ZEA — A zero-free exact arithmetic

D. Michelucci, J-M Moreau

LISSE/ENSM.SE, Saint-Etienne — France

1 Introduction

This paper describes the foundations of a new and en-
tirely different exact arithmetic for geometric needs,
based on the observation that the main problem when
dealing with numerical issues is the handling of zero.
With this in mind, the new arithmetic takes its strength
from the fact that it forbids zero, or, said in a less
provocative fashion, it forbids degenerate cases. In
the long range, we strongly believe that such strate-
gies could allow Computational Geometry to address
non-linear problems.
There are two classes of exact arithmetics:

1. Those that always provide comparisons between
numbers, and the signs of numbers; bigint and
rational arithmetics are typical examples in this
class, along with various algebraic arithmetics that
unfortunately prove very slow and are seldom used
in Computational Geometry (CG).

2. Arithmetics in the second class can only compare
numbers with different values: they take an infi-
nite time to detect the equality of two numbers.
Equivalently, although they do “recognize” posi-
tive and negative numbers, they cannot detect zero
(in a finite number of steps). Such arithmetics
are called real exact or constructive real arith-
metics. They can be based on Cauchy sequences
of nested intervals, continued fractions expansions,
or on-line computations with redundant numera-
tion systems. They can compute algebraic non-
rational functions (e.g. square root, cubic root,
etc.), but also transcendental functions, as quickly
and easily—as seen from outside—as any rational
operation. It is worth mentioning that, by princi-
ple, they can only compute continuous functions.
Of course, they all use some kind of laziness, since
they compute with (potentially) infinite objects.
To quote a few, see [23, 2, 22, 15, 10] and the ref-
erences therein.

As is well known, algorithms in Computational Ge-
ometry do not withstand the inaccuracy of floating-
point arithmetics, which results in topological inconsis-
tencies or infinite loops at run time. To prevent those,
computational geometers typically round initial numer-

ical data (e.g., coordinates of vertices for Delaunay tri-
angulations) to integers or rational values, and then
compute exactly, using a Class 1 arithmetic, since al-
gorithms in that domain usually require the detection
of equality (and nullity)!.

In practice, this approach precludes CG from ad-
dressing nonrational problems. But even in the rational
case, it is not proven that using a Class 1 exact arith-
metic is the only approach, let alone the best one. So
the question arises: is it possible for CG to use only
arithmetics from Class 27 We now examine two pos-
itive answers to that question, one already published,
and one we suggest and think has never been used be-
fore.

2 Gap arithmetics

One way to use an arithmetic from Class 2 in a geo-
metric environment is to convert it to Class 1 (see e.g.,
[17, 5, 12]). What is mainly required to do so is a way
to detect zero, and this may be achieved by using var-
ious so-called gap theorems or conjectures. Consider,
for instance, Canny’s theorem [7]: Let (1,3 ...xy) be
one of the finitely many roots of an algebraic system
in n unknowns, n equations, each with total degree not
exceeding d, and integer coefficients with absolute value
not greater than M. Then, there is a threshold value

1

°T BMa)

such that either ©; =0, or |x;| > €, for alli e 1...n.

(See [7] for a proof. Hint: consider the u-resultant,
and apply Hadamard’s bound.)

Assuming all the numbers involved in any geomet-
ric computation are either initial integer numbers (af-
ter rounding), or roots of some algebraic system at
hand, this kind of “gap theorem” gives a method to
compute the sign of a number (or to compare two
numbers, by considering their difference): just com-
pute an interval with half-width less than . Unfor-
tunately, the threshold value is virtually unpractical,

INaturally, to speed up CG programs, exact arithmetics are
not systematically used in practice: many exact, and slow, com-
putations may be avoided using floating point or interval filters,
or some kind of laziness; see for instance [8, 4, 6, 16, 9]. However,
this paper will not deal with this question.

and there is not much hope to improve (i.e., increase)
¢ significantly?. Intuitively—and this seems confirmed
by experiments—one may hope that finding the sign
of a non zero number is fast, on the average. On the
other hand, establishing the nullity of a given quantity
is hopelessly slow: an intrinsically exponential number
of digits must be computed.

