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e1 Introdu
tionThis paper des
ribes the foundations of a new and en-tirely di�erent exa
t arithmeti
 for geometri
 needs,based on the observation that the main problem whendealing with numeri
al issues is the handling of zero.With this in mind, the new arithmeti
 takes its strengthfrom the fa
t that it forbids zero, or, said in a lessprovo
ative fashion, it forbids degenerate 
ases. Inthe long range, we strongly believe that su
h strate-gies 
ould allow Computational Geometry to addressnon-linear problems.There are two 
lasses of exa
t arithmeti
s:1. Those that always provide 
omparisons betweennumbers, and the signs of numbers; bigint andrational arithmeti
s are typi
al examples in this
lass, along with various algebrai
 arithmeti
s thatunfortunately prove very slow and are seldom usedin Computational Geometry (CG).2. Arithmeti
s in the se
ond 
lass 
an only 
omparenumbers with di�erent values: they take an in�-nite time to dete
t the equality of two numbers.Equivalently, although they do \re
ognize" posi-tive and negative numbers, they 
annot dete
t zero(in a �nite number of steps). Su
h arithmeti
sare 
alled real exa
t or 
onstru
tive real arith-meti
s. They 
an be based on Cau
hy sequen
esof nested intervals, 
ontinued fra
tions expansions,or on-line 
omputations with redundant numera-tion systems. They 
an 
ompute algebrai
 non-rational fun
tions (e.g. square root, 
ubi
 root,et
.), but also trans
endental fun
tions, as qui
klyand easily|as seen from outside|as any rationaloperation. It is worth mentioning that, by prin
i-ple, they 
an only 
ompute 
ontinuous fun
tions.Of 
ourse, they all use some kind of laziness, sin
ethey 
ompute with (potentially) in�nite obje
ts.To quote a few, see [23, 2, 22, 15, 10℄ and the ref-eren
es therein.As is well known, algorithms in Computational Ge-ometry do not withstand the ina

ura
y of 
oating-point arithmeti
s, whi
h results in topologi
al in
onsis-ten
ies or in�nite loops at run time. To prevent those,
omputational geometers typi
ally round initial numer-

i
al data (e.g., 
oordinates of verti
es for Delaunay tri-angulations) to integers or rational values, and then
ompute exa
tly, using a Class 1 arithmeti
, sin
e al-gorithms in that domain usually require the dete
tionof equality (and nullity)1.In pra
ti
e, this approa
h pre
ludes CG from ad-dressing nonrational problems. But even in the rational
ase, it is not proven that using a Class 1 exa
t arith-meti
 is the only approa
h, let alone the best one. Sothe question arises: is it possible for CG to use onlyarithmeti
s from Class 2? We now examine two pos-itive answers to that question, one already published,and one we suggest and think has never been used be-fore.2 Gap arithmeti
sOne way to use an arithmeti
 from Class 2 in a geo-metri
 environment is to 
onvert it to Class 1 (see e.g.,[17, 5, 12℄). What is mainly required to do so is a wayto dete
t zero, and this may be a
hieved by using var-ious so-
alled gap theorems or 
onje
tures. Consider,for instan
e, Canny's theorem [7℄: Let (x1; x2 : : : xn) beone of the �nitely many roots of an algebrai
 systemin n unknowns, n equations, ea
h with total degree notex
eeding d, and integer 
oeÆ
ients with absolute valuenot greater than M . Then, there is a threshold value" = 1(3Md)ndnsu
h that either xi = 0, or jxij > ", for all i 2 1 : : : n.(See [7℄ for a proof. Hint: 
onsider the u-resultant,and apply Hadamard's bound.)Assuming all the numbers involved in any geomet-ri
 
omputation are either initial integer numbers (af-ter rounding), or roots of some algebrai
 system athand, this kind of \gap theorem" gives a method to
ompute the sign of a number (or to 
ompare twonumbers, by 
onsidering their di�eren
e): just 
om-pute an interval with half-width less than ". Unfor-tunately, the threshold value is virtually unpra
ti
al,1Naturally, to speed up CG programs, exa
t arithmeti
s arenot systemati
ally used in pra
ti
e: many exa
t, and slow, 
om-putations may be avoided using 
oating point or interval �lters,or some kind of laziness; see for instan
e [8, 4, 6, 16, 9℄. However,this paper will not deal with this question.



