
ZEA { A zero-free exat arithmetiD. Mihelui, J-M Moreaulisse/ensm.se, Saint-�Etienne { Frane1 IntrodutionThis paper desribes the foundations of a new and en-tirely di�erent exat arithmeti for geometri needs,based on the observation that the main problem whendealing with numerial issues is the handling of zero.With this in mind, the new arithmeti takes its strengthfrom the fat that it forbids zero, or, said in a lessprovoative fashion, it forbids degenerate ases. Inthe long range, we strongly believe that suh strate-gies ould allow Computational Geometry to addressnon-linear problems.There are two lasses of exat arithmetis:1. Those that always provide omparisons betweennumbers, and the signs of numbers; bigint andrational arithmetis are typial examples in thislass, along with various algebrai arithmetis thatunfortunately prove very slow and are seldom usedin Computational Geometry (CG).2. Arithmetis in the seond lass an only omparenumbers with di�erent values: they take an in�-nite time to detet the equality of two numbers.Equivalently, although they do \reognize" posi-tive and negative numbers, they annot detet zero(in a �nite number of steps). Suh arithmetisare alled real exat or onstrutive real arith-metis. They an be based on Cauhy sequenesof nested intervals, ontinued frations expansions,or on-line omputations with redundant numera-tion systems. They an ompute algebrai non-rational funtions (e.g. square root, ubi root,et.), but also transendental funtions, as quiklyand easily|as seen from outside|as any rationaloperation. It is worth mentioning that, by prini-ple, they an only ompute ontinuous funtions.Of ourse, they all use some kind of laziness, sinethey ompute with (potentially) in�nite objets.To quote a few, see [23, 2, 22, 15, 10℄ and the ref-erenes therein.As is well known, algorithms in Computational Ge-ometry do not withstand the inauray of oating-point arithmetis, whih results in topologial inonsis-tenies or in�nite loops at run time. To prevent those,omputational geometers typially round initial numer-

ial data (e.g., oordinates of verties for Delaunay tri-angulations) to integers or rational values, and thenompute exatly, using a Class 1 arithmeti, sine al-gorithms in that domain usually require the detetionof equality (and nullity)1.In pratie, this approah preludes CG from ad-dressing nonrational problems. But even in the rationalase, it is not proven that using a Class 1 exat arith-meti is the only approah, let alone the best one. Sothe question arises: is it possible for CG to use onlyarithmetis from Class 2? We now examine two pos-itive answers to that question, one already published,and one we suggest and think has never been used be-fore.2 Gap arithmetisOne way to use an arithmeti from Class 2 in a geo-metri environment is to onvert it to Class 1 (see e.g.,[17, 5, 12℄). What is mainly required to do so is a wayto detet zero, and this may be ahieved by using var-ious so-alled gap theorems or onjetures. Consider,for instane, Canny's theorem [7℄: Let (x1; x2 : : : xn) beone of the �nitely many roots of an algebrai systemin n unknowns, n equations, eah with total degree notexeeding d, and integer oeÆients with absolute valuenot greater than M . Then, there is a threshold value" = 1(3Md)ndnsuh that either xi = 0, or jxij > ", for all i 2 1 : : : n.(See [7℄ for a proof. Hint: onsider the u-resultant,and apply Hadamard's bound.)Assuming all the numbers involved in any geomet-ri omputation are either initial integer numbers (af-ter rounding), or roots of some algebrai system athand, this kind of \gap theorem" gives a method toompute the sign of a number (or to ompare twonumbers, by onsidering their di�erene): just om-pute an interval with half-width less than ". Unfor-tunately, the threshold value is virtually unpratial,1Naturally, to speed up CG programs, exat arithmetis arenot systematially used in pratie: many exat, and slow, om-putations may be avoided using oating point or interval �lters,or some kind of laziness; see for instane [8, 4, 6, 16, 9℄. However,this paper will not deal with this question.