Still, it is worth noting that Canny’s theorem also
applies in the linear rational case, i.e., when d = 1: the
es are of course much more usable in practice. To our
knowledge, no attempt has ever been made to use gap
theorem-based rational arithmetics.

Several such “gap arithmetics” have been proposed
and used in CG, especially to handle the square root
operation [17, 5, 12]. In the transcendental case, D.
Richardson [18, 14, 19] has proposed a gap conjecture,
called the Uniformity Conjecture, for numbers defined
by an expression (not by a system of equations) over
the 19 symbols:

0...9 () + — x [/ exp

log

If the value of an expression has magnitude smaller than
1/19', where [is the expression length, then it is zero®.
In more intuitive words, the 19" possible numbers are
uniformly distributed modulo 1.

In conclusion, gap arithmetics lack gap theorems in
the transcendental case, and generally yield unpracti-
cal methods: an exponential number of digits must be
computed to prove nullity. Hence, exploring another

direction seems justified.

3 Zero-free computations

We claim that a new approach to Class 2 arithmetic—
the “zero-free exact arithmetic” (zea)—may be used
with profit in CG. Its principle is as follows: instead
of being rounded to integral or rational numbers, the
initial numerical data are “rounded to” algebraically in-
dependent numbers*. To do so, the initial numbers are
perturbed by a (potentially infinite) stream of random

2For example, innthe following fairly simple system, € must be
smaller than 1/M2" ~1:

z1(Mz1—1)=0 —
Ma:g—x%:O —

zy =0or 1/M
x2 =0 or 1/M>

Mz, 7:1,‘%_1 =0 — z,=0o0r 1/M2n_1.

3 Actually, another condition is required: see the article for
details.

4algebraically independent: n real numbers v, ..., v, are said
to be algebraically dependent if and only if there exists a non-
identically zero polynomial f(z1,..,2,) with integral coefficients
such that f(vi,...,un) = 0. There are algebraically independent
if no such polynomial may be found.

digits; for instance the initial value 0.47 will be per-
turbed into 0.470000845289... where the first zeros are
present by respect for the initial value, and the other
digits are random.

One may think that the numbers thus genereated
are transcendental with high probability, but we do not
claim this nor intend to use such a property: algebraic
independence is sufficient for our needs!

C@G programs branch according to the sign of poly-
nomials (often expressed as determinants) with integer
coefficients over initial numerical data®:

if F(p1,p2...pn) >0
then POSITIVE_CASE
else-if F(pi,p2.-.pn) <0
then NEGATIVE_CASE
else ZERO_CASE

After the perturbation, the p;’s are algebraically in-
dependent, thus F(py,ps...p,) cannot be zero: the
ZERO_CASE may no longer occur (except if F is the iden-
tically null polynomial, which is supposed never to be
used). Hence, Class 2 arithmetics may indeed be used
in CG. Moreover degeneracies (3 aligned points, 4 co-
cyclic points, etc) may no longer occur: they are re-
moved by the perturbation. This greatly simplifies the
programming of CG methods. And finally it becomes
possible for CG to consider non linear or non affine
problems (e.g., intersection between algebraic surfaces).

Such a scheme should be used with the typical con-
structions of CG, for instance convex hulls, intersec-
tions of generic (e.g., non regular) polytopes, Delaunay
triangulations or Voronoi diagrams, generic arrange-
ments, and so forth. A typical domain where such a
scheme should not be used is geometric theorem prov-

ing.

4 Discussion
Some remarks or questions are worth mentioning:

1. Dependencies between data are forbidden, to allow
separate random perturbations. This means for
instance that convex polytopes must be described
either by the intersection of halfplanes, or by the
convex hull of a set of points. Actually, there is
nothing new here: it is already the case when CG
methods round data to integer values.

