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Abstract. The playground is the projective complex plane. The article
shows that usual, naive, lines are not all lines. From naive lines (level 0),
Pappus geometry creates new geometric objects (circles or conics) which
can also be considered as (level 1) lines, in the sense that they fulfil
Pappus axioms for lines. But Pappus theory also applies to these new
lines. A formalization of Pappus geometry should enable to automatize
these generalizations of lines.

1 Introduction: What Is a Line ?

There are several ways to automatize deduction in geometry. The one which is
investigated here is to extend the basic objects: i.e. lines and points, of some ge-
ometric theory. The playground is the complex plane projective geometry [1,6]:
only incidence properties are considered, two distinct lines always meet in one
point, two distinct proper conics always meet in four points. Since Pappus the-
orem will be used as the main axiom, let us call it the Pappus geometry.

The main idea is to see the Pappus geometry as a functor:

- its input are two types, point and line, which fulfill axioms A1, A2, A3 (given
below) of the Pappus geometry; the most important axiom is Pappus property,
A3; at the first time, points and lines are the basic, naive, ones; they can be
seen as symbols. It is well known that, due to the symmetry of axioms involving
points and lines, points and lines can be exchanged; it is the principle of duality.

- its output is a theory. A theory is a set of lemmas or theorems (Desargue,
Pascal, the 3-circle theorem, the 4-circle theorem, etc), their proofs, new objects
(like circles and conics), and proved algorithms (drawing the conic defined by
five points; computing with the ruler only the second intersection point of a line
and a conic, knowing the first intersection point; etc).

It turns out that some of these new objects (e.g. pair of inverse points, or conics
through three fixed points) generated by the theory can be considered as points
and lines, actually are points and lines, in the sense that they comply with
axioms for points and lines of the Pappus geometry.

Thus the Pappus functor can be applied a second time on these new points
and lines, which are no more the naive points and lines. But the previous theory
still holds, its proofs and algorithms are still valid: it will generate new theorems
(or extend existing ones) and new objects. This time the generated ”conics” will
be cubics or quartics; in spite of their higher degree, they are still defined with
five points.
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Again, some of the new objects can be considered as points and lines, because
it is (or it should be, see below) a theorem in the Pappus theory. Thus we can
apply the Pappus functor a third time. And so on.

In passing, note the similarity with compilers bootstrapping, i.e. compilers able
to compile themself. The latter is an evidence of correctness andpower of compilers.

If this approach can be formalized, say in Coq1, it would give a way to au-
tomatically generate an infinity of non-trivial theorems. Up to now, Coq only
proves already known theorems, it does not produce new ones. Also, if a dynamic
geometry program can be automatically extracted from this Coq software, this
dynamic geometry program would account for extended points and lines (con-
trarily to current dynamic geometry softwares).

Howewer, this approach imposes constraints on the Pappus theory: its proofs
must rely only on explicit axioms of the theory, and not on implicit axioms like
properties of naive points and lines, which should not be shared by non naive
points and lines. In principle, axiomatic geometry should satisfy this constraint,
by definition of the axiomatic approach... However, some theorems in projec-
tive geometry may have no such proof for the moment: it is often easier to find
algebraic proofs (with Gröbner bases, Chou’s method, etc) and these methods
assume properties (e.g. that conics are second degree algebraic curves) or coordi-
nates which no more hold for generalized points and lines. Second, Wu remarked
in his pioneering book [9] that classical proofs often neglect degeneracies. Also,
maybe some axioms are missing in the Pappus theory summarized in §2, but
only a formal implantation of Pappus theory, in Coq or another proof assistant,
will permit to detect the gaps. To give an idea, a possible missing axiom could
be: if a, b, c, d are four distinct points, not three on the same line, then the three
intersection points ab∩ cd, ac∩ bd, ad∩ bc are distinct and not on the same line.
Or it could be some ”trivial” matroid axiom which is missing.

Other predictable difficulties for an implementation in Coq are subtleties or
degeneracies which are neglected in this article: it focuses on the big picture.

Plane. §2 summarizes Pappus theory. Pappus theory considers only combi-
natorial properties, i.e. incidence theorems, like Pappus, Desargue, Pascal, etc.
§3 defines three times constrained conics (TTCC), and show that they can be
considered as lines. However, this proof does not lie in the Pappus theory: it does
not rely only on axioms A1, A2, A3 of the Pappus theory. An hexamys proof (see
[4] for examples of such proofs) would; but I have no such proof for the moment.
§4 give some standard constraints for a conic to be a circle, a parabola, etc. §5
presents several examples of TTCC. §6 illustrates how the Pappus functor may
extend theorems on non naive lines or conics. §7 sketches the generalization of
points. §8 presents several variants of planes, each of which manages degenera-
cies (the issues of parallel lines, points at infinity, non intersecting conics, etc)
in its own way. §9 concludes.

Some TTCC, and the fact they satisfy Pappus, Pascal, or Desargue’ theorems,
are illustrated in GeoGebra files available on internet2.

