polytope is given by

(vi − xi)
2 ≥ 0 → Xii −2viXi + v2

i ≥ 0
2(xi −ui)(vi − xi)≥ 0 → 2(−Xii +(ui + vi)Xi −uivi)≥ 0
(xi −ui)

2 ≥ 0 → Xii −2uiXi +u2
i ≥ 0

(vi − xi)(v j − x j)≥ 0 → Xi j − viX j − v jXi + viv j ≥ 0
(vi − xi)(x j −u j)≥ 0 →−Xi j +u jXi + viX j − viu j ≥ 0
(xi −ui)(x j −u j)≥ 0 → Xi j −u jXi −uiX j +uiu j ≥ 0

5. Floating Point Errors

The Bernstein polytope encloses very tightly the underlying algebraic manifold:

(x1, . . . ,xn,x2
1, . . . ,x

2
n,x1x2, . . . ,xn−1xn), xi ∈ [0,1]

thus with a naive floating-point implementation, some roots are omitted because of round-
ing errors. For example, when solving x2 − x = 0 with x ∈ [0,1], the line y − x = 0 is
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considered (see Figure 2). If this line becomes y− x = ε due to error ε > 0, the two roots
are missed.

There are several strategies to cope with floating point inaccuracy:

• Rational Arithmetic throughout: Use exact computations with rational numbers
for scaling and for the LP solver. Then the program becomes slower by several
orders of magnitude due to an increasing representation size.

• Rational Arithmetic for LP solver: Use exact computations with rational numbers
for the LP solver but work with a fixed precision at the interface to the LP solver.
For example, round the box [20001/10000,29999/10000] to the box [200/100,
300/100]. The rounding ensures rational numbers of bounded representation size
at least at the interface of the LP solver, i.e., in the polytope specification.

• Rational Arithmetic for Linear Solver: Compute an approximate solution with an
LP solver in floating-point arithmetic. Then start from the approximate LP solu-
tion basis with an LP solver in rational arithmetic to compute the exact solution.8

• Polytope Inflation by the Error Value: During pivoting inside the simplex algo-
rithm, the errors of floating point operations performed in each row are collected
and stored with the row’s constant. Finally, the hyperplane is pushed outward by
this amount. It can happen that the exact feasible set is empty but after the infla-
tion it is no more empty. This approach is conservative, i.e., it guarantees that no
root is missed.

6. Nonlinear Reduction for Squared Variables

We introduce an important optimization of reduction for squared variables x2
i , which is

not based on the polytope for x2
i but uses the nonlinear curve (xi,x2

i ) directly. Note that
most of the complexity of multivariate polynomials comes from the occurrence of mixed
monomials though.

It is possible to derive bounds from the nonlinear function (xi,x2
i ) directly instead of

from its Bernstein polytope, see Figure 5. If minx2
i and maxx2

i is known, then minxi ≥√
minx2

i and maxxi ≤
√

maxx2
i . The values minx2

i and maxx2
i can be obtained by solving

two additional LP problems with objective functions minXii and maxXii respectively. In the
special case, where after computing minXi and maxXi one of the inequalities B0(Xi) ≥ 0,
B2(Xi) ≥ 0, or B1(Xi) ≥ 0, occur in the optimal bases of the LP, the range of Xii can be
obtained directly from the LP solution vectors Xmin = (. . . ,Xmin

i ,Xmin
ii , . . .) and Xmax =

(. . . ,Xmax
i ,Xmax

ii , . . .) as:
minXii = min(Xmin

ii ,Xmax
ii ) and maxXii = max(Xmin

ii ,Xmax
ii ).

Proof. Let Xmin
i be the minimum value and Xmax

i be the maximum value of variable Xi from
the two LP solutions. Then the intersection of the polytope {(Xi,Xii) : Xii−2Xi+1≥ 0,Xi−
Xii ≥ 0,Xii ≥ 0} with Xi = Xmin

i or Xi = Xmax
i is either the interval {Xii : Xii − 2Xi + 1 ≥

0,Xi −Xii ≥ 0}, or the interval {Xii : Xii ≥ 0,Xi −Xii ≥ 0}, see Figure 5. Due to convexity
of the feasible set {Xi,Xii : X is feasible}, the intersection of the two Xii-intervals gives the
possible interval for Xii. �
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0 1

min y

max y

max x

y ≥ 0

x − y ≥ 0

y = x
2

4y + x − 3 = 0
y − 2x + 1 ≥ 0

min x

Fig. 5. Bounds obtained from the nonlinear function (x,y = x2) directly.