2. What is the average number of digits required to
determine the sign of a number?

3. The most frequently used random generators
yield periodical sequences; in our case this would

5This assertion is not entirely true, but let us admit it for the
moment.

theoretically result in generating algebraically
dependent—Dbecause rational—numbers. However,
in practice such generators could be used and the
method could work with high probability, provided
the period of the random generator is long enough.

Another track could be to use smarter random
generators, producing truly aperiodic sequences:
although we do not know whether this is pos-
sible, we do know that there exist determinis-
tic automata that produce aperiodic sequences
(e.g., Thue-Morse sequences, [1]). If everything
else failed, it would still be possible to generate,
once and for all, tables of algebraically indepen-
dent numbers, in much the same way that random
numbers tables were edited before the advent of
modern computers.

. Another idea is to note that in most situations
in CG, since the depth of the computations is fi-
nite (i.e., the algorithms are not re-entrant), it
is possible to have a “general upper bound” [d*]
on the degree of the test polynomials involved
in a given instance of algorithm. This means
that algebraically independence is not necessary,
and may be advantageoulsy replaced with the fol-
lowing weaker constraint: define the dependency-
degree of n numbers to be the smallest degree [d_]
of the non-identically null polynomial with coef-
ficients in Z that vanishes at (v1,...,v,). It suf-
fices that the dependency-degree of the generated
numbers be bigger than the general upper bound,
ie,d_ >dt.

What is basically required here is that the
dependency-polynomial be more complez (in a cer-
tain sense) than the test polynomials. As opposed
to the first “boolean” and qualitative complexity
evaluation (algebraic dependency versus algebraic
independency), using the degree in the fashion just
described is a more quantitative approach. How-
ever, there exist other measures for this notion
(e.g., Mahler’s measure, magnitude of the coef-
ficients, polynomial height, etc.), some of which
might prove applicable and useful in this case.

. Until now, we have assumed that the numbers
involved in any test were initial data, not com-
puted values (note that other researchers have
made the same assumption [24, 8]). However,
it turns out that such a restriction is unconve-
nient for programmers, who had rather use the
same predicate (i.e., the same function call) to
compute, for instance, the location of an initial
or intersection point relatively to some given line
or plane, be it defined by initial points or not:
location(pt, line) returning below or above.

6. Allowing initial and computed values in the test
polynomials may lead to problems: for instance,
a program computes the intersection point I be-
tween two (perturbed) lines AB and C'D. How-
ever, whatever the perturbation on A, B,C,D,
points A, B, I are aligned, by definition, and the
call to location(I, AB) or location(I, CD) will
never return: indeed, after substitution, the poly-
nomial for location is identically null.

Of course, this is an old problem to programmers
in CG, who are accustomed to using book-keeping
information (I aligned with A and B, and with C
and D) rather than letting the exact library re-
compute it.

7. Re-entrant or on-line methods raise more difficult
issues (next section.)

5 Re-entrance

Re-entrant or online methods raise difficult issues, but
such methods are rare in CG. Imagine, for instance,
a method to compute arrangements of lines in 2D al-
lowing the dynamic insertion of new lines through the
intersections of previous lines. Let P;, P3, Ps be
three intersection points on a first line, and P,, Py,
Ps three others, on a second line. Then, by Pappus’s
theorem, A= P1P2 ﬂP4P5, B = P2P3 ﬂP5P6 and
C = P3Py N PsP, are aligned (whatever the pertur-
bation of lines Py P3Ps and PoPyPs). Thus the call
to location(A, BC) will not return: the underlying
polynomial behind this call to location is the zero
polynomial. Pappus’s theorem being not trivial, the
corresponding zero is more difficult to predict for the
programmer.

The simplest solution is to forbid re-entrant methods:
thus points A, B, C of the previous example cannot be
used twice, but only some perturbations of them. In
this way, no geometric construction can be made! A
less authoritarian approach would allow geometric con-
structions, but then would have to detect resulting ze-
ros, at run time.