1 http://coq.inria.fr/
2 http://math.u-bourgogne.fr/michelucci/OCAML/GEOGEBRA/

http://coq.inria.fr/
http://math.u-bourgogne.fr/michelucci/OCAML/GEOGEBRA/
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2 Pappus Geometry: A Summary

Pappus geometry is seen as a functor which takes two arguments, a type for lines
and a type for points. We do not know what are really lines and points, we only
know that they fulfil three axioms:

A1. Two distinct points define one line.
A2. Two distinct lines meet in one point.
A3. If three distinct points pi, i = 1, 2, 3, lie on a common line P , and three

distinct points q1, q2, q3 lie on a common line Q, with P and Q distinct, then the
three intersection points pi ∩ qj , i �= j, lie on a common line.

A3 could be called Pappus axiom.

Remark about A2: the complex projective plane is considered; it is the set of
3D complex lines incident to a given point, say the origin: this model does not
require points at infinity, so axioms do not have to consider or distinguish them.
It is only for the visualization of the (real part of the) projective plane that
this set of 3D lines is cut with any (affine) plane not passing through the origin;
points at infinity are introduced for the 3D lines which are parallel to the cutting
plane.

Pappus theory can now unfold from these three axioms.
Pappus axiom permits first to define projectivities between lines; a projectivity

γ from l to l′ is defined by three pairs (pi ∈ l, p′i = γ(pi) ∈ l′), where i ∈ 1, 2, 3.
The axis of the projectivity γ is the line through the three intersection points
pip

′
j∩p′ipj, i �= j, which are aligned after Pappus’ theorem. Let x, y be two points

on l and x′ = γ(x), y′ = γ(y); then xy′ ∩ x′y lies on the axis of the projectivity.
It permits to construct the image by γ of any point x on l, assuming three pairs
(pi, p

′
i = γ(pi)).

Coxeter’s book [1] provides combinatorial proofs of classical projective ge-
ometry theorems, which rely only on properties of projectivities. His book also
provides algebraic proofs, using computations on cartesian or homogeneous co-
ordinates or cross ratios.

By duality, it is possible to define a projectivity between two bundles L and
L′ of lines; a bundle of lines is the set of all lines passing through a common
point. The projectivity is defined by three pairs of lines (li ∈ L, l′i ∈ L′). A dual
construction permits to draw with the ruler only the image of any line of L.

One of the first theorems involves the harmonic conjugate.

Harmonic Conjugate Theorem. Let O, A, B be three aligned points. The
harmonic conjugate M of O, relatively to A and B, may be constructed in many
ways, using an auxilliary point S not on the line OAB, and a second auxilliary
point T on SA (T, S, A are distinct). Whatever S and T ∈ SA, M is fixed, and
depends only on O, A, B. If O is a point at infinity, M is the middle of A and
B. This theorem is illustrated in Fig. 5 and 9.

Projectivities can be generalized to homographies. An homography is defined
by four pairs of non aligned points and their images (pi, p

′
i), with i = 0, 1, 2, 3.

Homography of a line is a line, and the restriction of the homography to a line
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and its image is a projectivity. Define lij = pipj , l′ij = p′ip
′
j for i, j ∈ 0, 1, 2, 3.

Then the image of lij is l′ij , the image of lij ∩ lrs is l′ij ∩ l′rs, etc. It is possible to
draw with the ruler only the image of any point of the plane by the homography.

Another result in Pappus theory is due to Hessenberg, who proved that De-
sargue’ theorem is a consequence of A1, A2, A3:

Desargue’s Theorem (o, p1, p2, p3, q1, q2, q3). Three lines li, i = 1, 2, 3, concur
at o, and points o, pi, qi lie on li. Triangles p1p2p3 and q1q2q3 are said to be per-
spective (viewed from o). Then the three intersection points between homologous
sides pipj ∩ qiqj (with i �= j) lie on a common line.

Other theorems of Pappus theory involves conics. Of course we have first to
define conics. A possible definition uses Pascal’s theorem:

Here is a first definition of conic. Let p0, p1, p2, p3, p4 be five points, no four
on a common line. Then p0, p1, p2, p3, p4 define a unique conic, which is the set
of points p5 such that the three points p0p1 ∩ p3p4, p1p2 ∩ p4p5, and p2p3 ∩ p5p0

lie on a common line.
Raymond Pouzergues reformulates Pascal’s theorem eliminating any reference

to conics. He calls this the hexamys theorem (a shortcut for Pascal’s ”mystical
hexagram”).

Hexamys Theorem (p0, p1, p2, p3, p4, p5). Six points p0, p1, p2, p3, p4, p5 (no
four colinear) are an hexamys if, by definition, opposite sides cut in three points
along a common line. The hexamys theorem states that all permutations of an
hexamys are hexamys as well.

Hexamys theorem can be derived from Pappus [4].

Remark: when points p0p2p4 lie on a common line, and points p1p3p5 lie on an-
other common line, then p0, p1, p2, p3, p4, p5 is an hexamys: the three intersection
points of opposite sides p0p1∩p3p4, p1p2∩p4p5, and p2p3∩p5p0 lie on a common
line after Pappus property. Thus pairs of distinct lines are conics.

The hexamys theorem enables Pouzergues to prove a bunch of incidence theo-
rems: from collinearities of a given geometric configuration, the hexamys theorem
deduces new collinearities. Proofs are very short [4]. Moreover, these proofs lie
in the Pappus theory, i.e. they remain valid when naive points and lines are
replaced by non naive ones : the hexamys proofs only use Pascal theorem, which
is provable with Pappus theorem. For example, hexamys prove Desargue, and
the harmonic conjugate theorems.