Consequently for systems containing only linear and squared monomials, the optimiza-
tion is possible without additional LP calls. If also mixed monomials xix j, i < j occur, the
nonlinear reduction is not possible without the explicit computation of minXii and maxXii

as we demonstrate with examples in Section 7.2. These 2n supplementary LP problems
can be solved in parallel.

7. Comparison with a Tensorial Bernstein Based Solver

In this section, we compare the range bounds and the solution domain bounds obtained by
our solver based on the Bernstein polytope and the TBB solver in ref. 1 for total degree 2.

The TBB solver computes the coefficients in the tensorial Bernstein basis for a domain
box [u,v]

p((v−u)x+u) = ∑
0≤i1≤2

. . . ∑
0≤in≤2

pi1...in B(2)
i1
(x1) . . .B

(2)
in (xn) with x ∈ [0,1]n

The coefficients bi1...in with respect to the TBB can be computed as described in refs.
1, 9 and 10. The polynomial’s range p((v − u)x − u), x ∈ [0,1]n is then bounded by
[min pi1...in ,max pi1...in ]. See 1 for a proof of this statement.

In ref. 1, an even stricter bound is derived by projection for each dimension j = 1, . . . ,n

∑
i j=0,1,2

( min
ik,k ̸= j

pi1...in)B
(2)
i j
(x j)≤ p((v−u)x+u)≤ ∑

i j=0,1,2
(max

ik,k ̸= j
pi1...in)B

(2)
i j
(x j)

The bounds are quadratic Bézier curves, from which domain bounds for the variables x j

can be obtained: Simply intersect the bounding Bézier curves with the axis x j and combine
the results from the minimum and the maximum curve correctly. Assume the quadratic
system P(x) = 0 has an invertible Jacobian matrix P′(m) at the center m of the domain
D. Then it is possible to make the system jacobian the unit matrix at the center m. This
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Table 1. Comparison of the solvers’ performance for the systems in Figure 6. Entries "n.a." denote systems, for
which the nonlinear reduction of Section 6 can not be applied without solving additional LP problems.

Nb. Reduction Nb. Bisection Avg. Range-Factor Avg. Domain-Factor
Mourrain/Pavone
system (a) 15 5 3.3896 (4.19672, 1.79867)
system (b) 53 15 3.3730 (1.79106, 1.96632)
system (c) 8 1 1024.0 (1374.09, 95.9520)
system (d) 10 3 2.31344 (1.11638, 2.31344)
Our LP method (reduction of all dimensions once)
system (a) 18 5 13.1280 (1.9967,11.4821)
system (b) 26 7 6.5523 (2.17404, 5.2301)
system (c) 28 13 1.9291 (7.3423e+11, 1.3846)
system (d) 10 3 12.6969 (1.3142, 2.5067)
Our LP method with preconditioning (reduction of all dimensions once)
system (a) 18 5 13.1130 (1.99673,11.4821)
system (b) 26 7 6.5248 (2.17404, 5.2301)
system (c) 28 13 1.9291 (7.3423e+11, 1.3846)
system (d) 10 3 12.2724 (1.3142, 2.5067)
Our LP method with square root opt (reduction of all dimensions once)
system (a) 12 3 11.4926 (2.3002, 9.1139)
system (b) n.a. n.a. n.a. n.a.
system (c) 2 0 7.2149e+011 (7.3423e+011, 2.0)
system (d) n.a. n.a. n.a. n.a.
Our LP method (reduction of a dimension as long as reduction factor >2.0
system (a) 19 1 17.7660 (9.2743,13.3139)
system (b) 50 7 7.1166 (2.6270, 4.1077)
system (c) 25 11 1.9178 (3.3640e+12, 1.3939)
system (d) 6 1 8.5097 (1.8468, 1.6842)

preconditioned system P(x)P′(m)−1 = 0 has the same roots as the given system P(x) = 0,
and it ensures a quadratic convergence 1 for simple roots. In the comparison, we use this
preconditioning step with the TBB solver.