and there is not mu
h hope to improve (i.e., in
rease)" signi�
antly2. Intuitively|and this seems 
on�rmedby experiments|one may hope that �nding the signof a non zero number is fast, on the average. On theother hand, establishing the nullity of a given quantityis hopelessly slow: an intrinsi
ally exponential numberof digits must be 
omputed.Still, it is worth noting that Canny's theorem alsoapplies in the linear rational 
ase, i.e., when d = 1: the"s are of 
ourse mu
h more usable in pra
ti
e. To ourknowledge, no attempt has ever been made to use gaptheorem-based rational arithmeti
s.Several su
h \gap arithmeti
s" have been proposedand used in CG, espe
ially to handle the square rootoperation [17, 5, 12℄. In the trans
endental 
ase, D.Ri
hardson [18, 14, 19℄ has proposed a gap 
onje
ture,
alled the Uniformity Conje
ture, for numbers de�nedby an expression (not by a system of equations) overthe 19 symbols:0 : : : 9 ( ) + � � = exp log kpIf the value of an expression has magnitude smaller than1=19l, where l is the expression length, then it is zero3.In more intuitive words, the 19l possible numbers areuniformly distributed modulo 1.In 
on
lusion, gap arithmeti
s la
k gap theorems inthe trans
endental 
ase, and generally yield unpra
ti-
al methods: an exponential number of digits must be
omputed to prove nullity. Hen
e, exploring anotherdire
tion seems justi�ed.3 Zero-free 
omputationsWe 
laim that a new approa
h to Class 2 arithmeti
|the \zero-free exa
t arithmeti
" (zea)|may be usedwith pro�t in CG. Its prin
iple is as follows: insteadof being rounded to integral or rational numbers, theinitial numeri
al data are \rounded to" algebrai
ally in-dependent numbers4. To do so, the initial numbers areperturbed by a (potentially in�nite) stream of random2For example, in the following fairly simple system, " must besmaller than 1=M2n�1:x1(Mx1 � 1) = 0 ! x1 = 0 or 1=MMx2 � x21 = 0 ! x2 = 0 or 1=M3...Mxn � x2n�1 = 0 ! xn = 0 or 1=M2n�1:3A
tually, another 
ondition is required: see the arti
le fordetails.4algebrai
ally independent: n real numbers v1; :::; vn are saidto be algebrai
ally dependent if and only if there exists a non-identi
ally zero polynomial f(x1; ::; xn) with integral 
oeÆ
ientssu
h that f(v1 ; :::; vn) = 0. There are algebrai
ally independentif no su
h polynomial may be found.

digits; for instan
e the initial value 0.47 will be per-turbed into 0.470000845289... where the �rst zeros arepresent by respe
t for the initial value, and the otherdigits are random.One may think that the numbers thus genereatedare trans
endental with high probability, but we do not
laim this nor intend to use su
h a property: algebrai
independen
e is suÆ
ient for our needs!CG programs bran
h a

ording to the sign of poly-nomials (often expressed as determinants) with integer
oeÆ
ients over initial numeri
al data5:if F (p1; p2:::pn) > 0then POSITIVE CASEelse-if F (p1; p2:::pn) < 0then NEGATIVE CASEelse ZERO CASEAfter the perturbation, the pi's are algebrai
ally in-dependent, thus F (p1; p2:::pn) 
annot be zero: theZERO CASEmay no longer o

ur (ex
ept if F is the iden-ti
ally null polynomial, whi
h is supposed never to beused). Hen
e, Class 2 arithmeti
s may indeed be usedin CG. Moreover degenera
ies (3 aligned points, 4 
o-
y
li
 points, et
) may no longer o

ur: they are re-moved by the perturbation. This greatly simpli�es theprogramming of CG methods. And �nally it be
omespossible for CG to 
onsider non linear or non aÆneproblems (e.g., interse
tion between algebrai
 surfa
es).Su
h a s
heme should be used with the typi
al 
on-stru
tions of CG, for instan
e 
onvex hulls, interse
-tions of generi
 (e.g., non regular) polytopes, Delaunaytriangulations or Voronoi diagrams, generi
 arrange-ments, and so forth. A typi
al domain where su
h as
heme should not be used is geometri
 theorem prov-ing.4 Dis
ussionSome remarks or questions are worth mentioning:1. Dependen
ies between data are forbidden, to allowseparate random perturbations. This means forinstan
e that 
onvex polytopes must be des
ribedeither by the interse
tion of halfplanes, or by the
onvex hull of a set of points. A
tually, there isnothing new here: it is already the 
ase when CGmethods round data to integer values.2. What is the average number of digits required todetermine the sign of a number?3. The most frequently used random generatorsyield periodi
al sequen
es; in our 
ase this would5This assertion is not entirely true, but let us admit it for themoment.