Pouzergues gives another definition of conics. Define an involution α on a
line l: this involution is defined by four colinear points a, a′, b, b′ on l such that
α(a) = a′, α(b) = b′. Define two distinct points u, v not on l. The set of points p
such that α(up∩ l) = vp∩ l is a conic. Intuitively, l can be seen as the vanishing
line of the plane (or the line at infinity), thus points on l are directions, and
x′ = α(x ∈ l) is a the direction ”orthogonal” to x.

A third definition of conics can be useful. If L and L′ are two bundles of
lines (a bundle of lines is a set of lines all passing through a common point) in
homographic bijection β: β(l ∈ L) = l′ ∈ L′, then the set of intersection points
l ∩ β(l) is a conic.
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Hexamys permit to prove the equivalence of all these definitions of conics.
Some special conics are circles. It turns out that circles are just conics which

pass through 2 special points. Classically, these 2 points are called the cyclic
points, and they are often represented with homogeneous coordinates (x, y, h)
equal to, for instance, (1,

√−1, 0) and (−1,
√−1, 0). Circles with center (xc, yc, 1)

and radius r have equations x2 + y2 + 2xcxh + 2ycyh + h2(x2
c + y2

c − r2) = 0,
which are satisfied by cyclic points, whatever xc, yc, r. However, cyclic points
may be replaced by any pair of distinct points, and all combinatorial theorems
(which do not mention metric properties, like angles or distances) still hold. For
instance this theorem.

Three Circles Theorem. (Fig. 10, 11, 12). Let a, b, c be three points, not on
a common line. a′ is a point on line (bc), b′ is a point on line (ac), c′ is a point
on line (ab). Let Ca be the circle circumscribed (CC) to a, b′, c′, Cb the CC to
b, a′, c′, and Cc the CC to c, a′, b′. Then Ca, Cb, Cc have a common point (other
than the 2 cyclic points).

A short proof is given in §6.1, but this proof does not lie in Pappus theory,
i.e. this proof is not precise enough to guarantee that it follows strictly from
the axioms of Pappus theory. A proof inside Pappus theory would apply to
generalized lines and circles.

A theory also provides algorithms.
An algorithm to draw a conic point by point relies on Pascal theorem. Let

a, b, c, d, e five points defining a conic. Let k = ab ∩ ed. Let D a line through k.
Define i = bc ∩ D and j = cd ∩ D. Then x = aj ∩ ie lies on the conic. When D
rotates around k, x draws the conic. To prove the correctness of this method,
just remark that abcdex is an hexamys.

Pascal’s theorem also gives an algorithm to find the second intersection point
between a line and a conic, passing through five points a, b, c, d, e. We want
the second intersection point between az and the conic. Define k = ab ∩ ed,
j = az ∩ cd, D = (jk), i = D ∩ bc. Then the second intersection point is az ∩ ei.

Pascal’s theorem gives an algorithm (not detailed here) to find the fourth
intersection point between two conics, when the three others are known. This
algorithm is useful for computing the intersection point between two non naive
lines, like TTCC.

3 Three Times Constrained Conics

For convenience, 2D points are represented with homogeneous complex coordi-
nates (x, y, h). Define

φ(x, y, h) = (x2, y2, h2, xy, xh, yh)

A conic equation is φ(x, y, h) . Q = 0 where Q is a non zero vector in a C

vector space with dimension 6 (the Hermitian scalar product is noted . ). Each
time a conic Q is constrained to pass through a point p = (x, y, h), it imposes
a constraint on the vector Q (the same name is used for the conic and its rep-
resenting vector): φ(x, y, h) . Q = 0, i.e. the vector Q must be orthogonal to
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φ(p). Of course, the vector Q is determined, up to its norm, by five independent
orthogonality conditions, thus by five points. It is consistent with the fact that
conics are determined by five independent points.

But there are other constraints than passing through a specified point, which
make sense, and which give the same kind of orthogonality condition on the
vector Q representing a conic.

For instance, to specify that the conic Q is a circle, the vector Q must be
orthogonal to C1 = (1,−1, 0, 0, 0, 0) and to the vector C2 = (0, 0, 0, 1, 0, 0);
the orthogonality with C1 imposes that the coefficients of x2 and of y2 in the
equation of the conic Q are equal; the orthogonality with C2 imposes that the
coefficient of xy in this equation is 0. It is also possible to specify that the conic
is a parabola, or a circle orthogonal to a specified circle, or a circle with its center
on a specified line. The corresponding vectors are given below, §4.

Now, let C1, C2, C3 be three independent such constraints. Call a conic con-
strained with these three constraints a three times constrained conic, a TTCC
for short. These TTCC lies in a vector space with rank three : thus TTCC are 2D
lines (or 2D points with the duality argument). 2D lines fulfil Pappus property,
thus TTCC also. QED.

Unfortunately, the previous proof does not lie in the Pappus theory (it does
not use only axioms A1, A2, A3, it uses properties of vector spaces). A proof in
the Pappus theory (for instance, an hexamys proof) would permit to apply the
Pappus functor on TTCC considered as lines.