The existence of (fast?) detection methods is an open
question. It is clear that these zeros are not accidental,
but occur whatever the perturbation, i.e., for all data
or at least for all data in some open set. Since they
are theorems, one may consider detecting them with
the help of symbolic computations or gap theorems,
but also by means of stochastic computations—in the
spirit of the Schwartz’s test [20] or of Hong’s prover
[11]. See also [3, 21, 13] for a more recent work in this
wake. Let us give more insight on the previous points:

This problem has several difficulty levels.

1. In the simplest case, the perturbed numbers gen-
erated are v = (vy, ..., v;) and the computed values

are
r1 = fi(v)
T2 = fa(v,m1)
Tn = folv,@1,.sTp_1)

where the f;’s are polynomials with integral
coefficients, and the tests involve polynomials
T(v, 1, Tn)-

2. In a more complex version, the x;’s are implicitly
described by:

gi(v,z1) = 0
g2(“7$17$2) = 0
gn(v,xl,...,xn_l) = 0

where the g;’s are polynomials with integral co-
effcients, assumed to be known, and the values
of the x;’s are computed by a series, or an algo-
rithm. For instance, 1 = /v, (g1 (v, z1) = 22 —v)
may be computed using the Egyptian algorithm

k ke
0 _ k+1 _ zi+v/zy
(x] = v,z = 2541,

Fortunately, there are methods to detect unex-
pected zeros in such settings. For instance, the
operations leading to the irruption of a zero as a
direct consequence of Pascal’s Theorem® may be
expressed in the previous framework. Let us detail
a “stochastic proof” of this theorem:

(a) In a finite field Z /pZ, p prime, define a ran-
dom conic I

(b) Pick 6 random lines, and use their intersec-
tions with the conic (one out of two points, at
random) to define six points on I'. Comput-
ing the intersecton of a line and the conic re-
quires computing a surd, an operation which
proves (im)possible in the finite field in 50%
of the trials, on average (draw another line
when not lucky).

(c¢) Check that the three points are aligned.

p-adic variants may also be considered (i.e., com-
putation modulo p, p?, p?, ...) There exist theorems
that allow transforming this heuristic proof into a
formal one (said rapidly: use Hong’s methods with

6Pascal’s Theorem: The three intersection points of the oppo-
site sides of an hexagon inscribed in a conic are aligned. (When
the conic degenerates into 2 lines, Pascal’s theorem reduces to
Pappus’s theorem).

modular arithmetic, and then apply the Chinese
Remainder Theorem). Note that the present argu-
ment also applies to the previous, simpler case.

3. The algebraic system is not triangular. Finding a
solution in a finite field is harder.

4. In the most general and of course much harder
case, the system is no longer algebraic, but uses
transcendental (e.g., trigonometric, logarithms,
etc.) functions.

A last related question is: is it possible to detect such
very special kinds of zeros at compile time, assuming
some functional language is used, at least in the sim-
plest cases described above?

6 Conclusion

This paper has hinted at a new solution to imprecision
in CG. We have discussed how a zero-free arithmetic
could be defined, and considered several options for
its implementation. We have addressed the problem
of detecting undesirable zeros in the case of re-entrant
algorithms, and stressed out the fact that, although
some methods for detecting such problems could be
designed, they should not be confused with theorem-
proving strategies, but considered as a means to de-
bug programs. We are considering implementing ZEA
in CAML and testing its capabilities in the near future.

Acknowledgements

ZEA is the starting point for a common research ac-
tion between the authors and two INRIA Projects
(PRISME, Sophia-Antipolis (J-D. Boissonnat) and ARE-
NAIRE, Lyons (J-M. Muller)).

References

[1]

3]

[4]

[9]

[10]

[11]

J-P. Allouche and J. Shallit. The ubiqui-
tous Prouhet-Thue-Morse sequence. In C. Ding,

T. Helleseth, and H. Niederreiter, editors,
Sequences and Their Applications: Proc. of
SETA’98, pages 1-16. Springer-Verlag, 1999.

Available at http://www.math.uwaterloo.ca/
“shallit/Papers/ubiq.ps.