For our experiments, we use the two-dimensional algebraic curves as shown in Fig-
ure 6. Firstly, we measure the reduction factors of range values during the execution of
both methods (Section 7.1). Then we perform reduction steps once in each dimension and
compute the reduction factors of the interval widths. These empirically determine the con-
vergence behavior of the methods. Section 7.2 gives the comparison.

7.1. Range Bounds

Range bounds on system equations are not necessary for solving the system but can be
determined with both methods. For linear programming with the Bernstein polytope, it is
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(a) (b) (c) (d)

Fig. 6. Algebraic 2D curves: (a) parabola x1 − x2
0 = 0 and circle, (b) hyperbola x0x1 = 1 and circle, (c) two

touching circles, and (d) hyperbola x0x1 = 4 and circle.

described in Section 4.1. With the TBB, range bounds are obtained from the minimum and
the maximum TBB coefficient, as described in Section 7. For two variables, there is only
a small difference between the ranges computed with the TBB coefficients and the ones
computed with linear programming on the same domain interval. Differences in the range
reduction factor are caused mainly by different domain intervals.

Table 1 contains the number of reduction steps, the number of bisections, the average
reduction factor |range(D)|

|range(D′)| of range width |range(D)| (column 3), and the average reduction

factor |Di|
|D′

i |
of domain widths |Di|. Therein, D is the domain and D′ is the domain after a

single reduction step of all variables. Note that both methods were run by doing a bisection
immediately after a single reduction step until all domain side lengths are smaller than
δ = 10−3. The process started with initial domain box [−10,10]2. System (a) has two
single roots, (b) has four single roots, (c) has a double root, and (d) has no root. From
the measurements, it is remarkable that the TBB solver generates roughly the same range
reductions (factor 3.3) in normal situations, and achieves a factor 1024.0 for the tangential
contact of system (c). For linear programming on the Bernstein polytope, the number of
reductions and bisections are similar, whereas the range reduction factors are more varied.
An exception is system (c) with tangential contact, where our method requires some more
reductions and bisections.

For a comparison, we applied the same preconditioning step, described in Section 7,
to the system solved by the simplex algorithm with the Bernstein polytope. The effect
of preconditioning on the revised simplex algorithm, which uses linear systems solving
internally, is very small as shown in Table 1. The revised simplex algorithm is in this respect
more similar to linear systems solving and its techniques to improve accuracy (pivoting,
equilibration 11).

Table 1 also gives the statistics for the simplex algorithm with the Bernstein polytope
using the nonlinear reductions of Section 6, where applicable without solving additional
LP problems, i.e., for systems (a) and (c). The nonlinear reductions are very effective and
largely reduce the domain widths.
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7.2. Convergence

For the domain reduction steps, Table 1 contains the domain reduction factors in column 4.
It can be seen that linear programming with the Bernstein polytope for variable xi′ profits
from reductions of variable xi, i < i′. Usually, the reduction factor of the second variable x2

is considerably greater than the one for the first variable x1. The TBB solver can not take
advantage similarly as the conversion to the tensorial Bernstein basis is done once before
reducing all the variables.

In the paper 1, the quadratic convergence of the method in the case of a single root was
proved. For the double root of system (c), the reduction is very good due to the precondi-
tioning step. The revised simplex algorithm with the Bernstein polytope achieves similar
reduction factors as the TBB solver in cases with single roots as can be seen in Table 1,
systems (a), (b), (d). Also in multiple root cases, it has an average reduction factor f > 1,
and is thus at least linearly convergent.

8. Kinematics of Gough-Stewart Platform

Gough-Stewart platforms are used as parallel robots. We consider here the structure made
of two triangles connected by jacks (translational joints) into an octahedron 12,13. See Fig-
ure 8 for an illustration.