A last remark. The previous proof suggests that cubic curves constrained with
7 independent constraints, e.g. to pass through 7 specified points, could also be
considered as lines. Since a non constrained cubic is defined by 9 (independent)
points, a constrained cubic will be completely defined by two points, as naive
lines; this condition is needed in order for constrained cubics to be considered
as generalized lines. However:

- as for the conics, we need a definition of cubics which lie inside the Pappus
theory; I think it is possible.

- two cubics must intersect in one point (the 7 constrained point do not count);
this last constraint can not be satisfied: non constrained cubics cut in 9 points,
after Bézout theorem; subtracting the 7 constraints, constrained cubics cut in 2
points, not 1.

More generally, which degree d algebraic curves can be considered as extended
lines ?

The equation vector of an algebraic curve with degree d has e = (d+1)(d+2)/2
coordinates; it is a vector in a vectorial space of dimension (and rank) e. It is defined
by e−1 constraints, e.g. e−1 points lying on the curve. Assuming the corresponding
generalized line exists, it is defined by e − 3 fixed points (or other constraints);
moreover two generalized lines must cut in just one point, ignoring the e− 3 fixed
points; it means the two generalized lines meet in total at e − 2 points; but, after
Bézout theorem, two degree d curves meet in d2 points. Thus the degree d must
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fulfil: d2 = e − 2 ⇔ d2 − 3d + 2 = 0 ⇔ d = 1 or d = 2. So only algebraic curves
with degree one or degre two can be considered as generalized lines.

There is here an apparent paradox, which may confuse the reader. The Pappus
functor, when applied to TTCC lines, will generate new ”conics”, which will be
cubics or quartics, and, if constrained three times, these curves can be considered
as lines... The solution to this apparent paradox is that lines which feed the
Pappus functor: naive lines, then TTCC, etc always lie in a vector space with
rank three, even when the dimension is greater than three (e.g. six for TTCC).

4 Conditions, or Vector-Based Constraints for Conics

For short, vector-based constraints for conics are called conditions.

x2 y2 h2 xy xh yh

C1 1 −1 0 0 0 0
C2 0 0 0 1 0 0

φ(+1, i, 0) 1 −1 0 i 0 0
φ(−1, i, 0) 1 −1 0 −i 0 0

C3 0 0 0 0 0 1
C4 1 0 −1 0 0 1
C5 0 1 0 0 0 0
C6 1 0 0 0 0 1

φ(p) = Cp x2
p y2

p h2
p xpyp xphp yphp

Fig. 1. Possible constraints on a conic vector Q. i is
√−1.

Let Q = (a, b, c, d, e, f) be the vector representing a conic. The equation of
the conic is ax2 + by2 + ch2 + dxy + exh + fyh = 0. This section gives possible
constraints on the conic, they are summarized in table 1.

The conic passes through a point p = (xp, yp, hp) if Q is orthogonal to the
vector Cp = φ(p).

The conic is a circle if Q is orthogonal to C1 and C2. Orthogonality to C1

implies that a = b, orthogonality to C2 means coefficient of monomial xy is zero.
Equivalent conditions are that Q passes through cyclic points (±1, i, 0) (with
i2 = −1), thus Q is orthogonal to both φ(±1, i, 0).

The circle has its center on the line y = 0 if Q is orthogonal to C3.
The circle is orthogonal to the unit circle with equation x2 + y2 − 1 = 0 if Q

is orthogonal to C4 (proof: see Fig. 2).
The circle cuts the unit circle (i.e. x2 + y2 − 1 = 0) in two points symmetric

relatively to the origin (0, 0) if Q is orthogonal to C6. These circles have equations
x2 + y2 − 2ux − 2vy − 1 = 0, the center is (u, v) and the radius is R such that
R2 = 1 + u2 + v2.

The conic is a parabola with axis Oy if Q is orthogonal to C5 and C2, i.e. the
coefficients for y2 and xy are 0.

Some constraints do not give orthogonality conditions, for instance the tan-
gence of a circle Q to a prescribed line, say y = 0.
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1

(0, 0)

(u, v)r

Fig. 2. The circle with center (u, v) and radius r is orthogonal to the unit circle. Thus
u2 +v2 = 1+r2, after Pythagora. Its equation (in affine coordinates) is x2 +y2−2ux−
2vy + (u2 + v2 − r2) = 0, i.e. x2 + y2 − 2ux− 2vy + 1 = 0. Thus the coefficient for the
constant must equal the coefficient for x2, and for y2 in the homogeneous equation.

5 Examples of Non Naive Lines

§5.1 shows that circles through a given fixed point can be considered as lines. §5.2
shows that circles orthogonal to a given fixed circle and passing through a given
fixed point can be considered as lines. §5.3 shows that circles (or half circles)
with their centers lying on a given fixed line can be considered as lines. §5.4
shows that circles which cut the unit circle in two points symmetric relatively
to the origin can be considered as lines. §5.5 shows that parabolas with axis
parallel to a given fixed direction and passing through a given fixed point can
be considered as lines. §5.6 shows that conics passing through three given fixed
points can be considered as lines.

