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EXECUTIVE SUMMARY 

 

In geometric constraint systems, e.g., in engineering 
and biology, configurations are defined by 
points/vectors and constraints between two of these 
points/vectors. They give rise to a system of 
polynomial equations:  
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Such systems can be reduced to quadratic degree by 
introducing new variables for higher degree 
monomials. 

In principle, such systems can be solved either by 
algebraic techniques or by subdivision techniques. 
For subdivision solvers, a common approach is to 
convert the polynomial  to the tensorial 

Bernstein basis  
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which makes possible the computation of tight range 
bounds )()()( DpxpDp ≤≤ and also of tight 
domain bounds for the solution set 

}.0)(:{ 1 =××∈ xpDDx nK  But the number of 

basis coefficients is an exponential number in 
terms of the number of variables! 
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In this paper, we present an approach to alleviate this 
performance problem. We replace the nonlinear 
monomials  and  by additional linear 
variables, which are enclosed in a polytope with 
halfspaces given by the non-negativity of relevant 

Bernstein polynomials (Figure 1). In this way, the 
computation of range bounds and domain bounds for 
quadratic polynomials become linear programs (LP): 
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Figure 1 Bernstein polytope. 
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Figure 2 Gough-Stewart platform and distances 

considered for the forward kinematics 
problem. 

Here, each additional variable attached to a nonlinear 
monomial is defined by a constant number of 
halfspaces, so that the resulting Bernstein polytope 
has a number of 3#monomials  plus 4#monomials 

 halfspaces. In certain systems, the squares can 
be handled specially as detailed in the paper. 
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The convergence behavior of both methods has been 
compared empirically with the tensorial Bernstein 
based method of Mourrain/Pavone for two variables. 
In the comparison for single roots, numerical 
evidence confirms the quadratic convergence of both 
methods. 

 

Considering applications in robotics, we use it for the 
forward kinematics problem of the Gough-Steward 
platform (two triangles with connectivity of an 
octahedron). We can compute all or specially 
selected solutions for the upper triangle. 

This problem formulated in Cartesian coordinates has 
9 variables (components of the three upper points) 
and a similar number of equations. 

This system size is currently intractable for a 
tensorial Bernstein-based solver due to its relatively 
large number of variables. It can be solved by LP 
reduction using the Bernstein polytope and for good 
performance in practice special care has to be taken 
with the LP solver. We report on the performance 
with the primal-dual, revised simplex code SoPlex 
1.4.2 on Windows XP 32-bit. 

For a comparison, we give a different, coordinate-
free formulation using Cayley-Menger determinants, 
which has only n=3 variables, followed by the 
computation of Cartesian coordinates. In this hybrid 
formulation, it can be solved by both solvers. With 
n=3 variables, the TBB solver is faster despite a 
larger number of iterations in our experiments.  

 

In summary, the solver using LP reductions with the 
Bernstein polytope 

• Has quadratic convergence for single roots. 

• Requires special care with the LP solver’s 
implementation for good performance.  

• Has to take care of floating point errors in the 
LP solver. 

• Can handle inequalities. 

• Can be extended to higher polynomial 
degrees and to bounded non-polynomial 
functions. 
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