(a) (b)

Fig. 7. (a) Several solutions for the given jack lengths above the base platform. Among them are two solutions
that have a side change of the jack direction relative to the upper platform. (b) Solution without a side change of
the jack directions.

The lower triangle serves as the base, and the upper triangle moves as the work plat-
form. Edges of the platform and of the base are rigid, i.e., their lengths are fixed once
(brown triangles in Figure 8): p2 p3, p3 p1, p1 p2, p6 p4, p4 p5, p5 p6. The lengths of the re-
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maining edges are computer-controlled (gray lines in Figure 8): p1 p4, p1 p6, p2 p4, p2 p5,
p3 p5, p3 p6.

In the following section, we consider in detail the forward kinematics problem, where
the six side lengths d23, d31, d12, d64, d45, d56, and the six lengths of the jacks d14, d16, d24,
d25, d35, d36 are given, and the coordinates of the upper platform’s points (three points of
the octahedron) are to be computed. As usual for a parallel structure, the inverse kinematics
problem is much easier, as the lengths of the six jacks can be computed directly from the
points’ coordinates.

8.1. Forward Kinematics

As shown in ref. 14, the forward kinematics problem can have up to 16 solutions.
The problem can be formulated directly in Cartesian coordinates if we fix the coordi-

nates of the lower platform’s points. Here is an example.

fixed lower triangle
x1 = 0
y1 = 0
z1 = 0
x2 = 1
y2 = 0
z2 = 0
x3 = 0.5
y3 =

√
3/2

z3 = 0

given distances of the upper triangle’s points
(x4 − x5)

2 +(y4 − y5)
2 +(z4 − z5)

2 = d2
45

(x5 − x6)
2 +(y5 − y6)

2 +(z5 − z6)
2 = d2

56
(x6 − x4)

2 +(y6 − y4)
2 +(z6 − z4)

2 = d2
64

given lengths of jacks
(x2 − x4)

2 +(y2 − y4)
2 +(z2 − z4)

2 = d2
24

(x3 − x4)
2 +(y3 − y4)

2 +(z3 − z4)
2 = d2

34
(x3 − x5)

2 +(y3 − y5)
2 +(z3 − z5)

2 = d2
35

(x1 − x5)
2 +(y1 − y5)

2 +(z1 − z5)
2 = d2

15
(x1 − x6)

2 +(y1 − y6)
2 +(z1 − z6)

2 = d2
16

(x2 − x6)
2 +(y2 − y6)

2 +(z2 − z6)
2 = d2

26

(3)

Interesting possibilities exist for selecting solutions. For example, due to mechanical
restrictions the jacks can not change side with respect to the work platform. Let nwork =

(p5 − p4)× (p6 − p4) be the normal of the work platform, where v1 × v2 denotes the cross
product of two vectors. Then the scalar products n ·(p1− p6)≤ 0, n ·(p1− p5)≤ 0, n ·(p2−
p6)≤ 0, n · (p2 − p4)≤ 0, n · (p3 − p5)≤ 0, n · (p3 − p4)≤ 0 formulate this condition. We
have to add three variables n1, n2, n3 to the system for the normal direction. See Figure 7
for an example solution using this condition.
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Other conditions can be formulated, i.e., the work platform should be upright with
respect to the base platform (nbase · nwork ≥ 0). Note that this condition is not already
implied by the condition that the jacks do not change side with respect to the work platform.

(a) (b)

Fig. 8. (a) Gough-Stewart platform. (b) Gough-Stewart platform with two distances (red lines) used in the Cayley-
Menger formulation.

(a)

0,0

+5

+5

(b)

0,0

+5

+5

Fig. 9. Solving Cayley-Menger equations for D14 and D25. Small black boxes mark the solution points (D14,D25):
(a) 2 solutions, (b) 3 solutions.