5.1 Circles through One Fixed Point

Let Ω be a fixed, arbitrary, point. Then circles (in the classical sense) through
Ω can be considered as lines. For convenience, such circles are called clines in
this section. Two distinct clines cut in one point (ignoring Ω and the two cyclic
points); it can happen that Ω is a double intersection point; in this case, one
may say that the two clines are parallel, and that they meet at a point at infinity,
which is Ω. Two distinct points (and distinct of Ω) define an unique cline. Clines
satisfy the Pappus property, as illustrated in Fig. 3.

Clines satisfy Pappus property: i.e. if p0, p1, p2 lie on a common cline, and
q0, q1, q2 lie on another common cline, then the three intersection points rij

between the cline piqj and pjqi, i �= j, lie on a common cline.
It has already been proved, but this new proof may be instructive. An inversion

relatively to any circle (say with radius 1) with center Ω maps points pi to point
p′i, points qj to points q′j , and points rij to points r′ij , and it maps clines to
naive lines not passing through Ω. Thus the points p′i, q′j , and r′ij satisfy the
Pappus property, i.e. the intersection points r′ij lie on the same line, call it R′.
The preimage of R′ by the inversion is a cline R; in the peculiar case where R′
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Fig. 3. Clines fulfil Pappus property. They can be considered as lines.

pass through Ω, its preimage is R = R′, so it is a (degenerate) cline. In all cases,
the preimage R of R′ is a cline, thus the rij lie on a common cline, R. QED.

Thus all theorems of Pappus theory still hold when the word ”line” is replaced by
the word ”cline”. For instance the hexamys theorem holds. Define a C-hexamys
as a set of six points, no four on the same cline, such that opposite clines meet
in three points lying on a common cline. Then any permutation of the six points
is also a C-hexamys.

Fig. 4 illustrates Pascal’s theorem with clines. For simplicity, the six points
lie on a common circle (which does not pass through Ω). The three pairs of
opposite clines indeed lie on a common cline, i.e. they are cocyclic with Ω.

Fig. 4. Pascal theorem. Points pi lie on the magenta circle. The lines pipj are replaced
with clines (circles through Omega). The intersection points lie on a common cline (red
circle).
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Fig. 5. The harmonic conjugate theorem. Left: for given points O, A,B on a common
line, for any point S, for any point T on the line SA, the point M is invariant (hint:
M is the harmonic conjugate of O relatively to A,B; if O is a point at infinity, M is
the middle of AB. Right: all lines are replaced with clines, M is still invariant.

Fig. 5, Right, illustrates the harmonic conjugate theorem with clines.
What are conics in the Pappus of clines ? They are images of a naive conic by

an inversion, thus they are quartic curves, or cubic curves in degenerate cases
(the inversion center lies on the conic).

Remark. In the projective complex plane, the inversion is not defined on Ω.
It can be defined for other planes (§8). These details are predictable sources of
complications for a Coq implementation.

5.2 Orthogonal Circles

Circles orthogonal to a given fixed circle can be considered as lines. A difficulty
is due to the fact that such circles cut in two points. These two points are inverse
of each other and always come in pairs. Thus it is sufficient to consider these
pairs as generalized points. Another solution is to consider only one side (either
the inside, or the outside) of the given fixed circle.

5.3 Poincaré Half Circles Are Lines

Circles the centers of which lie on a given line, for example y = 0, can be
considered as lines. Fig. 6 illustrates the Pappus property for these generalized
lines. Points come in pairs, with a symmetry relatively to the line y = 0. To
define related generalized points, either only points and half circles above the
line y = 0 are considered, or pairs of symmetric points are considered.

In passing, the Poincaré model for the hyperbolic plane uses these half circles,
it is called the Poincaré half plane [8] (curiously, this book does not mention the
Pappusian feature of the Poincaré plane).

5.4 Other Circles

Circles which cuts the unit circle (having equation: x2 +y2−1 = 0) in two points
symmetric relatively to the origin (0, 0) can also be considered as generalized
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Fig. 6. Circles with centers on a common line (e.g. y = 0) fulfil Pappus property.
Points come in pairs.

lines. Like all circles, their vector Q is orthogonal to C1 and C2; moreover their
vector Q is orthogonal to C6. They have equations x2+y2−2ux−2vy−1 = 0, their
center is (u, v), their radius is

√
1 + u2 + v2. Two distinct circles in this family

always meet in two antipodal points of the unit circle. Fig. 7 shows a bundle
of such circles. It illustrates the fact that all these circles belong to a bundle
generated by the unit circle x2 +y2−1 = 0 and a line with equation ux+vy = 0.
Thus all circles of this bundle pass through points (v/

√
u2 + v2,−u/

√
u2 + v2)

and (−v/
√

u2 + v2, u/
√

u2 + v2).
Points for these generalized lines are pair of naive points, which are symmetric

w.r.t. the origin.

Fig. 7. A bundle of circles. The thick circle and the thick line generate the bundle. The
full class of these circles is obtained when rotating the line.
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Another way to generate circles in this class is to compose two projections;
it also gives another proof of the fact that these circles are generalized lines;
first project naive lines in the plane to great circle on a 3D sphere, with the
center of the sphere as the center of projection. This projection maps each point
of the plane to two antipodal points on the sphere, which are equivalent. Then
apply a stereographic projection from the sphere to the (say, equatorial) plane,
i.e. the center of the projection is a pole of the sphere. The proof relies on easy
but tedious computations which are omitted for conciseness. Both projections
preserve incidences, thus the Pappus property holds for great circles on the
sphere, and for the final circles.