and there is not muh hope to improve (i.e., inrease)" signi�antly2. Intuitively|and this seems on�rmedby experiments|one may hope that �nding the signof a non zero number is fast, on the average. On theother hand, establishing the nullity of a given quantityis hopelessly slow: an intrinsially exponential numberof digits must be omputed.Still, it is worth noting that Canny's theorem alsoapplies in the linear rational ase, i.e., when d = 1: the"s are of ourse muh more usable in pratie. To ourknowledge, no attempt has ever been made to use gaptheorem-based rational arithmetis.Several suh \gap arithmetis" have been proposedand used in CG, espeially to handle the square rootoperation [17, 5, 12℄. In the transendental ase, D.Rihardson [18, 14, 19℄ has proposed a gap onjeture,alled the Uniformity Conjeture, for numbers de�nedby an expression (not by a system of equations) overthe 19 symbols:0 : : : 9 ( ) + � � = exp log kpIf the value of an expression has magnitude smaller than1=19l, where l is the expression length, then it is zero3.In more intuitive words, the 19l possible numbers areuniformly distributed modulo 1.In onlusion, gap arithmetis lak gap theorems inthe transendental ase, and generally yield unprati-al methods: an exponential number of digits must beomputed to prove nullity. Hene, exploring anotherdiretion seems justi�ed.3 Zero-free omputationsWe laim that a new approah to Class 2 arithmeti|the \zero-free exat arithmeti" (zea)|may be usedwith pro�t in CG. Its priniple is as follows: insteadof being rounded to integral or rational numbers, theinitial numerial data are \rounded to" algebraially in-dependent numbers4. To do so, the initial numbers areperturbed by a (potentially in�nite) stream of random2For example, in the following fairly simple system, " must besmaller than 1=M2n�1:x1(Mx1 � 1) = 0 ! x1 = 0 or 1=MMx2 � x21 = 0 ! x2 = 0 or 1=M3...Mxn � x2n�1 = 0 ! xn = 0 or 1=M2n�1:3Atually, another ondition is required: see the artile fordetails.4algebraially independent: n real numbers v1; :::; vn are saidto be algebraially dependent if and only if there exists a non-identially zero polynomial f(x1; ::; xn) with integral oeÆientssuh that f(v1 ; :::; vn) = 0. There are algebraially independentif no suh polynomial may be found.

digits; for instane the initial value 0.47 will be per-turbed into 0.470000845289... where the �rst zeros arepresent by respet for the initial value, and the otherdigits are random.One may think that the numbers thus genereatedare transendental with high probability, but we do notlaim this nor intend to use suh a property: algebraiindependene is suÆient for our needs!CG programs branh aording to the sign of poly-nomials (often expressed as determinants) with integeroeÆients over initial numerial data5:if F (p1; p2:::pn) > 0then POSITIVE CASEelse-if F (p1; p2:::pn) < 0then NEGATIVE CASEelse ZERO CASEAfter the perturbation, the pi's are algebraially in-dependent, thus F (p1; p2:::pn) annot be zero: theZERO CASEmay no longer our (exept if F is the iden-tially null polynomial, whih is supposed never to beused). Hene, Class 2 arithmetis may indeed be usedin CG. Moreover degeneraies (3 aligned points, 4 o-yli points, et) may no longer our: they are re-moved by the perturbation. This greatly simpli�es theprogramming of CG methods. And �nally it beomespossible for CG to onsider non linear or non aÆneproblems (e.g., intersetion between algebrai surfaes).Suh a sheme should be used with the typial on-strutions of CG, for instane onvex hulls, interse-tions of generi (e.g., non regular) polytopes, Delaunaytriangulations or Voronoi diagrams, generi arrange-ments, and so forth. A typial domain where suh asheme should not be used is geometri theorem prov-ing.4 DisussionSome remarks or questions are worth mentioning:1. Dependenies between data are forbidden, to allowseparate random perturbations. This means forinstane that onvex polytopes must be desribedeither by the intersetion of halfplanes, or by theonvex hull of a set of points. Atually, there isnothing new here: it is already the ase when CGmethods round data to integer values.2. What is the average number of digits required todetermine the sign of a number?3. The most frequently used random generatorsyield periodial sequenes; in our ase this would5This assertion is not entirely true, but let us admit it for themoment.