With Cayley-Menger determinants, it is possible to give a coordinate-free formulation.
The Cayley-Menger determinant gives a relation of all the squared distances between five
points in 3-space.15 For points p1, p2, p3, p4, p5, the Cayley-Menger determinant contains
the squared distances D12 = d2

12, D13 = d2
13, D14 = d2

14, D15 = d2
15, D23 = d2

23, D24 = d2
24,

D25 = d2
25, D34 = d2

34, D35 = d2
35, D45 = d2

45. All these squared distances are known, except
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Table 2. Comparison of the solvers’ performance for the Gough-Stewart forward kinematics. Entries "?" denote
computations that did not terminate within one minute.

Nb. Solutions Nb. Reduction Nb. Bisection Time
Mourrain/Pavone
Cartesian n=9 ? ? ? >60.0s
Cartesian n=12, no side change ? ? ? >60.0s
Cayley-Menger n=3 2 1153 103 0.0157s
Cayley-Menger n=3 3 4235 397 0.0549s
Our LP method
Cartesian n=9, 3 393 47 16.555s
Cartesian n=12, no side change 1 365 43 17.946s
Cayley-Menger n=3 2 143 33 0.0680s
Cayley-Menger n=3 3 397 92 0.1783s

for D14 and D25 (red lines in Figure 8), and the equation has degree 4 in the 2 unknowns.

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 D12 D13 D14 D15

1 D21 0 D23 D24 D25

1 D31 D32 0 D34 D35

1 D41 D42 D43 0 D45

1 D51 D52 D53 D54 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= a9D2

14D2
25 +a8D2

14D25 +a7D14D2
25 +a6D2

14 +a5D2
25 +a4D14D25

+a3D14 +a2D25 +a1

= a9D2
14,25 +a8D14D14,25 +a7D14,25D25 +a6D2

14 +a5D2
25 +a4D14D25

+a3D14 +a2D25 +a1
!
= 0

(4)

A second, independent equation can be generated for the points p1, p2, p4, p5, p6.
We can reformulate this system of degree 4 into a system of degree 2 by introducing an
auxiliary variable D14,25 for the product D14,25 = D14D25. Then the monomials D2

14D2
25,

D2
14D25, and D14D2

25 become degree 2: D2
14,25, D14D14,25, and D14,25D25.

If the lengths d14 and d25 of two diagonals are known, we can compute the Cartesian
coordinates of the three points on the upper triangle. For each point p4 and p5, the distances
to points p1, p2, p3 are known so that their coordinates can be computed as the intersection
of three spheres. The coordinates of point p6 can then be computed in the same way from
the distances to points p1, p4, p5. As an example, the intersection of the three spheres



December 13, 2010 10:35 WSPC/INSTRUCTION FILE
tmce2010_ijsm_Funfzig

Optimizations for Tensorial Bernstein–Based Solvers by using Polyhedral Bounds 17

(p1,r1 = d14), (p2,r2 = d24), (p3,r3 = d34) results in two possible solutions p4, p∗
4 .

p21 = p2 − p1

p31 = p3 − p1

c = p21 × p31

u = 0.5(d2
21 +d2

14 −d2
24)p31 −0.5(d2

31 +d2
14 −d2

34)p21)

v =
√

d2
14 −|u|2 c/|c|

p4 = p1 +u+ v
p∗4 = p1 +u− v

(5)

Here, the vector u is from point p1 to the intersection point in the plane p1 p2 p3 of the
two intersection circle planes (defined by the sphere intersections of (p1,r1), (p2,r2) and
of (p1,r1), (p3,r3)). The vector v points from this intersection point along c, which is
orthogonal to the plane p1 p2 p3, to an intersection point of the three circles. As the three
points p1, p1 +u, p4 form a right-angled triangle with two known side lengths |p1 − p4|=
d14 and |p1 + u− p1| = |u|, the third length |p1+ u− p4| needs to be

√
d2

14 −|u|2 by a
theorem of Pythagoras.

Note that the solutions for p4 and p5 have to be combined according to the
given distance d45, which can have up to two solutions for each solution p4. Fig-
ure 10 shows a geometric configuration in 2D, where a solution for p4 connects to
the two possibilities for p5. Each one leaves two possibilities for point p6. In total,
it can have up to 4 |{(d14,d25) : d(M(D12,D13,D14,D15,D23,D24,D25,D34,D35,D45)) =

0,d(M(D12,D16,D14,D15,D26,D24,D25,D46,D56,D45)) = 0}| solutions, where one half
of them lies above the base platform and the other half lies below it due to symmetry.