These circles are lines in the Beltrami model of the hyperbolic plane [8,2].

5.5 Some Parabolas Are Lines

Parabolas with a prescribed axis direction (say Oy) and passing through a given
fixed point can be considered as lines. They are completely defined with two
other points, like naive lines. These parabolas cut in at most one point (ignoring
the fixed common point, and the double point at infinity: (0, 1, 0)). As usual,
two parabolas non intersecting in the affine real plane do meet in the projective
complex plane.

5.6 Conics through Three Fixed Points Are Lines

The GeoGebra figure 8 illustrates that conics through three given distinct points
(non colinear) can be considered as lines: they fulfil A3, the Pappus axiom. They
also fulfil A1 and A2. Fig. 9 illustrates the harmonic conjugate theorem.

Fig. 8. Conics passing through three given distinct points (A, , B,C on the figure) fulfil
Pappus axioms. Thus they can be considered as lines.
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Fig. 9. The harmonic conjugate theorem. Left: the harmonic conjugate theorem for
naive lines. Right: the harmonic conjugate theorem for conics passing through three
fixed points F1, F2, F3.

6 Playing with Some Theorems

This section illustrates how a Pappus functor may extend theorems, on three
examples.

6.1 Proof of the Three Circles Theorem

The three circles theorem is used as an example of a theorem, for which I know
no proof lying in the Pappus theory for the moment.

Three Circles Theorem. Let a, b, c be three points, not on a common line. a′

is a point on line (bc), b′ is a point on line (ac), c′ is a point on line (ab). Let
Ca be the circle circumscribed (CC) to a, b′, c′. Cb is the CC to b, a′, c′, and Cc

is the CC to c, a′, b′. Then Ca, Cb, Cc have a common point (other than the two
cyclic points).

A short proof is given here, but it does not lie inside Pappus theory. A proof
inside Pappus theory would permit to extend this theorem to generalized lines.

The proof considers lines. The lines of the triangle are indexed 1, 2, 3, see Fig.
10 for the definition of lines 5,6,7. By hypothesis, the points 1∩2, 2∩4, 4∩5, 5∩1
are cocylic, as well as the points 5 ∩ 6, 6 ∩ 3, 3 ∩ 1, 1 ∩ 5. We need to prove that
the points 2∩ 3, 3∩ 6, 6∩ 4, 4∩ 2 are cocyclic too. Note 1, 2,. . . 6 the orthogonal
symmetry relatively to line 1, 2, . . . 6.

We first need the lemma: the transform 5124 is a translation. I use the conven-
tion that in the transform 5124, the symmetry 5 is performed first, but anyway
it does not matter: the reader can uses the opposite convention when reading the
proof. In the transform 5124 = (51)(24), the transforms 51 and 24 are rotations;
51 is a rotation around 5 ∩ 1, with angle twice the angle between lines 5 and
1. Similarly, 24 is a rotation around 2 ∩ 4, with angle twice the angle between
lines 2 and 4. But opposite angles in a cocyclic quadrilateral are either opposite,
or their sum equals π. In both cases, the effect of rotations 51 and 24 on vec-
tors annihilate each other, so 5124 is just a translation. QED. The converse also
holds.
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Fig. 10. The three circles theorem. The three circles have a common point.
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Fig. 11. Here we do not know that lines 4 and 6 are equal, we have to prove it. As in the
generic case, 6315 and 5124 are translations. Thus their composition (6315)(5124) =
6324 is a translation too. Circular permutations of a translation are translations too [3],
thus 3246 is a translation too. Moreover 32 and its inverse 23 are translations because
lines 2 and 3 are parallel in this special case. Thus (23)(3246) = 46 is a translation.
Thus lines 4 and 6 are parallel. But they have a common point (6 ∩ 5 and 4 ∩ 5), thus
they are equal. QED.

Similarly, 6315 is a translation.
Thus the composition (6315)(5124) = 63(1(55)1)24 = 6324 is a translation,

thus the four points 6 ∩ 3, 3 ∩ 2, 2 ∩ 4, 4 ∩ 6 are cocyclic. It is worth to mention
that this proof works also when the triangle 1, 2, 3 is degenerate, e.g. when lines
2 and 3 are parallel, as in Fig. 11.

Actually the three circles theorem still holds when circle are replaced with
conics passing through two distinct arbitrary points. See Fig. 12.

Another correct generalization of the three circles theorem is illustrated Fig.13.
It replaces Euclidean lines with conics passing through three distinct fixed (non
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Fig. 12. A generalization of the three circles theorem. Circles are replaced with conics
passing through 2 distinct arbitrary points F1, F2. These three conics have a common
point (other than the two arbitrary points).

Fig. 13. An extension of the three circles theorem. Lines (AB, AC, BC) are replaced
with conics passing through three fixed points F1, F2, F3, and circles are replaced
with conics through two of the fixed three points, for instance F1 and F2. The three
generalized circles have a common point, different of F1 and F2.

aligned) points F1, F2 and F3, and replaces circles with conics through F1 and
F2. Then the three ”circles” have a common pont.