theoreti
ally result in generating algebrai
allydependent|be
ause rational|numbers. However,in pra
ti
e su
h generators 
ould be used and themethod 
ould work with high probability, providedthe period of the random generator is long enough.Another tra
k 
ould be to use smarter randomgenerators, produ
ing truly aperiodi
 sequen
es:although we do not know whether this is pos-sible, we do know that there exist determinis-ti
 automata that produ
e aperiodi
 sequen
es(e.g., Thue-Morse sequen
es, [1℄). If everythingelse failed, it would still be possible to generate,on
e and for all, tables of algebrai
ally indepen-dent numbers, in mu
h the same way that randomnumbers tables were edited before the advent ofmodern 
omputers.4. Another idea is to note that in most situationsin CG, sin
e the depth of the 
omputations is �-nite (i.e., the algorithms are not re-entrant), itis possible to have a \general upper bound" [d+℄on the degree of the test polynomials involvedin a given instan
e of algorithm. This meansthat algebrai
ally independen
e is not ne
essary,and may be advantageoulsy repla
ed with the fol-lowing weaker 
onstraint: de�ne the dependen
y-degree of n numbers to be the smallest degree [d�℄of the non-identi
ally null polynomial with 
oef-�
ients in Z that vanishes at (v1; :::; vn). It suf-�
es that the dependen
y-degree of the generatednumbers be bigger than the general upper bound,i.e., d� > d+.What is basi
ally required here is that thedependen
y-polynomial bemore 
omplex (in a 
er-tain sense) than the test polynomials. As opposedto the �rst \boolean" and qualitative 
omplexityevaluation (algebrai
 dependen
y versus algebrai
independen
y), using the degree in the fashion justdes
ribed is a more quantitative approa
h. How-ever, there exist other measures for this notion(e.g., Mahler's measure, magnitude of the 
oef-�
ients, polynomial height, et
.), some of whi
hmight prove appli
able and useful in this 
ase.5. Until now, we have assumed that the numbersinvolved in any test were initial data, not 
om-puted values (note that other resear
hers havemade the same assumption [24, 8℄). However,it turns out that su
h a restri
tion is un
onve-nient for programmers, who had rather use thesame predi
ate (i.e., the same fun
tion 
all) to
ompute, for instan
e, the lo
ation of an initialor interse
tion point relatively to some given lineor plane, be it de�ned by initial points or not:lo
ation(pt, line) returning below or above.

6. Allowing initial and 
omputed values in the testpolynomials may lead to problems: for instan
e,a program 
omputes the interse
tion point I be-tween two (perturbed) lines AB and CD. How-ever, whatever the perturbation on A;B;C;D,points A;B; I are aligned, by de�nition, and the
all to lo
ation(I, AB) or lo
ation(I, CD) willnever return: indeed, after substitution, the poly-nomial for lo
ation is identi
ally null.Of 
ourse, this is an old problem to programmersin CG, who are a

ustomed to using book-keepinginformation (I aligned with A and B, and with Cand D) rather than letting the exa
t library re-
ompute it.7. Re-entrant or on-line methods raise more diÆ
ultissues (next se
tion.)5 Re-entran
eRe-entrant or online methods raise diÆ
ult issues, butsu
h methods are rare in CG. Imagine, for instan
e,a method to 
ompute arrangements of lines in 2D al-lowing the dynami
 insertion of new lines through theinterse
tions of previous lines. Let P1, P3, P5 bethree interse
tion points on a �rst line, and P2, P4,P6 three others, on a se
ond line. Then, by Pappus'stheorem, A = P1P2 \ P4P5, B = P2P3 \ P5P6 andC = P3P4 \ P6P1 are aligned (whatever the pertur-bation of lines P1P3P5 and P2P4P6). Thus the 
allto lo
ation(A, BC) will not return: the underlyingpolynomial behind this 
all to lo
ation is the zeropolynomial. Pappus's theorem being not trivial, the
orresponding zero is more diÆ
ult to predi
t for theprogrammer.The simplest solution is to forbid re-entrant methods:thus points A;B;C of the previous example 
annot beused twi
e, but only some perturbations of them. Inthis way, no geometri
 