theoretially result in generating algebraiallydependent|beause rational|numbers. However,in pratie suh generators ould be used and themethod ould work with high probability, providedthe period of the random generator is long enough.Another trak ould be to use smarter randomgenerators, produing truly aperiodi sequenes:although we do not know whether this is pos-sible, we do know that there exist determinis-ti automata that produe aperiodi sequenes(e.g., Thue-Morse sequenes, [1℄). If everythingelse failed, it would still be possible to generate,one and for all, tables of algebraially indepen-dent numbers, in muh the same way that randomnumbers tables were edited before the advent ofmodern omputers.4. Another idea is to note that in most situationsin CG, sine the depth of the omputations is �-nite (i.e., the algorithms are not re-entrant), itis possible to have a \general upper bound" [d+℄on the degree of the test polynomials involvedin a given instane of algorithm. This meansthat algebraially independene is not neessary,and may be advantageoulsy replaed with the fol-lowing weaker onstraint: de�ne the dependeny-degree of n numbers to be the smallest degree [d�℄of the non-identially null polynomial with oef-�ients in Z that vanishes at (v1; :::; vn). It suf-�es that the dependeny-degree of the generatednumbers be bigger than the general upper bound,i.e., d� > d+.What is basially required here is that thedependeny-polynomial bemore omplex (in a er-tain sense) than the test polynomials. As opposedto the �rst \boolean" and qualitative omplexityevaluation (algebrai dependeny versus algebraiindependeny), using the degree in the fashion justdesribed is a more quantitative approah. How-ever, there exist other measures for this notion(e.g., Mahler's measure, magnitude of the oef-�ients, polynomial height, et.), some of whihmight prove appliable and useful in this ase.5. Until now, we have assumed that the numbersinvolved in any test were initial data, not om-puted values (note that other researhers havemade the same assumption [24, 8℄). However,it turns out that suh a restrition is unonve-nient for programmers, who had rather use thesame prediate (i.e., the same funtion all) toompute, for instane, the loation of an initialor intersetion point relatively to some given lineor plane, be it de�ned by initial points or not:loation(pt, line) returning below or above.

6. Allowing initial and omputed values in the testpolynomials may lead to problems: for instane,a program omputes the intersetion point I be-tween two (perturbed) lines AB and CD. How-ever, whatever the perturbation on A;B;C;D,points A;B; I are aligned, by de�nition, and theall to loation(I, AB) or loation(I, CD) willnever return: indeed, after substitution, the poly-nomial for loation is identially null.Of ourse, this is an old problem to programmersin CG, who are austomed to using book-keepinginformation (I aligned with A and B, and with Cand D) rather than letting the exat library re-ompute it.7. Re-entrant or on-line methods raise more diÆultissues (next setion.)5 Re-entraneRe-entrant or online methods raise diÆult issues, butsuh methods are rare in CG. Imagine, for instane,a method to ompute arrangements of lines in 2D al-lowing the dynami insertion of new lines through theintersetions of previous lines. Let P1, P3, P5 bethree intersetion points on a �rst line, and P2, P4,P6 three others, on a seond line. Then, by Pappus'stheorem, A = P1P2 \ P4P5, B = P2P3 \ P5P6 andC = P3P4 \ P6P1 are aligned (whatever the pertur-bation of lines P1P3P5 and P2P4P6). Thus the allto loation(A, BC) will not return: the underlyingpolynomial behind this all to loation is the zeropolynomial. Pappus's theorem being not trivial, theorresponding zero is more diÆult to predit for theprogrammer.The simplest solution is to forbid re-entrant methods:thus points A;B;C of the previous example annot beused twie, but only some perturbations of them. Inthis way, no geometri onstrution an be made! Aless authoritarian approah would allow geometri on-strutions, but then would have to detet resulting ze-ros, at run time.The existene of (fast?) detetion methods is an openquestion. It is lear that these zeros are not aidental,but our whatever the perturbation, i.e., for all dataor at least for all data in some open set. Sine theyare theorems, one may onsider deteting them withthe help of symboli omputations or gap theorems,but also by means of stohasti omputations|in thespirit of the Shwartz's test [20℄ or of Hong's prover[11℄. See also [3, 21, 13℄ for a more reent work in thiswake. Let us give more insight on the previous points:This problem has several diÆulty levels.1. In the simplest ase, the perturbed numbers gen-erated are v = (v1; :::; vk) and the omputed values