A Pappus functor should be able to automatically produce such non trivial
generalizations of the three circles theorem and the corresponding proofs.
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6.2 The Four Circles Theorem

Four Circles Theorem. It is also called Miquel’s four circles theorem. It states
that the four circles circumbscribed to three points of a complete quadrilateral
have a common point, see Fig.14.

I know no proof in Pappus theory up to now (a combinatorial search for hexamys
by computer should find one). Anyway, the theorem can be proved easily from
Chasles theorem: each circle union the ”opposite” line defines a cubic curve; the
four cubic curves meet in 8 common points: the two cyclic points and the six
points of the complete quadrilateral. Thus after Chasles theorem, these cubics
meet in another nineth point.

Another short and nice proof relies on orthogonal symmetries relatively to lines
of the complete quadrilateral, see Fig.14 for the names of the lines. By hypothesis,
ACUH is cocyclic, thus the transform ACUH is a translation. Idem for HV DA.
Thus the composition (ACUH)(HV DA) = ACUV DA is a translation as well.
Thus A(ACUV DA)A = CUV D is a translation too. Thus CUV D is cocyclic.
QED. Unfortunately this last proof can not be generalized to generalized lines.

A Pappus functor should be able to produce this non trivial generalization
(Fig. 15) of the four circles theorem. Let F1, F2, F3 be three distinct non aligned
points. The six points (which were the vertices of the complete quadrilateral
in the initial four circles theorem) are called Qi, i = 1, . . . 6, and there are four
conics. The conic K134 passes through points F1, F2, F3, Q1, Q3, Q4; the conic
K156 passes through points F1, F2, F3, Q1, Q5, Q6; the conic K235 passes through
points F1, F2, F3, Q2, Q3, Q5; the conic K246 passes through points F1, F2, F3, Q2,
Q4, Q6. Replace circles in the initial four circles theorems with conics passing
through points F1 and F2. Then the four conics: K134, K156, K235, K246 all pass
through another common point, Z in Fig. 15.

B

U

V
C

D

C

D

H

B
A

A

Fig. 14. Miquel’s four circles theorem: the four circles have a common point (distinct
of the two cyclic points)
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Fig. 15. An extension of Miquel’s four circles theorem: lines are replaced with conics
through three fixed points F1, F2, F3, circles are replaced with conics through two of
the fixed points, namely F1 and F2. Then the four generalized circles have a common
point, Z in the figure.

6.3 A Butterfly Theorem

We conclude with this last theorem, Fig. 16. Let C be a fixed circle, and E
a point not on C. The symmetric to a point M ∈ C is by definition M ′ =
(EM) ∩ C. It is clearly an involution. The symmetry is extended to all points
in the plane with a Butterfly theorem which states that for all chords (A1, A2)
through M (where A1 ∈ C, A2 ∈ C), the symmetric chords (A′

1, A
′
2) passes

through a common point, which is M ′. Any conic can be used in place of the
circle C (for instance two lines, which gives a variant of Pappus theorem), and
the theorem still holds. For conciseness, no proof is provided. A Pappus functor
should be able to generalize (Fig. 16) this theorem and its proof (if it lies in
Pappus theory). A first generalization replaces linear chords with clines, i.e.
circles through a fixed point. Since this generalization reduces to applying some
inversion, it may be considered trivial. A second generalization is less obvious;
it replaces lines with conics through three fixed points F1, F2, F3, and the circle
C is replaced with a circle (or any conic) passing through F1 and F2.

Fig. 16. From left to right: a butterfly theorem, a first generalization, and a second one
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7 What Is a Point ?

This article mainly generalized lines. Another way to extend Pappus theory is
to generalize points. It is well known that, due to duality, lines and points can
be exchanged. It is conics which I will consider as points, in some sense.

A conic is represented with a non zero vector in a six dimensions vector space.
So it can be seen as a point in a projective space in five dimensions. We can say
that three conics Q1, Q2, Q3 are aligned iff there are non all zeros numbers
a1, a2, a3 such that a1Q1 + a2Q2 + a3Q3 = 0. Two distinct conics Q1 and Q2

generates a ”line of conics”, i.e. the set of conics equal to a1Q1 + a2Q2 for some
numbers a1, a2. To avoid ambiguity, call it a 2-bundle of conics.

Similarly, four conics are coplanar iff there are non all zeros numbers a1, a2,
a3, a4 such that a1Q1 + a2Q2 + a3Q3 + a4Q4 = 0. Three non aligned conics
generate a plane of conics, called a 3-bundle of conics.

A 3-bundle of conics is a Pappus plane, its points are conics. Thus all theorems
of the Pappus plane apply: Pappus, Desargue, Pascal, three-circle theorems, etc.
We can apply the Pappus functor.

8 Variants: A Zoo of Planes

For simplicity, we considered only the strongest axioms, so two distinct lines
always meet in one point, and two distinct proper conics always meet in four
points. It is the complex projective plane.

Weaker axioms, and other planes, are possible. For instance, we can accept
that two distinct lines meet in at most one point, and that two proper conics
meet in at most four points. The essential constraint is that no configuration
contradicts Pappus axiom, which can be rephrased as follows: if three distinct
points pi are aligned, and if three distinct points qj are aligned on another line,
and if the three intersection points rij = pi∩qj , i < j exist, then they are aligned.