onstru
tion 
an be made! Aless authoritarian approa
h would allow geometri
 
on-stru
tions, but then would have to dete
t resulting ze-ros, at run time.The existen
e of (fast?) dete
tion methods is an openquestion. It is 
lear that these zeros are not a

idental,but o

ur whatever the perturbation, i.e., for all dataor at least for all data in some open set. Sin
e theyare theorems, one may 
onsider dete
ting them withthe help of symboli
 
omputations or gap theorems,but also by means of sto
hasti
 
omputations|in thespirit of the S
hwartz's test [20℄ or of Hong's prover[11℄. See also [3, 21, 13℄ for a more re
ent work in thiswake. Let us give more insight on the previous points:This problem has several diÆ
ulty levels.1. In the simplest 
ase, the perturbed numbers gen-erated are v = (v1; :::; vk) and the 
omputed values



are x1 = f1(v)x2 = f2(v; x1)...xn = fn(v; x1; :::; xn�1)where the fi's are polynomials with integral
oeÆ
ients, and the tests involve polynomialsT (v; x1; : : : ; xn).2. In a more 
omplex version, the xi's are impli
itlydes
ribed by: g1(v; x1) = 0g2(v; x1; x2) = 0...gn(v; x1; :::; xn�1) = 0where the gi's are polynomials with integral 
o-e�
ients, assumed to be known, and the valuesof the xi's are 
omputed by a series, or an algo-rithm. For instan
e, x1 = pv; (g1(v; x1) = x21 � v)may be 
omputed using the Egyptian algorithm(x01 = v; xk+11 = xk1+v=xk12 ).Fortunately, there are methods to dete
t unex-pe
ted zeros in su
h settings. For instan
e, theoperations leading to the irruption of a zero as adire
t 
onsequen
e of Pas
al's Theorem6 may beexpressed in the previous framework. Let us detaila \sto
hasti
 proof" of this theorem:(a) In a �nite �eld Z=pZ; p prime, de�ne a ran-dom 
oni
 �.(b) Pi
k 6 random lines, and use their interse
-tions with the 
oni
 (one out of two points, atrandom) to de�ne six points on �. Comput-ing the interse
ton of a line and the 
oni
 re-quires 
omputing a surd, an operation whi
hproves (im)possible in the �nite �eld in 50%of the trials, on average (draw another linewhen not lu
ky).(
) Che
k that the three points are aligned.p-adi
 variants may also be 
onsidered (i.e., 
om-putation modulo p; p2; p3; :::) There exist theoremsthat allow transforming this heuristi
 proof into aformal one (said rapidly: use Hong's methods with6Pas
al's Theorem: The three interse
tion points of the oppo-site sides of an hexagon ins
ribed in a 
oni
 are aligned. (Whenthe 
oni
 degenerates into 2 lines, Pas
al's theorem redu
es toPappus's theorem).

modular arithmeti
, and then apply the ChineseRemainder Theorem). Note that the present argu-ment also applies to the previous, simpler 
ase.3. The algebrai
 system is not triangular. Finding asolution in a �nite �eld is harder.4. In the most general and of 
ourse mu
h harder
ase, the system is no longer algebrai
, but usestrans
endental (e.g., trigonometri
, logarithms,et
.) fun
tions.A last related question is: is it possible to dete
t su
hvery spe
ial kinds of zeros at 
ompile time, assumingsome fun
tional language is used, at least in the sim-plest 
ases des
ribed above?6 Con
lusionThis paper has hinted at a new solution to impre
isionin CG. We have dis
ussed how a zero-free arithmeti

ould be de�ned, and 
onsidered several options forits implementation. We have addressed the problemof dete
ting undesirable zeros in the 
ase of re-entrantalgorithms, and stressed out the fa
t that, althoughsome methods for dete
ting su
h problems 
ould bedesigned, they should not be 
onfused with theorem-proving strategies, but 
onsidered as a means to de-bug programs. We are 
onsidering implementing zeain 
aml and testing its 
apabilities in the near future.A
knowledgementszea is the starting point for a 
ommon resear
h a
-tion between the authors and two inria Proje
ts(prisme, Sophia-Antipolis (J-D. Boissonnat) and are-naire, Lyons (J-M. Muller)).
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