H.-J. Boehm, R. Cartwright, M. Riggle, and M.J.
O’Donnell. Exact real arithmetic: a case study in
higher order programming. In Proc. ACM Conf.
on Lisp and Functional Programming, pages 162—
173, 1986.

D. Bouhineau. Construction automatique de fig-
ures géometriques et programmation logique avec
contraintes. PhD thesis, LSR-IMAG, Grenoble,
France, 1997.

H. Bronnimann, C. Burnikel, and S. Pion. Interval
arithmetic yields efficient dynamic filters for com-
putational geometry. In Proc. 14th Annu. Symp.
on Comput. Geom., pages 165-174, 1998.

C. Burnikel, R. Fleischer, K. Mehlhorn, and
S. Shirra. Efficient exact geometric computation

made easy. In Proc. 15th Annu. Symp. on Com-
put. Geom., pages 341-350, 1999.

C. Burnikel, S. Funke, and M. Seel. Exact geo-
metric predicates using cascaded computations. In
Proc. 14th Annu. ACM Symp. on Comput. Geom.,
pages 175—-183, 1998.

J.F. Canny. The complezity of robot motion plan-
ning. PhD thesis, Massachussetts Institute of
Technology, Cambridge, Massachussetts, 1988.

S. Fortune and C. Van Wyk. Efficient exact arith-
metic for computational geometry. In Proc. 9th
Annu. ACM Symp. on Comput. Geom., pages 163—
172, San Diego, May 1993.

S. Funke and K. Mehlhorn. LOOK — a lazy object-
oriented kernel for geometric computations. In
Proc. of the 16th Annu. ACM Symp. on Comput.
Geom., pages 156-165, Hong-Kong, 2000.

P. Gowland and D. Lester. The correctness of an
implantation and test of a library for exact arith-
metic. In Proc. 4th Real Numbers and Computers,
pages 125-140, Schloss Dagstuhl, Saarland, Ger-
many, 2000.

J.W. Hong. Proving by example and gap theo-
rem. In IEEE Computer Society Press, editor,
Proc. 27th Annu. IEEE Symp. on FOCS, pages
107-116, Toronto, Ontario, 1986.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap.
A core library for robust numeric and geometric
computation. In Proc. 15th Annu. ACM Symp. on
Comput. Geom., pages 351-359, 1999.

U. Kortenkamp. Foundations of dynamic geome-
try. PhD thesis, Swiss Federal Institute of Tech-
nology, Zurich, 1999.

S. Langley and D. Richardson. Exact compu-
tations with real algebraic numbers. In Proc.
3rd Real Numbers and Computers, pages 167-176,
Paris, France, 1998.

V. Ménissier-Morain. Arithmétique exacte. PhD
thesis, Université Paris VII, 1994.

D. Michelucci and J-M. Moreau. Lazy arithmetic.
IEEFE Transactions on Computers, 46(9):961-975,
1997.

K. Ouchi. Real/expr: implementation of exact
computation. Master’s thesis, Dept. of Computer
Science, New York University, 1997.

D. Richardson. How to recognise zero. J. Symbolic
Computation, 1996.

Dan Richardson. Multiplicative independence
and the wuniformity conjecture. Technical
report, Bath University, Math. Dpt, 1999.

http://www.bath.ac.uk/ “masdr/.

J.T. Schwartz.
verification of polynomial identities.
27(4):701-717, 1980.

Fast probabilistic algorithms for
J. ACM,

D. Tulone, C. Yap, and C. Li. Randomized zero
testing of radical expressions and elementary ge-
ometry theorem proving. Technical report, Dpt of
Computer Science, New York University, decem-
ber 1999.

J.E. Vuillemin. Exact real computer arithmetic
with continued fractions. IEEE Trans Computers,
39(8):1087-1105, 1990.

K. Weihraus. Representations of the real numbers
and of the open subsets of the sets of the real num-
bers. Annals of pure and applied logic, 35:247-260,
1985.

C.K. Yap. Symbolic treatment of geometric dege-
naracies. In Proc. 13th IFIP Conf. on Sys. Model-
ing and Optimization, pages 348-358, Tokyo, 1987.