This freedom of choice for axioms is related to the fact that the plane can
be coordinalized in several ways [6]. A point can be represented with two real
cartesian coordinates (x, y): it is the affine real plane, R2; it contains parallel
lines which do not meet. A point can be represented with homogenous real
coordinates (x, y, h) ∈ R

3 \ (0, 0, 0), two colinear vectors representing the same
point; this representation can be made canonic, using only values zero and one
for the homogeneous coordinate h; points (x, y, 0) are points at infinity; this is
the real projective plane P 2(R); all pair of distinct lines meet in one point; but
two distinct proper conics can meet in less than four points because R is not
algebraically closed. Geometrically, P 2(R) is the set of 3D lines incident to a
given point, say the origin; to visualize the plane, the set of lines is cut with
an arbitrary plane not passing through the origin. To get more regularity, a
solution is to use complex coordinates, either cartesian coordinates (x, y) ∈ C2,
or homogeneous coordinates (x, y, h) ∈ C3\(0, 0, 0), i.e. P 2(C). Another classical
representation represents each point (x ∈ R, y ∈ R) of the plane with a complex
number c = x+iy ∈ C: this is the complex line C; if C is augmented with 1/0 for
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convenience, the complex projective line P 1(C) is obtained: this plane has only
one point at infinity; through stereographic projection, this plane is mapped to
the sphere S2 (S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}) and its point at infinity
1/0 is mapped to the North pole (0, 0, 1) of the sphere. All these planes are
locally equivalent for their ”visible” part, but they are no more when points at
infinity or imaginary points are involved; also they have not the same topology.

Example. Consider the circle with center (−3, 0) and radius 1, and the circle
with center (3, 0) and radius 1. In the affine real plane R2, in the projective real
plane P 2(R), and in the complex projective line P 1(C), they do not intersect. In
the complex affine plane C2 (points are represented with (x ∈ C, y ∈ C)), they
intersect in two points: (0,±i

√
3). In the complex projective plane P 2(C), they

intersect in four points, the two previous ones, and the cyclic points (±i, 1, 0).
Remark. In the complex projective line P 1(C), inversions, for example: T (z) =

1/z and T ′(z) = 1/z, can be extended to their pole 0: the pole and the point
at infinity are inverse of each other. In the complex projective plane P 2(C), the
inversion: T (x, y) = (x/(x2 + y2), y/(x2 + y2)) (using cartesian coordinates for
short) can not be consistently extended to the point (0, 0): it is because P 2(C)
has a line at infinity, and not one point at infinity like P 1(C).

Remark. It is convenient to map P 1(C) to the sphere {(x, y, z) ∈ R3 | x2 +
y2 + z2 − 1 = 0} with the stereographic projection s. For convenience, place the
plane P 1(C): c = x + iy horizontally at altitude z = 0; then the stereographic
projection maps c = (x, y, 0) to s(c) = (2x/(x2 + y2 + 1), 2y/(x2 + y2 + 1), (x2 +
y2 − 1)/(x2 + y2 + 1)). s(c) is the intersection point of the sphere and the line
(Nc), where N = (0, 0, 1) is the North pole of the sphere. Naive lines in P 1(C)
are mapped to circles on the sphere, all passing through N . The point at infinity
of P 1(C) is mapped to N . Some properties of P 1(C) are more easily seen on the
sphere, e.g. in P 1(C), the point at infinity 1/0 belongs to all (naive) lines; thus
non parallel lines (in the usual, naive sense) in P 1(C) cut in two points.

The ”Pappus tower” can likely be built with these planes. However, each
of them manages degeneracies (parallel lines, non intersecting conics, points at
infinity) in its own way, which may complicate implementations.

9 Conclusion

Two remarks before concluding:

- From another viewpoint, the content of this article is sometimes trivial. We
just apply many homographies and inversions to the whole naive Pappus plane,
so naive lines and naive conics are mapped to curves with arbitrary high degree.
What is essential is that all these transforms (homographies and inversions)
preserve incidences. More general non linear diffeomorphisms could be used as
well.

- Jürgens Richter-Gebert et al [5] show that tropical lines do not always fulfil
Pappus property.

In conclusion, this article considers the Pappus theory as a functor: its inputs
are points and lines which must fulfil axioms of Pappus geometry. The output
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is a set of proved theorems and methods, and new geometric objects, some of
which fulfil axioms of Pappus geometry. Theorems are incidence theorems, and
have a combinatorial flavor.

For this approach to work in practice, e.g. to be programmed in Coq, all
proofs must lie inside the Pappus theory, i.e. all proofs must use only axioms
of the Pappus theory. A computer combinatorial search inspired by the area
method or the full-angle method [7], but through the set of Hexamys (or their
duals, Brianchons) as in [4], and relying on some numerical example (a figure,
or a witness) like the area method to help prune the search space, may help find
such proofs in an automatic way.

This article was written with in mind a geometric formalization, i.e. theorems
and algorithms are proved applying the Pappus axiom, or the hexamys theorems,
or relying on properties of projectivities or homographies, like in Coxeter’s book
[1]. However a more algebraic approach can also be considered; for instance, lines
can be seen algebraically as vectors in some rank three vector space.

Acknowledgements. I thank the anonymous referees: their remarks and com-
ments helped me to improve the clarity of this article.
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