are x1 = f1(v)x2 = f2(v; x1)...xn = fn(v; x1; :::; xn�1)where the fi's are polynomials with integraloeÆients, and the tests involve polynomialsT (v; x1; : : : ; xn).2. In a more omplex version, the xi's are impliitlydesribed by: g1(v; x1) = 0g2(v; x1; x2) = 0...gn(v; x1; :::; xn�1) = 0where the gi's are polynomials with integral o-e�ients, assumed to be known, and the valuesof the xi's are omputed by a series, or an algo-rithm. For instane, x1 = pv; (g1(v; x1) = x21 � v)may be omputed using the Egyptian algorithm(x01 = v; xk+11 = xk1+v=xk12 ).Fortunately, there are methods to detet unex-peted zeros in suh settings. For instane, theoperations leading to the irruption of a zero as adiret onsequene of Pasal's Theorem6 may beexpressed in the previous framework. Let us detaila \stohasti proof" of this theorem:(a) In a �nite �eld Z=pZ; p prime, de�ne a ran-dom oni �.(b) Pik 6 random lines, and use their interse-tions with the oni (one out of two points, atrandom) to de�ne six points on �. Comput-ing the interseton of a line and the oni re-quires omputing a surd, an operation whihproves (im)possible in the �nite �eld in 50%of the trials, on average (draw another linewhen not luky).() Chek that the three points are aligned.p-adi variants may also be onsidered (i.e., om-putation modulo p; p2; p3; :::) There exist theoremsthat allow transforming this heuristi proof into aformal one (said rapidly: use Hong's methods with6Pasal's Theorem: The three intersetion points of the oppo-site sides of an hexagon insribed in a oni are aligned. (Whenthe oni degenerates into 2 lines, Pasal's theorem redues toPappus's theorem).

modular arithmeti, and then apply the ChineseRemainder Theorem). Note that the present argu-ment also applies to the previous, simpler ase.3. The algebrai system is not triangular. Finding asolution in a �nite �eld is harder.4. In the most general and of ourse muh harderase, the system is no longer algebrai, but usestransendental (e.g., trigonometri, logarithms,et.) funtions.A last related question is: is it possible to detet suhvery speial kinds of zeros at ompile time, assumingsome funtional language is used, at least in the sim-plest ases desribed above?6 ConlusionThis paper has hinted at a new solution to impreisionin CG. We have disussed how a zero-free arithmetiould be de�ned, and onsidered several options forits implementation. We have addressed the problemof deteting undesirable zeros in the ase of re-entrantalgorithms, and stressed out the fat that, althoughsome methods for deteting suh problems ould bedesigned, they should not be onfused with theorem-proving strategies, but onsidered as a means to de-bug programs. We are onsidering implementing zeain aml and testing its apabilities in the near future.Aknowledgementszea is the starting point for a ommon researh a-tion between the authors and two inria Projets(prisme, Sophia-Antipolis (J-D. Boissonnat) and are-naire, Lyons (J-M. Muller)).
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