−v

d45

p5

p∗
5

d15, . . .

d14, . . .

d45

d15, . . .

p1

. . . , p2, p3

up4

+v

Fig. 10. A solution for point p4 connects to up to two possibilities for point p5.
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The runtime for example systems is summarized in Table 2. A reduction step of all
variables was immediately followed by a bisection of the domain box until all domain side
lengths were smaller than δ= 10−4. For the initial domain box, [−5,5] resp. [0,5] was used
for the Cartesian coordinate components, and [0,5] for squared distances in the Cayley-
Menger formulation. Only the LP reduction method can be used for the direct Cartesian
formulation due to its large number of variables. For n = 9, the TBB has 39 = 19683 basis
functions, whose coefficients have to be calculated in each reduction step. For n= 12, there
are already 312 = 531441 coefficients. The additional equations for selecting solutions
(avoiding side changes of the jacks, upright orientation of the upper platform) have no
significant effect on the runtime.

The Cayley-Menger formulation requires the solution of a small system only (2 equa-
tions of degree 4 in 2 variables, 3 equations of degree 2 in 3 variables), which is coordinate-
free, and three calculations of the intersection of three spheres, which is coordinate-
dependent but can be solved by a specialized code. The solution of the coordinate-free
part is possible with both solvers. For n = 3 variables, the TBB solver is faster despite a
larger number of reductions and bisections. A reduction step involves only n = 3 min/max
searches over 33 = 27 coefficients.

9. Conclusion

This article has compared two subdivision solvers for quadratic polynomial systems, which
use the same algorithm only differing in the domain reduction step. The first solver in ref.
1 uses the tensorial Bernstein basis (TBB) representation of a multivariate polynomial. It
uses the tensorial Bernstein basis to derive a pair of range-bounding Bézier curves for each
variable x j of the system. Based on these Bézier curves, the solver reduces the domain
of each variable x j by univariate root finding, which is beneficial especially in cases of
multiple roots.1 In contrast, our LP solver derives bounds of the solution domain from
a polytope enclosure of the nonlinear patches over the domain. They are computed as
solutions of linear programming problems, i.e., using the revised simplex algorithm. The
polytope is defined by a number of halfspaces, which has polynomial length in terms of
the input system, i.e., the number n of variables, and fixed total degree d.

In practice, problem formulations can easily incorporate a large number n of variables.
In this case, solvers using the tensorial Bernstein basis suffer from the exponential number
(d + 1)n of basis functions for total degree d. With the LP-based method, the polytope is
defined by a number of O(nd) halfspaces. For the Gough-Stewart platform, an octahedron,
we use it to compute all solutions or specially selected solutions for the forward kinemat-
ics problem. The forward kinematics problem in Cartesian coordinates incorporates 9–12
variables and a similar number of (in-)equalities. This system size is currently intractable
for a TBB solver. It can only be solved as a decomposed system, for example, using a
coordinate-free formulation with Cayley-Menger determinants, which has only 2–3 vari-
ables.

The convergence behavior of both methods has been compared empirically for systems
of two variables. At double roots, Mourrain’s method benefits from preconditioning, which
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achieves a nearly unit jacobian matrix at the center of the domain. This preconditioning of
the TBB solver has only a small effect with the revised simplex algorithm. The simplex
algorithm is in this respect more similar to linear systems solving and its techniques to
improve accuracy. In the comparison for single roots, numerical evidence confirms the
quadratic convergence of both methods.

An optimization of the LP reduction-based solver is possible for systems containing
squared variables x2

i . In this case, we have demonstrated a nonlinear reduction of the do-
main interval for xi based on the quadratic curve (xi,x2

i ). The nonlinear reduction is directly
applicable for systems containing only the monomials xi and x2

i . For arbitrary systems, it
requires the solution of two additional LP problems minXii and maxXii corresponding to
x2

i .
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